A TRANSIENT DISCRETE TIME QUEUE WITH FINITE STORAGE

By Joan R. KINNEY

Lincoln Laboratory,* Massachusetts Institute of Technology

Introduction. Suppose a queue at which ¢ customers arrive during each unit
time interval with probability a(z), a(0) > 0, a(n) > 0, a(s) = 0 when s > n.
Service occurs as follows: at the end of each unit interval k£ customers are served
with probability b(k) if more than k customers are present. If k£ customers are
present, all of them are served with probability ) ;»: b(j). At the end of service,
if more than NV customers remain, all but ;N are lost. It is assumed that 5(0) > 0,
b(m) > 0,b(s) = 0fors > m. Let

n

A@) = Ta@d,  B@ = b0

1=0

P(z) = A()B() = 3 p(i)"

i=—m

Let X(1), X(2), -- - be independent random variables such that
i
Pr{X(:) =k} = p(k), S = 8(0) + ;X(i),

where S(0) is a random variable, 0 < 8(0) £ N, E{z°®} = K(2) = X_ k(:)7".

In the first section of this paper [2] we find the generating functions of the first
hit probabilities of S(¢) above N and below 0, formulae (1.1a) and (1.1b) by
using results of a previous paper. In subsequent sections the methods used to
examine recurrent events are used first to find the first hits of S(¢) outside the
interval [0, N] then to find the distribution of the queue during a busy period,
finally to find the distribution of the transient queue. In the last section we de-
rive the generating function of the steady state.

The problem of allocation of storage space in digital computers motivated
consideration of finite storage in a discrete time queue.

At the time [2] was published the author did not recognize that Theorem 2
was a version of Wald’s identity [3].

1. The absorbing barrier process. The following notation will be used. For a
>0k>0N=7=0,let

g(u, —a,t) = Pr{S(t) = —a,0 = min S(j) | $(0) = 4},
0<i<t

h(u, N + k,t) = Pr{S(t) = N + k, Inax S8(@G) = N|8(0) = u},
<i<t

—a,0 < min S(j),
0<i<t

g(N,u, —a,t) = PI‘{S(t)
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max 8(j) = N|8(0) = u},
0<j<t
h(N,u, N + k,¢) = Pr{S(¢) = N + k,0 = min S(j),
<5<t

max S(j) = N | 8(0) = u},
0<ji<t

f(N,u,7,¢) = Pr{S8(¢) =1,0 =< min S(j),

0<ji<t

max S(j) = N | S(0) = u},
0<j<t

G(u, —a, w) = Zg(u’ —a, t)wty
t>0

H(u, N + k, w) = g;h(u, N + k, dw',

F(N,u, 21t = '_Z:f(N, u, i, )2,
F(N, u, 2, w) = ; F(N,u,z, t)w',
G(N,u, —a,w) = t;) g(N, u, —a, t)w',
H(N,u, N + k,w)= ;)h(N, u, N +k, i)w‘,
S(u, 2, w) = ; G(u, —a, w)z™*,
3e(u, 2, w) = ;}H(u, N + k, w)2"*,
S(N,u,zw) = DZ(:) G(N, u, —a, w)z™",
(N, u, 2, w) = ;JH(N, u, N + k, w)2"*,
®R(N,u,z,w) = 2" — G(N, u, z,w) — 3(N, u, z,w).
It is shown in [2] that
(1.1a) G(u, —a, w) = é A(a, b))y (w),

where A(w), -+, An(w) are the solutions of 1 = wP(A(w)) within the unit
circle for lw| < land A = || A(a, b) |l1<ab<m is the inverse of L = || L(a, b)|| =
22" (w) lhgabgm -

Let vi(w), - -+, va(w) be the solutions of 1 = wP(1/y(w)) within the unit
circle for |w| < land let T' = || I'(a, b) || = || va*(w) |ligap<n , C = || C(a, b)|| =
I\, The same argument that leads to (1.1a) yields

(1.1b) H(u, N + k, w) = anC(k, a)yY ™ (w).
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The G(u, —a, w) and H(u, N + k, w) will be considered known and the
G(N,u, —a, w) and H(N, u, N + k, w) will be expressed in terms of them.
By a standard decomposition

{8(t) = —a,0 = min §(j), $(0) = u}
0<ji<¢

— {S(5) = —a,0 < min 8(j), max () < N, S(0) = u}
(1'2) 0<i<t 0<ji<t
v U U [{8(r) = N+ k,0 £ min 8(j), max S(j)
0<ji<r 0<j<r

1<kgn 05rst

=N, 800) = ufn{8(t) = —a,0 = min §(j), 8(r) = N + k}].

Since the X (¢) are identically distributed independent random variables,

Pr{S(t) = —a,0 = Iglg S@G) | 8(r) = N + K}

=Pr{S(t—r) = —a,0 < min S8() 1 8(0) = N + k&

t—r
=g(N +k, —a,t—r).
Hence, we obtain
g(u’ —-a, t) = g(N> u, —a, t)
(1.3) n
+ Z Zh(N)u)N + k,T)g(N + k) —a,t — 7')

k=1 r=1

when we take conditional probabilities in (1.2). Introducing generating functions,
we have

G(u) —a, w) = G(N1 u, —a, w)

1.4 n
(14a) + SSHN, u, N + & w)GN + k, —a, w).
k=1

By a similar argument

H(u,N + k,w) = HN,u, N + k, w)

1.4b m

(1.4b) + X G(N,u, —a, w)H(—a, N + k, w).
a=1

Upon rearrangement of (1.4a) and (1.4b) we may obtain

G(N, u, —a, w) = G(u, —a, w) — ;H(u, N + &k, w)G(N + k, —a, w)

+ EG(N,'M, -, w) kZH(—s’N_l- k) w)G(N+ kr —-a, ’U)),
8=1 =1
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(15) H(N,u,N + k,w) = H(u, N + k, w)

- ZIG(u, -, ’M))H(—S, N + k’ w)

+ > HN,u,N +r,w) > GN +r, —s, wH(—s, N + k, w).
r=1 8=l

From (13),0 =< g(N, u, —a, t) < g(u, —a, t). Similar considerations would
show that 0 < h(N,u, N + k,¢) < h(u, N + k, t). Hence the G(N, u, —a, w)
and H(N, u, N + k, w) are power series without constant terms which converge
for |w| = 1.

In (1.4a) and (1.4b) let » and N be fixed and let @ vary from 1 to m, k vary
from 1 to n. Then there are m + n equations in m + n unknowns. The matrix
of this system has ones on its diagonal and the other terms are either zero or
power series in w, without constant term, convergent for |w| < 1. For sufficiently
small w this matrix is nonsingular so we may solve this set of equations for
G(N,u, —a,w) and H(N, u, N + k, w).

Note that

(S0) = 4,0 5 minS(), maxSG) S N, 80) = = U (50 -1 =3,

<5<t

0= min 5@, max §(j) =N, 80) =un {X() =d—b}.

0<j<t—1

Settingd = N + k,d = j,0 < j < N, and d = —a and taking conditional
probabilities, we obtain

N

f(Ni u)j) t) = bz_lf(N, u, b)t_ 1)2’(] - b)’

g(N,u, —a,t) = g:lf(N, u,b,t — 1)p(—a — b).
For the generating functions, this implies
F(N, u, 2z, w) — 2"+ GQ(N, u, 2z, w) + 3N, u, 2, w) = wF(N, u, 2, w)P(2).
Hence

¥ — G(N,u,z,w) — 3(N,u,z,w) _ ®(N,u,zw)
1 — wP(2) T 1 —wP()

(16) (N, u, 2 w) =

This function has been found by G. Baxter [1]. He obtainsit by a quite different
approach and obtains properties of the (N, u, z, w), with varying N considered
as functions of z relative to the weight function 1 — wP(z), with 2z taken on
the unit circle.
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II. The distribution of the queue during a busy period. Define the random

variable ST(¢) inductively: $*(0) = 8(0), S*(f) = min [S*(t — 1), N] +
X (¢). Let S¥(t) = min [S*(¢), N]. Let

FT(N,u,5,8) = Pr{8*(t) =j,0 < min 8¥(k) | 87(0) = u}
0<k<t

N

F+(N7 u, ?, t) = Ef-'-(N, u’j, t)zj,
=0

$Y(N,u,2,t) = 2 F'(N,u,zt)w'":
t=0
G¥(N,u, —a, w) = 2 Pr{S¥() = —a,0 = min S¥(k) | S(0) = ulw’

t>0 <K<t

F¥(N, u, 2, w) = . Z OPI‘{SN(t) =7

0,¢

i
0=

v

E 1

v

in S¥(k) | 8(0) = u}z'w’
k<t

3 o
A

Mu,w) = 2, > h(N,u, N + k, {)w' and
t=1 k=1

Q(u, w) = > Pr{8%(t) > N,0 < min S*(k) | S(0) = w}w'’.
t>0 0<k<t

By a standard decomposition
{8*(t) > N,0 = min 8*(k), 8%(0) = u}
0<k<t
= {8*(t) > N,0 = min 8¥(k), max ST(k) < N, §7(0) = u}
<K<t 0<k<t

v U [S*(®) > N,0 = min 87(k), max S*(k) < N, 8¥(s) > N}
<kt 8<k<t

>8>0

n{S*(s) > N,0 = I?in S(k), 8*(0) = u}].
0<k<s

Forj > N, {8*(t) > N,0 < min,ci<: S(k), maX,cic: S*(k) <N, S*(s) = j}
imposes the same restriction on X(s + 1), ---, X(¢) as does

{8(¢) > N,0 < min S(k), max S(k) =< N, 8(s) = j}.
8<k<t a<k<t
Hence we obtain Q(u, w) = M(u, w) + Q(u, w)M (N, w) upon taking condi-

tional probabilities through the above decomposition and introducing generating
functions, so

(2.1) Q(u, w) = M(u,w)/{1 — M(N, w)}.
Forj > N, {87(t) = k,0 < min,c,<: 87(r), maxecrce S¥(r) < N, 87(s) = j}
imposes the same restrictions on X (s + 1), ---, X(¢) as does

{8(¢) = k,0 £ min S(r), max S(r) = N, 8(s) = j}.
<l r<t <t

e<r
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Hence, taking conditional probabilities through the decomposition
{87(t) = k,0 < min 8¥(r), 8T(0) = u}
0<r<t

= {8*(t) = k,0 £ min S(r), (I)r<1?<xt S(r) £ N, 8(0) = u}

<r<t

u U {87(¢) = k,0 < min 8¥(r), max 8¥(r) = N, 8*(s) > N}
s<r<lt <<t

o<a<t
n{8*(s) > N,0 < min 8¥(r), 87(0) = u}
yields s
FY (N, u, k, 8) = f(N, u, k, t)
+ > f(N,N,k,s—1t) Pr{ST(s) >N,0= o‘!lii S*(r) | 8*(0) = u}.

0<s<t
The introduction of generating functions yields
(2.2)  FY(N,u,z,w) = F(N,u, 2w + Qu, w)[FN,N, 2z, w) — 1].
Since Pr (S¥(t) = j) = Pr (87(t) = j),j < N, and Pr (8¥(¢) = N) =
Pr{8*(¢t) = N} + Pr{8™(t) > N} so,
23) FN(N, u, 2z, w) = (N, u, 2z w) + Qu, w),
FY¥(N, u, 2z, w) = F(N,u, z,w) + Q(u, w)F(N, N, 2z, w).
A similar argument yields
(24) G¥(N,u, —a,w) = G(N,u, —a,w) + Q(u, w)G(N, N, —a, w).

III. The distribution of the transient queue. The random variable S (¢) corre-
sponding to the number of customers in the queue at time ¢ is defined in-
ductively: 87(0) = 8(0), S(¢) = max {min [S7(¢ — 1) 4+ X(¢), N], 0}. Let

N, u,3, 1) = Pr{8:1(t) =j|8/(0) = u},

N 0
gI(N’ U, 2, w) = Z EfI(N7 u’j’ t)zjwt,

J=0 t=0

(u, w) = »Z)Pr{SI(t -1+ X@ <0,

l

0 = min (8/(j — 1) + X(5)) | 87(0) = ujw,

0<ict

and T(u, w) = D eoPr{Sr(t — 1) 4+ X(f) < 0] 87(0) = w}w'. Arguments
similar to those used in finding M (u, w) and Q(u, w) yield

3.1) 7(u,w) = Z_k:lG*(N, u, —a, w), T(u, w) = 7(u, w)/(1 — 7(0, w).

Arguments similar to those used in deriving (2.3) yield
(3.2) FI(N, u, 2, w) = ¥(N, u, 2z, w) + T(u, w)F¥(N, 0, z, w).
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IV. The steady state queue. We assume that the number of persons in the
queue has a limiting distribution as time becomes infinite. Define H1(z) to be
its generating function. Then H(z) = lims., FI(N, u, 2, t) where

FI(N, u, 2, w) = 2 FI(N,u,z t)w'.
t>0

Standard arguments (as in [2]) yield H(z) = limy1 (1 — w)F(N, u, 2, w).
Since p(—m) > 0, the queue is certain to be empty occasionally, so

lim (1 — w)F¥(N, u, 2z, w) = 0.
w1

From (3.2) then,
Hi(z) = lim (1 — w)T(n, w)F¥(N, 0, 2, w)
wil

= hrfnl (1 - ’ll)) [T(ur w)/(l - T(O, ’w))]ETN(N, 0) 2, w)

EFN(N) 0) 2, 1)/[(d/dw) T(O) w)]w-=1 .
The application of (2.2) and (1.6) yields
F¥(N,0,2,1) = [®(N,0,2,1) + Q(0, L)R(N, N, 2, 1)]/(1 — P(2)).

Let D(u, w) = D> a1 G(N, u, —a, w). Apply (2.3) and set « = O to obtain
7(0, w) = D(0, w) + Q(0, w)D(N, w). Then

7(0,1) = D'(0,1) + Q'(0, 1)D(N, w) + Q(0, 1)D'(N, 1).
Since
Q(0, w) — M(0,w)/(1 — M(N, w)),
(1 —M(N,1))Q(0,1) = R'(0,1) + M'(N, 1)Q(0, 1).

Since M(N,1) = >  H(N,N,N + k,1), M(N, 1) + D(N,1) = 1. Combining
this with the above, we have

7(0,1) = D’(0, 1) + M’'(0,1) + Q(0, H[D'(N, 1) + M'(N, 1)]
= (d/dw)[®(N, 0, 1, w) + Q(0, YR(N, N, 1, w)]|upm1 .

Hence
HI(Z) — (R(Ny 07 %, 1) + Q(O; l)c)t<N, N, 2, 1) 1
T (d/dw)[®(V, 0, 1, w) + Q(O0, DR, N, 1, w)]|ut (1 — P)) "
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