MIXTURES OF MARKOV PROCESSES!

By Davip A. FREEDMAN?

Princeton University

1. Introduction. Kriloff and Bogoliouboff proved in [4] that stationary sto-
chastic processes may be represented as mixtures of metrically transitive proc-
esses. It follows easily (as in [3]) from the strong law of large numbers that this
representation is unique. A more illuminating proof is presented here for mixtures
of Markov processes (even without assuming stationarity). All processes under
discussion are natural number valued, and their time parameter ranges over the
natural numbers.

The proof is based on the cycles of a process, which are the (finite) sequences
of states beginning and ending at the same state. There is a function on the
space of cycles which is associated with each process; namely, assign to a cycle
the conditional probability of observing it given its initial state. In Section 2 it
will be shown that by and large this association is 1 — 1 for Markov processes,
so that the transition probabilities may be determined from the cycle probabili-
ties. Hence a probability distribution over a family of Markov processes may be
thought of as a distribution in the space of cycle probabilities. If the mixture
of these processes with respect to some distribution is known, so are the probabili-
ties of repeating given cycles a given number of times. But these are the moments
of the distribution of cycle probabilities, and determine that distribution. Thus
the mixing distribution can be recovered from the mixture, and if a process can
be represented as a mixture of Markov processes, there is essentially only one
way to do this. Section 2 below discusses the cycles, and Section 3 gives the
uniqueness theorem. The terminology and theory of [2, Chapter 15] is used.

2. Cycles. The symbol c¢ is reserved for specific cycles, and ¢ for a variable
whose domain is some set of cycles. If ¢ is the sequence (¢; : 1 < j = n + 1),
where 2, = %n41, it is said to be of length =, and its cycle probability is defined
a8 ke(P) = Diyiy =+ * Diging: » Where p € [0, 1]7%Z and Z is the set of natural
numbers. Here and throughout the paper, subscripts on a point in a product
space indicate its coordinates. Usually, p is a matrix of transition probabilities
associated with a Markov process, with the understanding that if ¢ or j is not
in the state space of the process, p;; = 0. The domains of ¢ are C;, the set of
cycles beginning and ending at 7; C; , the subset of C; of cycles of length n; and
C?; , the subset of C7 of cycles whose first transition is (z, j) ; ;Ci; is the subset
of C3; of cycles which pass through j only once. Then

TaEOREM 1. The following features of a stochastic matriz are determined by tts
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cycle probabilities:
(i) the classification of states into transient, persistent null, and persistent
non-null;
(ii) the partitioning of the persistent states into trreducible classes;
(ili) the transition probabilities within each class of persistent states.
Moreover, if (1) and (ii) are known, then (iii) follows from a knowledge of the
cycle probabilities through any one state of each irreducible class.
Proor.
(i) The classification of the state j depends only on the asymptotic behavior
of piP. But

(1) P = 2 ke.

n
ceCi

(ii) The states 7 and j belong to the same irreducible class if and only if there
is a ¢ € C; passing through j with &, > 0.

(iii) It suffices to consider an irreducible stochastic matrix of persistent
states.

Suppose the k. with ¢ £ C; are given. Let ¢ € C; but not £ C; . There is a ¢o e C
passing through ¢, with k., > 0. But k., and k,-k. together determine k., and
these two quantities are known. Hence all the cycle probabilities are fixed.

If the class is non-null, let (Ces, 1) indicate the first Cesaro method of limita-
tion, and denote the unique stationary initial probability distribution by p¥ .
Then

p? = (Ces, 1) limp.e pi” > 0

(2) _ . n
pi; = pi (Ces, 1) limne pipst,

and p{? ) and pipst’ can be calculated from the cycle probabilities:

(3) piﬂ’.ﬁ':") = Z ke .

n4l
“cii

If the class is null, the calculation is similar but less elementary, using Derman’s
stationary initial infinite “probability’” distribution. The notation and theory
of [1, Section 1.9] will be used. From equation (18) of the reference,

- )
2 pit
* : n=0
/Pii = lim )

N

DI

n=0

with 0 < s} < «. Moreover, from the definition of ;p; ,

(4) P = (jp;";)“g?l Pis D5
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and
(5) pi s = 2 k.

.on+l
“Jcii

Hence the transition probabilities have been computed from the cycle prob-
abilities, finishing the proof.

The precise form of the theorem needed in Section 3 is stated as a

CoroLLARY. If a sub-stochastic matrix p has only one irreducible class E of
persistent states and if © € E then {k.(p): c € Ci} determines

(ii") whether je E orje' E, for anyje Z;

(iii") the pjx for j, ke E.

Proor. Enlarge the matrix by adding the state «, with p. = 1 — > i,
DPui = 01 Do = 1.

The new matrix is stochastic, and Theorem 1 applied to it gives (iii’). The
argument for part (ii) implies part (ii’).

3. The uniqueness theorem. Let & = Z”; B(&) be the smallest o-algebra of
subsets of & containing the cylinder sets.

By the Kolmogorov consistency theorem [5, p. 93], the marginal distribution
functions of each process induce a probability on B(&). Let A be some family
of processes and let {P» : A ¢ A} be the corresponding family of probabilities
induced on B(&). Take B(A) to be the smallest o-algebra of subsets of A for
which all the functions {P\(E): E ¢ B(&)} are measurable. If u is any prob-
ability on B(A), the functional P, on B(&) is defined by

P.(E) = [sP\(E) dp: E ¢ B(®).

Then P, is itself a probability, and is called a mixture of the probabilities of
Py, while u is called the mixing distribution. Theorem 2 below will recapture
u from P, , when A is a family of Markov processes with no transient states;
a restriction assumed in the balance of the paper.

Simple examples show that this is not always possible if some member of A
contains transient states. Moreover, the way in which the irreducible components
of the chains in A are combined to form general chains, or the way in which the
initial distributions corresponding to each irreducible component in A are dis-
tributed (provided their average is fixed) obviously cannot affect P, . However,
apart from these inevitable ambiguities, u is uniquely determined by P, .

To state this precisely, let M’ = [0, 1) and let L' = [0, 1]2%Z, with B(M’)
and B(L’) the products of the s-algebras of Borel subsets of [0, 1]. Give L’ the
product topology. Let M = {p: pe M’ and D _; p; = 1}, while L is the set of all
p in L’ such that

(i) 2;pij=0o0rl:ieZ;
(ii) if X;pis = O for a point p, then 2, p; = 0;

(iii) a Markov process with transition probabilities p,; has no transient states,
and only one irreducible class of persistent states; as usual, if > Dip; = 0, the
state 7y is to be deleted from the state space.
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Define B(M) = MN B(M') and B(L) = LN B(L').

LeMwMma 1.

(i) Me B(M') and L e B(L'");

(i) any probability u on B(A) induces a probability m on B(L) and a measur-
able transformation f: L — M in such a way that

n—1

(6) P“(S:S £Q, s = js‘ A1 =1 = n) = ‘/;f(p)jl 111 Disiiza dm(p).

Moreover, f has the property that ) ; pi,; = 0 implies f(p):, = O.

Proor. Since the proof is tedious but straightforward, it will not be argued in
detail. For part (i), p: is a continuous and hence measurable function of p ¢ M’.
Thus Y ;p: is a measurable function, and M is a measurable set. A similar
argument shows that conditions (i) and (ii) on L restrict p to a measurable
subset of L’. To deal with (iii), p{}’ is a measurable function of p, and hence
D piP = o and sup, p{P’ > 0 define measurable subsets of L’. The details of
part (ii) will be found in [3]. The procedure is to expand A to A X 27 by splitting
each process into its irreducible components (), z) with z ¢ 2% and (A, z) having
z as its (one) irreducible class. This produces a probability u’ in A X 2%. Let
T map A X 27 into L, assigning to each process its matrix of transition prob-
abilities, with p;; = pjs = 0, all j & Z, if 7 is not in the state space z. Then T
is measurable, m = w’'T", and f(p); = E(Po.y(81 = 1)| T), the conditional
expectation being with respect to the probability u’. The reader unwilling to
accept this argument may restrict his attention to families of Markov processes
indexed by their matrices of transition probabilities.

The uniqueness result is

TaeorEM 2. The mizture P, uniquely determines m and f a.e. [m].

Proor. Let L; = {p:pe Land D_;p:;; = 1} and put

mi(E) = Lf(p); dm = fl“nﬁf(p).' dm, for E € B(L).

Let B(L;) = L:N B(L). Since D_:f(p): = 1, it follows that m = D_;m; and
f(p)s = dm;/ dm a.e. [m], so that it suffices to compute m; on B(L;) from P, to
complete the proof.

To do this, it is advantageous to pass to the space of cycle probabilities. Let
L; = JI{[0, 1]. : ¢ £ C;} and define u to be the natural map from L’ to L; , which -
associates with every matrix its cycle probabilities, i.e., u(p). = k.(p), pe L',
ceC;. Put u; = u restricted to L;, L; = u;(L;); define B(L;) as the product
of the s-algebras of the Borel subsets in [0, 1], B(L;) = L;N B(L:). Give L; the
product topology. )

But then u;isa 1 — 1 map of (L;, B(L;)) onto (L;, B(L;)) which is measur-
able in both directions. Indeed, it is onto by the definition of L; and 1 — 1 by
Theorem 1. The measurability of u; follows from the continuity of u. The measur-
ability of u;* follows from the equations (2) and (4) and the fact that the right-
hand’ sides of (1), (3), and (5) are continuous, hence measurable, functions
on L,' .
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Let N = {n. : ¢ ¢ Ci} be a set of non-negative integers, all but a finite number
vanishing. With the convention that 0° = 1,

@ [ Ik dmea'e) = [ TT (o)) dmi(p) = Pu(F),
where Fy is the cylinder set of s ¢ & whose coordinates, starting with s; = 4,
give rise to n. cycles ¢ in some specified order. Hence P, fixes the left-hand side
of (2), for any N. But knowing the left-hand side of (7) as a function of N is
equivalent to knowing mu;". For example, L; is compact by Tychonoff’s Theo-
rem [6, Theorem 5D] and the algebra generated by ] [..c, k7° as N varies sepa-
rates points in L;. Hence the Stone-Weierstrass theorem applies [6, Theorem
4E], and the Riesz representation theorem [6, Seetion 16A] gives the desired
result. That is to say, mu;", and hence m; , may be computed from P,, and
this completes the proof.
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