A “RENEWAL” LIMIT THEOREM FOR GENERAL
STOCHASTIC PROCESSES!

By V. E. BenES
Bell Telephone Laboratories and Dartmouth College

1. Introduction. Let{z;, — © < ¢ < «} be a stochastic process that takes
values in a (possibly abstract) space X. Specifically, assume as given a space
© of points w, a Borel field § of w-sets, a probability measure P of F-sets, a Borel
field @ of X-sets, and for each real ¢ a function z,(-) from © to X such that
{x.e A} is an F-set for A ¢ @. The existence and calculation of

(1) limg..,, Pr{a:, & A},

under the weakest possible conditions, is a problem of considerable interest in
probability theory.

Some processes for which this problem has received much attention are the
Markov, semi-Markov, and regenerative processes. (The term ‘semi-Markov’ is
Lévy’s in [6], while the more inclusive ‘regenerative’ is Smith’s, in [10] and [11].)
These random processes share the very strong property of having regeneration
points, junctures at which the previous history (except for the present state,
possibly) of the process becomes irrelevant to its future development. In Smith’s
phrase, the past loses all prognostic significance at a regeneration point. In a
sense, then, the process consists of segments that are mutually independent.
(See Smith’s construction, [11], p. 256.) Because of this independence, the re-
newal theorems of Feller [4], Blackwell [1], and Smith [9] have been directly
useful in studying the limit (1) for these processes.

Our limit theorem is of “renewal” type in the sense that it depends on a rela-
tionship between z; and a discrete parameter real process { Sz , k an integer} that
is analogous to the classical (sequence of) renewal points. However, we do not
assume that any regeneration occurs at these points. Our theorem differs from
previous results in requiring no assumptions of independence, and resting only
on mild stationarity properties, to the effect that certain kernels are difference
kernels. The approach that we use to study (1) amounts to carefully distinguish-
ing between the independence and the stationarity properties of z;, and using
only the latter. The approach is fruitful because (as will appear) our theory
applies to many processes that do not have regeneration points.

The present paper was inspired in large part by the work of W. L. Smith (on
renewal theory and regenerative processes); he will recognize in it generaliza-
tions and copies of many of his ideas. A detailed discussion of the relation of
our work to Smith’s is given in Section 4. Also, this paper is a general develop-
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ment of a method used by the author in a special problem (see [1a], especially
Section XII).

2. Summary. Let {S;, k an integer} be a discrete-parameter real stochastic
process defined on the same measure space as z;, with S;4; > S; a.s. and

H(t) — H(s) = E{number of S;in (s, ]} < =, s <t
According to Theorem 1 Pr{z: ¢ A} can always be represented in the form

f_ " QUA, £, u) dH (w).

The class of events of the form {z, £ A}, —o < u < o, is called weakly sta-
tionary with respect to {Si} if its representative kernel Q(A, -, -) is a difference
kernel, Q(4, ¢, u) = Q(A, t — u). The class {z, £ A} is weakly stationary if it
is so with respect to some sequence {S;} with the above properties. The process
y¢ is defined as the time from ¢ to the next S; after ¢, i.e.,

ye = min{Sy — ¢| S > 8.
The hypotheses of the main result (Theorem 3) are: (i) the classes (of events)
{yu < o}, —w<u< o
{r,ed}, —o <u< ©

are both weakly stationary with respect to {S;} with the respective kernels
Q(X, -) and Q(4, -); (ii) the {S:} are “aperiodic” in the sense that the Fourier-
Stieltjes transform of Q(X, -) vanishes at zero only; (iii) H(- + 1) — H(-) is
bounded. The conclusions of Theorem 3 are as follows: (i) if Q(X, -) isin L; and
Q(4, -) belongs to the function-class Kg of [1], then

f Q(4, u) du
Priz,e A} > 22— as t— o;
Q(X ,u) du
0
(ii) if Q(X, -) is not in L,, and Q(4, -) belongs to N (defined below), then
Pri{z,e A} > 0 ast— o; (iii) if @Q(X, -) isnotin L, , and Q(X, -) — Q(4, *)
isin N, then Pr{z,c A} —» 1 as{— .

The function-class Kz (defined in [1] and later in this paper) depends on the
measure induced by H. If f is continuous a.e., it belongs to K, for any positive
measure « that satisfies the hypothesis of Wiener’s Theorem (Widder [12], p
214). The function-class N is just Wiener’s M with the requirement of con-
tinuity removed.

It is shown in the course of proving Theorem 3 that the limit (1) depends
only on H, defined to be 0 for negative argument, and H(t) — H(0—) for
t = 0, and that H, must have the mathematical form of the classical renewal
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function (see Smith [9]) even though the {S;} do not necessarily form a renewal
process. That is,

2 Hy=F+FsG+F*GsG + ---

where F, G are distribution functions, and * denotes Stieltjes convolution. The
weak stationarity condition on y; alone, without any independence assumptions,
implies that the study of the asymptotic behavior of H reduces to a problem of
renewal theory.

- The preceding definitions and results require only minor modifications to
cover the case in which z; is defined for 0 < ¢ < « only, and the {.S;} are posi-
tive and defined for k¥ = 0 only, with Sy = 0.

The last section describes some ways of defining classes of events that are
weakly stationary from arbitrary stochastic processes. The constructions show
that in spite of (2), weakly stationary classes of events are not limited to sto-
chastic processes of regenerative type.

It is important to understand that the validity of (2) is implied by, but does
not imply, the fact that the {S;} form a renewal process. In other words, it is
possible for (2) to hold without { S} being a renewal process. From the represen-
tation (2) one can prove that there is some general renewal process (Smith’s
phrase) for which H, is a (modified) renewal function, but not that

{Se, k = 1}

is this process. In Section 6 we show how to construct an example in which (2)
holds and the {S;} are not sums of independent random variables. It is a special
feature of the notion of weak stationarity that it permits the use of the mathe-
matical properties of the classical renewal function without incurring hypotheses
of independence. That (2) holds is a relatively nontrivial (and perhaps un-
expected) consequence of the fact that Q(X, t, u) is a difference kernel, and it
neither depends on nor implies any independence properties.

The point to grasp is that if Q(X, ¢, w) and Q(A, ¢, u) are difference kernels,
then the event {zx;c A} behaves as though the {S;} formed a renewal process,
irrespective of independences that may or may not obtain.

3. A Representation for Pr{z, ¢ A}. We suppose that {S;, k = 0, £1, £2,
... } is a discrete-parameter real stochastic process, defined on the same measure
space as z; , and such that

3) © > S > S, a.s.,

(4) H(t) — H(s) = E Pris < Sy St} < o, 8 < t.
The {S;} are a generalization of renewal points obtained by discarding all hy-
potheses of independence. It is easily seen that

H(t) — H(s) = E{number of S; in (s, t]},
so that H is analogous to the renewal function of Smith [9], [10], [11].
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‘THEOREM 1. The probability of {x,c A} can always be represented in the Sform
t
Priz. e A} = [ Q(A, t, u) dH(u).

Proor. Let §; be the smallest Borel field with respect to which S, is measur-
able. From (3),

00

Pr{z; eA} = k-Z-QPI‘{xcé'A &Sy =t < S}

(5) i

[ Prisie A &S > t] 5:}P(dw).
ko J(85t)

Choose particular versions of the conditional probabilities in (5), to be fixed
henceforth. These versions are §;-measurable w-functions and so (Doob [3], p.
603, Theorem 1.5) have the form

(6) Priz.e A & Siy1 > t| T} = Fir(4, ¢, Si(w)),
where Fi(A, t, -) is a Baire function. To keep the interpretation® clear we write
) Fr(A,t,u) = Pr{z,e A & Spy1 > t| Sk = u}.

An obvious transformation (Halmos [5], p. 207) then gives
t
(8) Priz e A} = }I‘:,_[ Pr{z. ¢ A & Ser1 > t| S = u} d Pr{S; < u}.

Each Pr{S; = -} measure is absolutely continuous with respect to H, with
Radon-Nikodym derivative

_dPr{S; = u}
o(u) = ——a—[—{—(u)— ’
9 E‘Pk(u) = 1}
k a.e. [H].
(10) 0=p(u) =1

The first is true by definition; if the second fails on a set B of positive H-measure,
then either Pr{S; ¢ B} < 0 or

Pr{S, ¢ B} = fa ou(u) dH(u) > H(B),
both of which conclusions are false. In (8) set A = X and obtain

1= ; ‘[n Pr{Siy1 > t| S = uler(u) dH(u)

(11)
u}er(u) dH (u).

t
= [ ?Pr{SH.l >t|Sk

2 This useful abuse will be used repeatedly. If the r.v. y generates the field F, we write
Pr{A | y = u} for the a.s. value of Pr{A | F when y(w) = u.
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The interchange of Y, and [ in the last step is effected by the monotone con-
vergence theorem (Logve [7], p. 124). By the same argument

Prizie A} = [ Q(A, ¢, u) dH (w),

where for each ¢, Q(A4, ¢, -) is defined a.e. [H] by
(12) Q(A, ¢t u) = Zk:Pr{:c,sA & Sy > t| Sk = uer(u).

Theorem 1 justifies calling Q(A4, -, -) the representative kernel of the set of
events {z, ¢ A}, — o < u < «. This result stems entirely from the facts that
z; and the {S;} are defined on the same measure space, and that (3) and (4)
hold. It is tempting to think of Q(A4, ¢, u) as a version of

Pr{z; e A | last Si prior to ¢ was at u};
however, this interpretation is not correct, as will appear in the next section.

4. Weak Stationarity. Some additional relationship between z, and the {S}
is required for study of the limit (1). If v, is a stochastic process taking values
in X, and B C X, the class of events of the form {v, B, —© < u < =, is
called weakly stationary with respect to {sS,} if its representative kernel depends
only on the difference of its (last two) arguments, i.e., is a difference kernel.
This usage resembles calling a second-order process stationary in the wide sense
if its covariance is a difference kernel. It will be shown that the regenerative
and equilibrium processes of Smith [10] are weakly stationary with respect to
the renewal processes on which they are based.

In his paper [10] Smith has introduced the notion of an equilibrium process.
Since this notion resembles that of weak stationarity, it is important to dis-
tinguish between the two notions, and to discuss the relations between them.
Smith works only (with stochastic processes defined) on the interval [0, =),
while we work on (— «, «); this is not an important difference. To facilitate
comparison with Smith’s work, the discussion ensuing in this section is for a

-process {z;, t = 0} defined for ¢ = 0 only.

Stripped of inessentials and couched in our notation, Smith’s equilibrium
process can be described as follows. The sequence {S;, k¥ = 0} of random var-
iables is assumed to form a general renewal process: that is, So = 0, and the
differences

(13) R A k20,

are mutually independent, nonnegative, and except possibly S; — S, , identically
distributed. The random processes {n(t), ¢ = 0} and {Snu , ¢ = 0} are defined
by the respective conditions

v
(=4

n(t) =k} lfandonlyif Sk§t<sk+1’ k
Sn(z) = Sk
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Cléarly, n(t) is the number of S; in (0, £], and S.(, is the epoch of the last S;
prior to £. Smith starts (essentially although not explicitly) with the representa-
tion, on ¢ = 0,

Priz, e A} = ‘/‘;Pr{xteA | Fe} P(dw),

where F; is the Borel field generated by S..y . By an obvious transformation of
the space of integration, this can be written as

t
Priz, e A} = 'l; Priz, e A | Suy = u} du Pr{Suy < u}

(14) =Pr{z,c A &n(t) =0} + j: Priz. e A | Snn

= u,n(t) > 0} du Pr{S.y < u &n(t) > 0}

Smith says that “an equilibrium process has been defined” if the kernel of
the second integral of (14) has the form

(15) Prizie A | Suy = u, n(t) >0 = pa(t — u).
This kernel is correctly interpretable as
Pr{z: ¢ A | last S; prior to ¢ was at u, n(¢) > 0}

and it is not the same kernel as would appear in our analogue of Theorem 1 for
a process on [0, ). Smith goes on to compute the measures

(16) Pr{S.cy = u, n(t) > 0}, O<ust

Using the fact that the {S;} form a general renewal process, he finds that these
are given by

[ 1 -6¢-vamw, o<ust
where
(17) H,.(v) = E{number of S; in (0, v]},
Hi =K+ K+*G@+K»G»G + ---
(18) K = distr{Sy}
G = distr{Se+1 — Si}, k> 1.

This yields his final representation:

Priz; e A} = Pr{z. ¢ A & n(t) = 0}

19) t
( + fo_ ea(t — )1 — Gt — w)] dH . (u).
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The development just given only used the assumption that {S;} is a general
renewal process in the computation of (16). Without this assumption one can
still write (16) as

Pr{S.y < u,n(t) > 0} = kg Pr{S: < u & Siy1 > t}

_ f 3 Pr{Sen > ¢ S = o}a(0) dH, (v),
0 — k=1

where H, is given by (17), without (18),
d Pr{S; < v}
dH ,(v)

and the yi(-) may be taken to form a probability distribution in ¥ = 1 for each
v 2 0. The general form of the representation (19), using neither of Smith’s
assumptions (13) and (15), is then

Pr{z, ¢ A} = Pr{z, ¢ A &n(t) = 0}

w(v) = k=1,

(20) t ©
+ fo_ Priz, e A | Saey = u} kZ; Pr{Sia > t | S = uldn(u) dH,(u).

When {S;} is a general renewal process, we have
Pr{Seyi > t| S =u =Pr{Siu — S >t —u| S =},
=1-G({t—w)), u =t

and the sum in (20) reduces to 1 — G(¢ — u).

These comments may now be made: Smith’s definition of an equilibrium
process explicitly assumes that the {S;} form a general renewal process; conse-
quently, he can simplify the sum in (20), and replace it by 1 — G(¢ — ) ; thus,
in the presence of the assumption that {S;} is a general renewal process, the
condition (15) suffices to make the second term of (20) a convolution.

The analog of the representation (20) provided by our construction (Section
3) is

Priz, c A} = Pri{z, ¢ A &n(t) = 0}
(21) ‘&
+ fo_; Priz, e A & Sens > 1| S = ulva(w) dH, (u).

The natural modification of. the definition of weak stationarity for a process
z;on [0, «) is to require that the kernel

kZlPr{x,eA & Sea > t| Sk = ujdn(u)
depend on (¢ — ) only. Although both (20) and (21) are valid representations
of Pr{z,e A}, it does not follow that their respective kernels agree in u a.e.
[H ] for each ¢.
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To further clarify the relationship between our representation of Pr{z, & A}
and Smith’s, we note that
{8k = u, Sen > 8} = {n(t) =k, Say = u}, k=z1,
Pri{n(t) =k | Fi} = Pr{Siy1 > tlffk} a.8. on {S; < t}.

Then we can write our kernel as

hz_:lPr{a:‘ cA & Si1 > tl Si = ul¢n(u)
(22) = ;Pr{x, eA| Sk =u, Seta > BPr{Sea > t| S = ujdu(u)

= g:lPr{x, eA|n(t) =k, Say = WPr{Ses1 > t| Sp = ulyr(u).
Smith’s kernel, on the other hand, is
(2)  Prise A|Suo = vl X PriSn > 1] S = ua(u),
and the first factor of (23) can be written as

Pr{iz. e A | Sny = u} = kZ_;Pr{x: eAn(t) =k Say = 4}
Prin(t) = k| Say = u}.

If in fact the kernels (22) and (23) agree, then for all £ > 0 a.e. [H4] on [0, ¢]
we have

Prizee A | Sap = u} = 2 Prizie A |n(t) =k, Say = wms(t, u)
k==l

where

pk(t) u) = = Pr{S‘H.I > tlSk - u}'pk(u) ’ k g 1.

’“2_)1 Pr{Smu > t| Sw = u}s(u)

This suggests but does not prove that in some cases it may be true that for
k=1,

(24) Pr{n(t) = k| Sy = u} = pu(t,u) ae. [Hyon0,].
Formula (24) is consistent, in that

S Pr{n(t) = k| Say = u} = 1, u> 0.
k=1

Conversely though, if (24) holds, then the kernels agree. In the case where
{Si} is a general renewal process, (24) is equivalent to
(25) Pr{n(t) = k| Sap = u} = ¥a(u) ae. [Hi]on]0, 1]
The following weaker result will suffice.
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Lemma 1. If {Si, k = 0} is a general renewal process, then the kernels (22) and
(23) agree a.e. with respect to H . .
Proor. If Y is a Borel subset of [0, ¢], then

{n(t) =Lk & S,.(g) & Y} = {n(t) =k & Sk & Y}.

Now
Prin(t) = k & Suep £ Y} = fw |, Prin() = & |5)P(da)
= fyPr{n(t) =k|Swpy = u} dPr{S,epy = u}
- _/;Pr{n(t) = k| Su = L — Gt — w)] dH, (w).
However

Prin(t) = k & Sp e ¥} = [ Prin(t) = k |5} P(dw)

{Sre¥}

= Pr{Siy1 > t| 5} P(dw)

{Ske Y}

= [ PriSua > t]8 = u} d Pr(S: < u)
Y

- f [1 — Gt — u)a(u) dH,(u).

Since Y C [0, {] is arbitrary, the result is proven. With all these preliminary ob-
servations we can prove Theorem 2.

TarEOREM 2. An equilibrium process (in the sense of Smith [10]) s (a class of)
weakly stationary (events) on [0, =) with respect to the renewal process on which it
s based.

Proor. Lemma 1 implies that the representative kernels (22) and (23)
agree. Hence Smith’s condition (15) suffices to establish that (22) is a difference
kernel.

The definition of a weakly stationary class of events in no way involves the
statistical dependence or independence of the random variables {S; — S},
and none can be deduced therefrom. The fact that H, has the same form as it
would if the {S;} were sums of independent identically distributed variates is a
consequence of the assumption

Q(X) t)u) = Q(X7t+y1u+y)7 a'lly'

This assumption we interpret as a stationarity condition because it is a statement
of tnvariance under translation, and we see no hope of interpreting it as an inde-
pendence condition.
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We conclude that a weakly stationary class of events is a more general notion
than what Smith calls an equilibrium process, because the requirement that
{Si} be a (general) renewal process is an explicit part of the latter, and is absent
in the former. The precise extent of this greater generality must be a topic for
future study, but some hints of it can be obtained from examples such as are
given in Section 6.

Having discussed the relation between our work and Smith’s for z, defined on
[0, t), we revert to our original assumptions for the proof of Theorem 3: { S , k =
0, +1, 2, ---} and {z;, —© <t < +x}. It is convenient to record next
some preliminary results.

LeMMA 2. For almost all u [H],

is a distribution function in t, U(-) being the unit step at zero, continuous from the
right.

Proor. According to Doob [3], p. 29, Theorem 9.4, there is a conditional dis-
tribution of Si.: in the wide sense, relative to & , for each k. That is, if Y is a
generic Borel set on the line, there is a function p; of Y and w such that p. is a
probability measure of ¥ when w is fixed, for fixed Y, p:(Y, -) is measurable
relative to &, and

PI‘{S);.H eY l ka} = pk(Y, w), w.p. 1.
Choose Y = (¢, »); then almost surely
Fk(X7 t) Sk(w)) = pk((t’ °°)7 w),

and U(t — Si(w)) — Fi(X,t, Si(w)) is a distribution function in ¢ for almost
all w. Hence U(t — u) — Fix(X, ¢, u) is a distribution function in ¢ for almost
all u with respect to Pr{Si < -}-measure. The lemma now follows from for-
mulas (9), (10), and (12).

LemMa 3. If Q(X, t, u) = Q(X,t — u), then U(+) — Q(X, ) is a distribu-
tion function. If Q(A, t, u) = Q(A,t — u), then Q(A, -) is Borel measurable.

Proor. The first part is obvious if we pick a u for which U(¢t — u) — Q(X,
t, u) is a distribution function in ¢. For the second part, we note that

Q(A’ A u) = ;Fk(A) 01 U — t)‘Pk(u - t))

and each ¢ , Fr(4, 0, -) is Borel measurable. We shall denote the distribution
function U(-) — Q(X, -) by G(-); clearly, G vanishes for negative argument.

If « is a regular Borel measure on the line, a Borel set B is called strongly reg-
ular with respect to a if for every ¢ > 0 there exist a compact C C B and an
open U D B such that for all ¢ sufficiently large®

at—U) —a(t—0C) <e
K. is the class of Borel measurable functions f such that given k£ > 0O and ¢ > 0

3t — Uistheset {t — z|z e U}.
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exist f+ and f~ defined on (—%, k), with the properties
) Fsrsft

(i) [ =rla<e

(iii) f* and f~ are of the form* > 1, bjxs, where the B; are Borel sets and
strongly regular with respect to c.

It is shown in [1] that if « is positive and satisfies the hypothesis of Wiener’s
theorem (Widder [12], p. 214), then g ¢ K, implies

[}a—m@wy+4fdmmg Az 0,

provided that
sup  |g(z)| < w8
n nSz<(n+l)
6. The Principal Result.
TaEOREM 3. If
(1) ye¢ is the time from t to the next Sy after i, i.e., y: = min{Sy — ¢| Sy > 8},
(ii) the two classes of events

{yu < o}, —o <u< ® (or{zy e X}, —0 < u < »)
{zu € A}, —o <y < o,

are both weakly stationary with respect to {Si}, with the (respective) representative
kernels Q(X, -) and Q(4, ),

(iii) The {Si} are “aperiodic’’ in the sense that U(-) — Q(X, -) 8 not a lattice
distribution, or that the Fourier-Stielijes transform of Q(X, -) vanishes at zero

only,
(iv) H(-+1) — H(-) is bounded,
then,as t — »
[ ac4,u) au
Prizie A} > 20—
Q(X,u) du
provided that Q(A, ) € Kz and
(26) fmxmm<n
0

If (26) s not true, the restriction that Q(A, -) belong to Kg 13 unnecessary, and

Pr{r,e A} >0 a8 t—

4 x5 is the characteristic function of B.
¢ The class of g satisfying this condition is designated by N in [1].
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provided that Q(A, -) € N. Finally, of Q(X, -) 48 not in L, , and if
k(-) = Q(X, -) — Q(4, -)
belongs to N, then
Pr{iz;e A} > 1 as t— .
Proor. From:(ll), it is easy to see that

L=Priy < =) = [ SPriSun>t]5 = ul alw) dHW
(27) ‘ o k
= [ ax,t—w aHw).

Assume first that (26) holds; since Q(X, -) is bounded, non-increasing in (0, «),
and zero for negative argument, it follows that both Q(X, -) and Q(4, -) belong
to N, ie.,

> sup |Q(B,z)| < w, B=2X or 4.

Nu—c0 n<lz<(n4+1)
The first part of Theorem 2 now follows, in view of (iv) and (14), by an exten-
sion of Wiener’s general Tauberian theorem, Theorem 10 of [1]. When (26) is
not true, the arguments become simpler. We set

) = {10 107 2

0 t=0

H-(0) = {H(0—> — H(t) t<0
0—

o = { [ et —w anw) t20

0 t<0

F(t) = U@®) — &),
G(t) =U@) — Q(X,1).
The equation (27) may be written as two equations, each valid for all ¢:

(28) U =80 + [ QX,t ) aH.(w

12
(29) (=0 = [ QX,t—w) dH_(u) — £(®),
Let ¢ > 0 be given, and choose #, > 0 and T so that

[:T Q(X, to — u) dH (u) < e.
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Since Q(X, -) is monotone nonincreasing in (0, «), we have
—T

[ ex,t—w aHw) <o t> b

However
0— 0—
[ Q(X,t—u)dH(u)§Q(X,t)[ dH—0 85 t— o.
T T

Hence, since ¢ is nonincreasing in (0, «), we have
(30) £it) >0 as t— o,

and so F is the distribution function of a nonnegative variate.
It is obvious that Q(X, t) = Q(4, t) for all ¢. Hence, writing

Priced) = [ Q- wdH-(w+ [ Q4,t—w dH.w),

it follows from (30) that the first term on the right goes to zero with increasing
t. The limit of Pr{z, ¢ A}, if it exists, depends on H only through H, .
From (iv) we have H.(t) = O(¢"*) as t — «, for any v > 0, and so the
Laplace-Stieltjes transform
Hi() = [ " dH, ()
0

converges in Re(s) > 0. It is clear that the respective transforms F* and G»
converge in the same region. From (28) we find that

F*(s)
1 —G*(s)’

so that H ., turns out to be a slight modification of the renewal function of Smith
[9], with the properties

Hi(s) =

H, = Fs+L
L =G + G+G + G+G+G + - - -
L(zx+y) — L(x) =1+ L(y), z,y>0,
so that also
Hi(z+y) — Hi(x) =1+ L(y), z,y > 0.

None of the preceding remarks depends on the failure of condition (26).

Now if (26) is false, then [¢z dG(x) = «, and we proceed as follows: let
n be a large integer; for { much larger than 7, since 0 < Q(4, ¢t —u) =1
and Q(4, -) ¢ N, we have

[ et~ w aHw) S B, ) - B - )

FRHALMIYS sup [Q(4,2)].
kmn kSz<lktl
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By Blackwell’s renewal theorem [2] the first term on the right tends to zero as
¢{ — o, because the mean renewal lifetime is infinite. The second term can be
made arbitrarily small by a large enough® choice of n. Hence if (26) fails and
Q(Aa ') eN ’

Pr{z;e A} >0 as t— .

Finally, if k(-) = Q(X, -) — Q(4, -) is in N, we may use Theorem 1 of [1]
again to conclude that

1—Pr{x,sA}=[t k(t —u)dH(u) -0 as t— .

With minor changes, the preceding derivations all apply if z, is defined for
0 =t < « only, and the {8} are positive and defined for k =0, 1, 2, ---
only, with So = 0. Then H can be taken to coincide with H., , ¢ is identically
zero, and (29) is dropped.

6. Construction of examples. As has been pointed out, processes possessing
regeneration points give rise to weakly stationary classes of events. However,
it is of interest whether there are classes of events that are weakly stationary
but are not based in any, or in any obvious, way upon regeneration points. The
construction’ to be given shows that any process can be used for defining a
weakly stationary class of events {y, < =}, —o0 <u < o,

We have shown that

QX,t,u) = ;Pr{SH_l > t| Sk = uler(u),

where the ¢:(u) may be taken to form a discrete probability distribution in n
for each u. In order that Q(X, -, -) be a difference kernel, it is sufficient (though
not necessary), that

PI‘{SI;+1 > tI Sk = u}

depend on (¢ — u) only. Let 2z, k = 0,1,2, --- be an arbitrary stochastic
process which will represent the relevance of the past to Siya — Si = Tiqa .
The distance x4, between Si and Si41 will be chosen in & manner depending on
2z in such a way that knowledge of S, is ¢rrelevant to xi41 , ie.,

Pr{ziy = w | Fa}

is a.e. a constant depending on w. For simplicity allow z; to take only the values
0 and 1.

Let G be any distribution function with G(0) = 0. To avoid complications,
let all the mass of G be on a countable set. If z; and S; are known, choose 2,3 =

¢ The referee suggested this simple argument. The author’s original version depended
on Theorem 6 of Pitt [8] by being a direct adaption of case (ii), Theorem 1 of Smith [9],
followed by an application of Theorem 1 of [1].

7 This construction is based on ideas discussed by the author with J. L. Snell and A. J.
Fabens.
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Sis1 — Sk independently with distribution
(31) G(k+ 1Lu, ) f z =1, Sk = u, t1=0o0rl,
where G, is defined as follows: set

@(u) = inf {z |G(z) > Pr {z = 1|8 = u}}

{0’ w < q(u)
Go(k + 1,u,w) ={G(w) —Pr{z = 1|8 = u}
1—Pr{z,,=1|S,,=u} 4 wg%(u),
G(w)
Gi(k + 1,4, w) ={Pr {ze =18 =u}’ w < ge(u)
L w 2g(u).

A verbal description of the above construction is as follows: If S, = u set
gr(u) = {the least z for which G(z) > Pr{z: = 1| S, = u}}.

Then, if zz = 0 we sample z,41 from the distribution G(-), but conditional on
being greater than gi(u); if 2x = 1, Z»41 is sampled from G(-), but conditional
on being less than ¢i(u). It is evident that

Pr{izip S w| S = u} = G(w)
independently of & and u, and hence

(32) QX, t,u) = G(t — u),
so that setting Sy = O for definiteness, the events {y, < »}, —0 < u < o,
are weakly stationary.

The given construction works for any process 2, . However, it is possible to
make the ‘relevance of the past,’” the process z; , depend explicitly on past Si’s
or z;’s. For instance, we can define a two-dimensional process {z , i}, as follows:
let p(-) be any function with range in [0, 1]; choose z, arbitrarily, and set

Prizc = 1} = p(m)
Pr{z,, = 0} =1- p(x,,)

independently of everything in the past except :. If z and Sp = D 5mi 27
are known, choose 741 independently of everything except z; and S; with the
conditional distribution (31). Formula (32) is still true, but now z,, depends
explicitly on z via 2 .

REFERENCES

[1a] V. E. BeNES, ‘“‘General stochastic processes in traffic systems with one server,”” Bell
System Tech. J., Vol. 39 (1960), pp. 127-160.

[1] V. E. BenEs, “Extensions of Wiener’s Tauberian Theorem for positive measures,”
J. Math. Anal. and Appl., Vol. 2 (1961), pp. 1-20.

[21 D. BLACKWELL, ‘A renewal theorem,” Duke Math. J., Vol. 15 (1948), pp. 145-150.



RENEWAL LIMIT THEOREM 118

18] J. L. Doos, Stochastic Processes, John Wiley and Sons, New York, 1950.
4] W. FELLER, “‘On the integral equation of renewal theory,” Ann. Math. Stat., Vol. 12
(1941), pp. 243-267.
5] P. R. Hatmos, Measure Theory, Van Nostrand, Princeton, 1950.
[6] P. Lévy, “Processus semi-markoviens,” Proc. Internat. Congr. Math., Vol. 3 (1954),
Pp. 416-426.
7] M. LokvE, Probability Theory, 1st. ed., Van Nostrand, New York, 1955.
{8] H. R. Prrr, “General Tauberian Theorems II,” J. London Math. Soc., Vol. 15 (1940),
pp. 97-112.
[9] W. L. Smrtr, “Asymptotic renewal theorems,’”” Proc. Roy. Soc. Edinburgh, Ser. A,
Vol. 64 (1954), pp. 948.
(10] W. L. Smita, ‘“Regenerative stochastic processes,”” Proc. Roy. Soc. London, Ser. A,
Vol. 232 (1955), No. 1188 (11 October 1955), pp. 6-31.
{11) W. L. Smrra, “Renewal theory and its ramifications,” J. Roy. Stat. Soc., Ser. B, Vol.
20 (1958), pp. 243-302.
(12] D. V. WippER, The Laplace Transform, Princeton, 1941.



