INFINITELY DIVISIBLE DISTRIBUTIONS: RECENT
RESULTS AND APPLICATIONS!

By MAaReK Fisz
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1. Preliminary remarks. The theory of infinitely divisible distributions, de-
veloped primarily during the period from 1920 to 1950, has played a funda-
mental role in the solution of limit problems for sums of independent random
variables. A full account of this theory and its applications, as it had been de-
veloped by the late 40’s, were presented in the monographs of Lévy [62],
Gnedenko and Kolmogorov [29] and Logve [69]. In the last ten years research in
this field has been carried out along many lines. Numerous new results have been
obtained and entirely new applications have been found. This paper is an at-
tempt to give a full coverage of the results and applications obtained since 1950.
Hence, we consider to be recent, results obtained since the appearance of the
Russian edition of Gnedenko and Kolmogorov’s book.

The scope of this paper is basically restricted to one-dimensional, real random
variables. A brief mention of multi-dimensional random vectors will be made in
Section 3.6, while generalizations of the theory of infinitely divisible distributions
to stochastic processes and random elements in abstract spaces will be omitted.

The introduction, Section 2, contains a short presentation of basic concepts
and results, to be found in the monographs mentioned above. Recent results and
applications are presented, respectively, in Sections 3 and 4.

Throughout the paper the symbols r.v., r.vec., d.f., denf., ch.f., ind., id.d.,
i.d., iff., nsc., and iwe. will stand, respectively, for ‘“random variable’’, “random
vector”, “distribution function”, ‘“density function’, ‘“characteristic function”,
“independent”, ‘“‘identically distributed’’, “infinitely divisible”’, ‘“if and only if”’,
“necessary and sufficient conditions’” and “in the sense of weak convergence”.

The notation used in this paper may differ from that used in the original papers
referred to. '

2. Introduction. The r.v. X, or equivalently its d.f. or its ch.f., will be called
i.d. if, for every positive integer n, we have X = Y, + -+ 4+ Y,.. with
Yu(k =1, --- , n) ind. and id.d. The class of i.d.r.v. will be denoted by I.

Khintchine [45a] has shown that the d.f. F(x) is i.d.iff. the logarithm of its
chf. ¢(t) is representable in the form

14 4

u

) log o(t) = ivt + [ 4w 0) LE da(u)
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where
(1a) A(u,t) = exp (sut) — 1 — stu/(1 + )

and where v is a constant, G(u) is a non-decreasing function of bounded vari-
ation, and the integrand at u = 0 equals —3¢". The representation (1) is unique.
A formula equivalent to (1) has been given by Lévy [62], namely

. 1 0 , °
(1b) log ¢(t) = vyt — Qerzt2 + [ A(u,t) dM(u) + f A(u,t) dN(u),
0 0

where A (u, t) is given by (1a), M (u) and N(u) are nondecreasing, respectively,
in the intervals (—, 0) and (0, + =), continuous at those and only those
points, at which @ is, and satisfy the relations M(— ) = N(4+») = 0 and,
for every ¢ > 0,

];u dM(u)+f W dN(u) < .

Formulas (1) and (1b) are generalizations of the following formula, due to
Kolmogorov [50], which is valid for an i.d.r.v. X with finite variance;

(2) log ¢(t) = vt + ‘[” (" — 1 — dtu)(1 /) dK(u)

where v is a constant equal to EX and K(u) is a nondecreasing function of
bounded variation with K(—») = 0, K(+») = D*(X).

Let Y(n =1,2,3,---,k = 1,2, --- , k,) be a double sequence of r.v. The
Y. are called infinitesimal if for every ¢ > 0

limp e SUP1 gk gka P(|Ynk| > €) = 0.
Set

kn

(3) X n = Z Ynk .
Khintchine [45] has shown that the class I is eqmva,lent to the class of all limit
d f. of sequences F,(z) of the form
(4) F.(z) = P(X, — An. < 2)
where the Y, are ind. and infinitesimal and 4, is a sequence of constants.

Conditions for the convergence of F,.(z) to a given i.d.d.f. have been given by
Gnedenko [30], [31], [33].

The i.d.d f. F is said to belong to the class L (F ¢ L), if there exists a sequence

of ind.r.v. Y; and sequences of constants B, > 0 and A, such that F(z) is the
limit d.f. of F,(x), where

(5) Fﬂ(x) =P[(Yl+ SRR o Yn)/Bn_An<x],
and the Y} / B, are infinitesimal.
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Lévy [62] has shown that F ¢ L iff. the functions M (u) and N(u) in (1b) have
left and right derivatives for every u and the functions uM’(u)(u < 0) and
uN’(u) (w > 0) are nonincreasing, where M’(u) and N’(u) denote either the
right or the left derivative. Gnedenko and Groshev [27] have shown that if F(x)
has finite variance then F ¢ L iff. the function K (%) in (2) has right and left de-
rivatives for every u > 0 and K’(u) /u (left or right derivative) is nonincreasing
for u < 0 and u > 0. Conditions for convergence of (5) to a nondegenerate d.f.
F ¢ L have been given by Gnedenko and Groshev [27].

The i.d.d.f. F(z) is said to be stable if for all choices of a1 > 0, by, a; > 0, bs
there exist an @ > 0 and b such that for every real =

(6) F(axx + b)) * F(az + b)) = F(ax + b)

where * denotes convolution. As shown by Khintchine and Lévy [48], for a stable
d.f., formula (1) is of the form

) log ¢(t) = dvt — clt|*{1 + iBw(t, ) sgn ¢}

where a, 8, v, ¢ are constants (y any real number, -1 < 8 < 1,0 < a < 2,
¢c=0),sgnt = t/|t| and

tan (ira) fa=l
2 log |t|/= fa=1"

An alternative formula for a suitably normalized stable d.f. has been given by
Lévy [62]

(7a) logo(t) = —|t|” (cos B — ¢ sinBsgnt)

where cos 8 > 0, [sin B cos (37ma)| < cos 8 sin (ira). 0 < a < 2. The case
cos B = 0 corresponds to the degenerate distribution.

Khintchine and Lévy [48] have shown that a non-degenerate d.f. F(z) is the
limit iwe. of a sequence F,(z) given by (5), with Yi(k = 1, 2, 3, - --) having
the same d.f. G(z), iff. F(x) is stable. The d.f. G(x) is then said to belong to the
domain of attraction of the stable d.f. F(x). If in formula (5) we have B, = n"?,
where « is the exponent in (7), the attraction is said to be normal. Khintchine
[44], Feller [20], Lévy [61], Gnedenko [32] and Doeblin [15] have given conditions
for the d.f. G(x) to belong to the domain of attraction and to the domain of nor-
mal attraction of a specific stable d.f.

. Let the d.f. F(z) belong to the domain of attraction of a stable law with ex-
ponent «. Then, as has been shown by Khintchine [44] and Cramér [12] for
a = 2 and by Gnedenko [34] for 0 < a < 2, for every §(0 < é§ < «) the moment
E(|X]*) exists.

The above concepts are straightforwardly generalizable to random vectors, as
has been done by Lévy [62]. Let X = (X1, -+, X,) and o(¢) = o(t, -+ , tp)
denote, respectively, a p-dimensional r.vec. and its ch.f. Then (1) takes on the
form

®) logo(®) = it 0) + [ [exp (i) — 1 =[S | LEIE g0

w(t, @) =
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where (-, -) stands for the scalar product, v is a constant vector, S is a completely
additive set function with S(®) < . The definition of a stable d.f. is still given
by (6) with z, b;, b, and b denoting vectors while a; , a; and a denote positive
numbers. A formula, for the multidimensional case, analogous to (7) has been
given by Lévy [62] and Feldheim [19].

3. Recent results.

3.1. Decomposition of i.d. laws. The first result in this direction of research
was proved in 1936 by Cramér [11] who showed that if a Gaussian d.f. can be
represented as a convolution of a finite number of d.f., then these d.f. are neces-
sarily Gaussian. In other words, the class of Gaussian distributions is factor-
closed. An analogous theorem for the Poisson d.f. was proved by Raikov [81] in
1938. In his first generalizations of Cramér’s and Raikov’s results, Linnik [64]
has stated that the identity of the d.f. of the sums X; + X, and Y, + Y, with
X;, X,ind., Yy, Y,ind., X; Gaussian, X, Poissonian, implies ¥; = Yy, + Y1,
Y, = Yoy + Yo with Yy and Ve, Gaussian, Yy and Yz, Poissonian and Yy, , Yo,
Y2, Y2 independent. In a series of papers [65], Linnik has obtained important
results on the decomposition of i.d. laws into i.d. ones. The presentation of even
his main results requires some additional notation.

Denote by I, the class of i.d.d.f. which can be factorized into i.d.d.f. only.
Call the pair of functions M(u) and N(u) in formula (1b) the Poissonian
spectrum. The spectrum is said to be bounded if there exists a uy > 0 such that
for all u with |u| > 4o we have dM(u) = dN(u) = 0. The spectrum is finite if
(1b) is of the form

(9) logo(t) = vt — o’ + ;:Vj Am (XD (itpm) — 1] + Zl A [exp(—itv,) — 1]

where Ap. > 0, A > 0, pw > 0, v» > 0, and mo and n, are finite integers. The
spectrum is said to be denumerable if the sums on the right of (9) are replaced,
respectively, with

> Cliim itl“m = —itvy itvn

lex.(e 1 1+”’,n), 21:"‘“<e 1+1+v3.)'
The spectrum is said to be rational if, for all m;, ms, ny, ns, pm, : um, and
Vn, © Va, are rational. -

Linnik’s main result may now be summarized as follows: Let F be ani.d.d.f.

with ¢ > 0 in (1b). Then in order that F ¢ I, , it is necessary that its spectrum
be finite or denumerable. The parameters u. and v, are then necessarily of the
form :

(10) R Y TR RV R ST N PR
(10a) sl v,/ L,v/ Lk, -

where the & — s and the [ — s are arbitrary integers larger than 1. If the spec-
trum is finite or denumerable and (10) and (10a) hold and if in addition, for
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sufficiently large um > u, v, > v the relations

(11) loglog1/Am > cun'™
(12) loglog 1 /A_n > cvit®

hold with ¢ > 0, @ > 0, then F ¢ I, . From this one may deduce the important
corollary that if the spectrum is bounded, F ¢ I, iff. the spectrum is finite or de-
numerable, in which case the u. and », are, respectively, of the form (10) and
(10a).

A related result has been obtained by Ibragimov [38]. Namely, if K denote the
class of i.d.df. for which H ¢ I, whenever F ¢ K and (F * H) ¢ K, then K is the
class of Gaussian d.f.

The question whether some subclasses of I are factor-closed was previously
considered by Teicher [93] (see also his paper [94]).

We refer also to the expository paper by Dugué [16] and to the books by
Linnik [65a] and Lukaecs [72], which contain many results about the factoriza-
tion of i.d.d.f.

3.2. Some properties of i.d. laws. Blum and Rosenblatt [4] have shown that the
i.d.d.f. F(z) is discrete iff. G(u) in formula (1) is a pure jump function for which
J2 (1 /4% dG(u) < oo; F(z) is continuous iff. [ (1 /%) dG(u) = = ; finally,
F(z) is not continuous without being discrete iff. G(«) is not a pure jump func-
tion and [ (1 /4% dG(u) < . As of now, no conditions are known for F(z)
to be absolutely continuous.

Shapiro [85] has proved that the moment of order 2k of an i.d.d.f. is finite iff.
the moment of G(u) of the same order is finite and he has given a formula for the
semiinvariants of order r(2 < r = 2k) of F(x) expressed in terms of the moments
of G(u).

Chatterjee and Pakshirajan [7] and also Dwass and Teicher [17] have noticed
that a non-degenerate bounded r.v. can not be i.d. The following more general
result is due to Baxter and Shapiro [1]: if X is i.d. then a constant 4 such that
P(X > A) = 0 exists iff. in formula (1b) N(u) = 0 forallw > 0, ¢ = 0 and
lime,o /21 M(u) du < . An analogous result holds for boundedness from
below.

Lukacs and Sz4sz [73] have shown that an analytic i.d.ch.f. can have no zeros
inside its strip of convergence. It may, however, as has been shown by Lukacs
[70], have zeros on the strip’s boundary.

Let ¢(t) be an arbitrary ch.f. B. de Finetti [23] had proved in 1930 that
¥(t) = exp {ple(¢t) — 1]}, with p > 0, is an i.d.d.f. Lukacs [70] has proved the
same assertion for ¢(t) = (p — 1)/[p — ¢(¢)], with p > 1. Lukaecs [72] has also
shown that — [¢ duf¢ ¢(y) dy is the cumulant generating function of an i.d.d.f.
with finite variance.

Let F(z) be called a normal stratification if there exists a d.f. H(z), with
H(xz) = 0 for x = 0, such that for any real

Fz) = f: (/o) dH ()
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where ®(z) is the d.f. of a Gaussian r.v. X with E(X) = 0, D*(X) = 1. Wintner
[100a] has given nsc. for a symmetric i.d.d.f. to be a normal stratification.

3.3. Structure of d.f. belonging to L. Wintner [100] has shown that the class of
symmetric L-distributions coincides with that of convolutions of the form

(13) G(x) * Gy, (prx) * - - - #Gg,(Pu7)
and their limits, as n — «, iwe., where G(z) is the normal d f., p; = p:(n) > 0,
¢i = gi(n) > 0 and Gy, (z) is a d.f. whose ch.f. satisfies the relation
¢
log<p(t)=—q;'£ (sin® w / u) du (—o <t < w).

Kubik [54] has given the following characterization of the whole class L.
Denote by K, the class of all i.d.d.f. for which G(u) in formula (1) is either of
the form

0 foru < 4
(14) G(u) = alogi%‘z: ford 2us=0
alog (1 4 4% foru > 0,
or of the form
0 foru <0
(14a) G(u) =<blog (1 + 4’ for0=u=<B
blog (1 + B foru > B,
or of the form
(15) ) = {O foru =0
c foru > 0,

wherea = 0,b = 0, ¢ = 0. Then the class of L-distributions coincides with that
of finite convolutions of d.f. from K, and their limits iwe.

3.4. Unimodality. The d.f. F(x) is said to be unimodal if there exists at least
one value z = a such that F(z) is convex for £ < a and concave for z > a.
(This definition is due to Khintchine [46].) Applying a theorem of Lapin, stating
that the class of unimodal d.f. is closed under the formation of finite convolutions,
Gnedenko asserted that all F ¢ L are unimodal. However, Chung [9] has given a
counter example to Lapin’s theorem, thus leaving the conjecture of unimodality of
L-distributions unanswered. The question has now been clarified in a series of
papers, as follows: Ibragimov and Tschernin [40] have shown that all stable d.f.
are unimodal, indeed. (For symmetric stable d.f. a simple proof has recently
been given by Laha [56]. See also the last paragraph of 3.5.) Wintner [100] has
shown that every symmetric L-distribution is unimodal. It is interesting to note
that in Wintner’s proof use is made of a lemma (due to Wintner) asserting that
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the convolution of two symmetric unimodal distributions is unimodal. How-
ever, not all df. F ¢ L are unimodal. A counterexample has been given by
Ibragimov [39].

We remark finally that sufficient conditions, for the convolution of two uni-
modal d.f. to be unimodal, have been found by Ibragimov [37].

3.5. Results about stable distributions. Zolotarev [103] has shown that (7), the
formula for the logarithm of a ch.f. of a stable d.f., is equivalent, for « 5 1, to

(16) log o(f) = dvt — cft|” exp {— (47 / 2) K(a) sgn t}

where K(a) = 1 — |1 — o and e, 8, v and ¢ have the same range of variation
as in formula (7). In the same paper, Zolotarev has given explicit formulas for
the Mellin transform and the unilateral Laplace-Stieltjes transform of a stable
d.f. with either ¢ £ 1,¥ = 0 or @« = 1, 8 = 0. The unilateral Laplace trans-
form of a stable df. with 8 = ¥ = 0 (Cauchy’s stable symmetric distribution)
has been given by Wintner [100].

Khintchine [47] had proved in 1938 that a non-degenerate stable d.f. has de-
rivatives of all orders at every point -while Lapin [57] had proved in 1947 that
it is analytic if @ = 1 and is an entire function if & > 1. Also, it was shown
(Wintner [99]) in 1941 that the density of a symmetric stable distribution with
a < 1 is analytic. Skorohod [90], has shown that the den.f. f(x) of a stable d.f.
with @ < 1 is necessarily of the form

g (z7%) (x> 0)
17 =
(an 1) {x"gz(lxl“') (z <0),

where ¢1(2) and g.(2) are entire analytic functions. Also if « = 1 and 8 > 0, f(z)
is analytic in some closed strip about the real axis. An expansion formula for the
den.f. f(z) of a non-negative r.v. having a stable law with 0 < a < 1 had been
given by Humbert [36] and by Pollard [77]. For the denf. f(z) of any stable law
with log ¢(t) given by (7a), Bergstrom [2], [3] and Feller [22] have given the
expansions:

(18) flz) = % i:: A(k, ) cos B(k, e, B)z*
for a > 1, and
(18a) fz) = —% > Ok, ) sin D(k, &, 6, 2) (| 2 [™*™")

for 0 < a < 1, where A(k, ) = (=1)*T[(k + 1)/al/kle, B(k, @, B)
k[(ar 4 28)/(20)] + B/a, C(k, @) = (=1)'T(ak + 1)/k!, D(k, a, B, )
E[(ar /2) + B8 — aargz] and argz = = for x < 0. Bergstrom [2], [3] has also
given the asymptotic formulas

(19) f(z) = %; A(k, «) eos B(k, a, 8)a* + 0(|z ")
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as |z| = 0,for0 < a < 2, and

(198) 1(z) = —1 3 Clk, ) sin ik, 8,2) |27 + O(| 2 [=2)

3=

for 1 < a < 2,as|z| — «.Expansions for the denf. f(z) of a stable law have
been treated by many other authors about this time. For example, Linnik [63] has
given for & < 1 an asymptotic formula as x — 0 for f(x) vanishing for z < 0, and
- Chung-Teh Chao [8] for a 5 1. Skorohod [89] has given asymptotic expressions
with error estimates as £ — « and z — 0 for all cases not covered by the men-
tioned results. Also, he has given a complete presentation of the asymptotic for-
mulas for all « and 8. Zolotarev [101] has given an expression which allows one to
use the asymptotic formulas for & < 1 to obtain asymptotic formulas for a > 1.
Some relationship satisfied by stable d.f. has been established by Zolotarev [102]
and Zolotarev and Skorohod [104]. Finally, it has been shown by Medgessy [75]
that the den.f. of a stable law with rational « satisfies a certain linear differential
equation with constant coefficients.

A certain characterization of a stable type has been given by Ghurye [26].

For the casea = k™' (k integral), 8 = =1, Karlin [43a] hasestablished the total
positivity of the one-sided stable laws, that is, F(zt~*), where F(z) is the stable
d.f., as a function of z > 0 and ¢ > 0, satisfies the determinant inequalities

det |F(z:/t;'*)| 2 0,

forn =1,2,3,---,andforall0 < z;1 < --- < 2,,0 < 4 < -+ < t,. Total
positivity of order 2 implies easily unimodality. Karlin has also investigated
certain regularity properties, such as the rate of decay of f(z), as ¢ — «, the
logarithmic concavity of the d.f. F(z), and others. For the case « = m/n (m and
n integral, m < n), 8 = =+1, Karlin has deduced an integral representation of
f(z), which invoslves an n — 2 fold integral of the three elementary functions
e, u’, (1 —u)'.

3.6. I.d.r.vec. Rvaéeva [83] generalized the basic theorems about i.d.r.v. to the
case of r.vec. In particular, she has shown that, given a sequence & , %k = 1, 2,
3, - -+, of p-dimensional ind. and id.d.r.vec., the d.f. F(z,, -- - , &) is the limit
iwe. of normalized sums of & iff. F is stable. She has also given nsc. for a d.f. to
belong to the domain of attraction of a stable law with a given exponent
a(0 < a < 2). Problems similar to those treated in Rvaéeva’s paper, were also
dealt with by Kinsaku Takano [95]. Some questions of factorization of i.d.r.vec.
have been discussed by Dwass and Teicher [17].

4. Recent applications.

4.1. Limat distributions for sums. Let You(n = 1,2, <<« k=1, k) bea
double sequence of ind., infinitesimal r.v. and let X, and F.(z) be defined, re-
spectively, by (3) and (4). Lotve [68] has shown that the i.d.d.f. F(x) with
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specific M (u) and N (u) in (1b) is the limit iwe. of the sequence F,(z) iff.
lim,,o P(ming Yo, < u) = 1 — exp [—M(u)]

or 1, and limy,, P(max; Y, < u) = 0 orexp [N(u)],asu < 0 oru > 0.

Let F.(x) converge iwe. to an i.d.df., given by (1b) and let A(y) be a function
continuous at y = 0 with A(0) = 0. Of great interest is the problem of characteriz-
ing the limit distributions for sums of h(Y), suitably normed, in terms of the
functions M (u), N (u) and of the constants v and ¢ in (1b). Raikov [82] and Kuni-
sawa and Maruyama [55] have solved this problem for h(y) = y". Bochner [5],
who considered random vectors y = (1, ---, ¥,), has obtained a solution of
this problem for the functions h(y) = O(|y|), k(y) = a1+ - -+ + ay, + O(|y]),
h(y) = O(ly"), h(y) = awy’ + auyls + -+ + apyy + O(lyl*), a8 y—0, and
for some other functions.

A comprehensive presentation of this problem and its systematic study has
been done by Logve [68], [69b]). He has obtained its solution under rather weak
assumptions about the behaviour of A(y) in the neighborhood of ¥y = 0 and of
|yl = o, in particular: for A(y) increasing everywhere and of the form h(y) =
cy +O(ly"), r > 0, a8 y — 0, and for h(y) decreasing in (— «, 0) increasing in
(0, + =) and of the form h(y) = O(ly|"), r > 1, as y — 0. The reader will find
many examples in Logve’s paper [69b].

Some related results have been established by Shapiro [86] who considered the
function & which uniformly truncates the Y,:. (The function G(u) of the limit
i.d.d.f. is then constant outside some finite interval.) Shapiro [87] has also shown
that if F'(z)(r = ro 2 1) is the limit, as n — o, iwe. of a sequence of d.f. of
suitably normed sums of |Y,.|" and H(z) is the limit iwe., as r — «, of F'(z),
then H(z) is a convolution of a Poissonian and a Gaussian d.f.

Let the Y, in (3) be ind., id.d. and let them assume a finite number r of values
only. It has been shown by Fisz [24] that the limit iwe. of F,(z) given by (4),
is, if it exists and is non-degenerate, necessarily a convolution of at most » — 1
factors, where one.of them may be Gaussian while the remaining are linear trans-
formations of Poissonian r.v. The same problem, except for the assumption that
the Yo are id.d., has been dealt with by Kubik [52], [53].

Gnedenko and Koroluk [28] have obtained conditions, expressed in terms of
the ch.f. of the d.f. G(y), for the attraction of G(y) to a stable law with expo-
nent a.

Sakovitch [84] has proved that the d.f. G(y) is attracted to a stable law with
exponent (0 < « = 2) iff. the limits, as R — «, of

RG(—R) Rl — G(R)]
Y and Y
[R ' dG(y) [R y* dG(y)

exist and their sum equals (2 — a)a™"; hence, giving a single condition for at-
traction, applicable to the entire range of a.
4.2. Partial sums. Let Y;,5 = 1,2, 3, -- -, denote a sequence of ind.r.v. Set
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Sy = Y1+ -+ 4+ Y. The so called Invariance Principle, derived by Erdés and
Kac [18], allows to find the limiting distribution as n — «, for a wide class of

functionals defined on (S;, ---, S.), provided the central limit theorem holds
for the sequence Y;. This was done in particular for the functionals S =
max (S, -+, S,) and T, = max (|Si, -+, |Ss|), suitably normed. Kac and

Pollard [42] have derived the limiting distribution of T, for Y; having the same

Cauchy distribution. For Y; id.d., with the d.f. G(y) belonging to the domain of

attraction of a symmetric stable d.f., Darling [14] has given the limit d.f. of S% .
Set, in addition:

ar = P(Sk > 0), S& = max (0, Si), maxi<i<» St = max (0, Si, -++, Sa).
Spitzer [91] has proved that if > Y a,/k < , then
MaX; <k <n S§ — SUDka1 SF = maxez; SF < o,
with probability 1, and that max;>; Si has the i.d.ch.f. equal to

I exp {[we(t) — 11574

where ¥(¢) is the ch.f. of S{.

It is well known (Lévy [61]) that if the limit d.f. F(x) of F.(z), given by (4),
exists, then F(z) is the normal d.fiff. P (max; <k <k, Yne — 0) = 1.

The answer to the question, how the maximum term Y% = max (Y;, -+, ¥a)
affects the S, when the Y; have a common d.f. belonging to the domain of at-
traction of a stable law with exponent a < 2, has been given by Darling [13] who
stated that the major contribution to S, is due to Y7 . He has given the limit-
ing distribution of S,/Y% (assuming Y,; > 0), for 0 < a < 1, and that of
(8, — nu) /Y% ,forl < @ < 2, where p = EY;.

Let X, be given by (3) with Y, infinitesimal and independent (however, the
Y.. are not assumed to be id.d.). Denote by *Y,, - -+, *Y., the sequence
Yau, -+, Y, arranged in nonincreasing order: *Y,; = --- = *Y,, . Under the
assumption that the d.f. P(Y. < y) are continuous from some n on, Loéve
[69a] has given, for any Borel measurable function g(*Y,,) and any fixed s, the
limit d.f. of X,g(*Y ) and (X, , *Y,.).

Let again the Y;,5 = 1,2, 3, - - - , have the same d.f. G(y). Denote by M.(a)
the number of S, such that |S;| < a, and by N, the number of changes of signs
of the S;, k = 1,2, -+, n. Chung and Kac [10] have shown that if G(y) is the
symmetric stable df. i.e., log ¢(¢) = —|t|* then: if a« < 1, M,(a) is bounded
with probability 1, if & = 1, the r.v. #M,(a)(2alogn)™" and N,(2x logn)~*
have the same exponential distribution with parameter equal 1;if 1 < @ < 2,
the r.v. 2Nu 'n"* " and M,(a)(2a) ""n"*" have the same limiting distribution
which d.f. is stated explicitly in their paper. Nobuyaki Ikeda [41] has shown that
if G(y) is a non-lattice d.f., then for the assertions of Chung and Kac to hold in
the cases @ = 1 and 1 < a £ 2, it is sufficient to assume that G(y) belongs to
the domain of attraction of a symmetric stable d.f. Assuming that G(y) is
absolutely continuous and belongs to the domain of attraction of a symmetric
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stable law with exponent (0 < « < 2), Kallianpur and Robbins [43] have found
the limiting distribution for Y h(.S:), where (-) isa Riemann integrable func-
tion on the real axis and equals 0 outside a certain finite interval. Under the
assumption that G(y) belongs to the domain of normal attraction of a symmetric
stable d.f., Udagava [98] has derived the limiting distribution of the number of
those S;,k = 1,2, - - - , n, which equal zero. Assume that G(y) is the stable d.f.
with the parameters a(0 < a < 2), 8(—1 < 8 < 1) and ¢ > 0. Let » denote
the first index for which S, > 0. Sinay [88] has shown that S, belongs to the
domain of attraction of the stable law with exponent o’ = a[l — G(0)] and
B = —1.

Now,let Y;,5 =1,2,3, ---, be a sequence of positive, continuous ind. r.v.
with the common d.f. G(y) such that, for some o , we have 1 — G(y) = h(y)y™"
for all ¥ > %(0 < a < 2), where the function h(y) satisfies for every d > 0
the relation h(dy)|h|(y) — 1, as y — «. It is known (Doeblin [15]) that these
assumptions imply that G(y) belongs to the domain of attraction of a stable law
with exponent «, where for 0 < a < 1, we may use in formula (5), 4, = 0
and B, such that 1 — G(B.) = n™", while for 1 < a < 2, we may take the same
B, and use A, = mnu. Under different assumptions about the expression
h(dy)/h(y) — 1, Lipschutz [67] has given estimates of the error term in these
limit theorems. The conditions obtained show that the magnitude of the error
term depends essentially on the rate of growth of A(y), as y — «. Consider a
function ¢(n) such that ¢(n) — © and p(n)n™" — 0 asn — . Another facet
concerning the behavior of X, has been studied by Lipschutz [66] who has
given conditions for the probability P(¢) to be 0 or 1, where, for 0 < a < 1,
we have P(y) = P(X. < B./l¥(Ba)]"%i.0.), while for 1 < @ < 2, P(y) =
P(X, — nu < —Ba[¢(Ba)]"*i.0.). We remark that the analogous upper bounds
had been derived earlier by Lévy [59], Marcinkiewicz [74] and Feller [21].

Let the d.f. G(y) belong to the domain of attraction of a stable law F(x) with
a < 1. Fortus [25] has given conditions for the relations

limaes [1 — P(Xan™"* < 2))/I1 — F(2)] = 1,

and lim,., P(X.n"Y* < 2)/F(z) = 1 to hold uniformly with regard to z.

4.3. Applications to the sirong law of large members. Prohorov’s result, to be
presented now, illustrates how broad is the range of possible applications of the
theory of i.d.r.v.

LetY;,7=1,2,3, -, beasequence of ind. symmetric r.v. and let F;(y) =
P(Y; < y). (The assumption that the Y; are symmetric is not an essential
restriction.) Forr = 0,1,2, - - - set

b(r)

(20) P(y) =27 ;) Fi(y),

where a(r) = 2" + 1, b(r) = 2", Prohorov [79] has obtained the following
result: The sequence Y; obeys the strong law of large numbers, i.e., there exists
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a sequence of constants ¢, such that as n — o,
Plam v - a—o]=1,
if for any € > O the relation
(21) il’(n% ) < ®
holds where 7, is an i.d.r.v. with ch.f. ¢(t) given by
(22) log o() = 2 [ (" — 1) aP.(y).

A corollary derived from this theorem asserts that if for a certain integer
m>0

(23) D EM < w,
[]

the sequence Y; obeys the strong law of large numbers. We remark that this
corollary contains Kolmogorov’s [49] and Brunk’s [6] sufficient conditions, as
special cases.

4.4. Unsiform approximation of df. of sums of rv. Let Y;,5=1,2,3, -+,
be a sequence of random variables having the same d.f. F(y) and let X, = ¥,
+ -+ + Y.and F®(y) = P(X, < y). For any pair of d.f. F(y) and G(y), set

p(F, @) = SUP_ucy<w [F(y) — G(¥)],
and let
(24) ¥(n) = supy infe.r P(F('),‘G).

Kolmogorov [51] has shown thaty¥(n) < e (¢; and the ¢’s below are some con-
stants). Prohorov [80] has improved Kolmogorov’s upper bound, and also has
given a lower bound. Indeed, he has shown that

(25) e (logn) ™ < ¢¥(n) S et login.

Tsaregradskij [96], [97] has also improved Kolmogorov’s result for different
special cases, including, in particular, the binomial distribution. Denote by F3 the
binomial d.f. with the parameters n and p and let

(26) ¥s(n) = suppinfe.r p(F3, @).

Tsaregradskij has shown that ¢5(n) < c,n* and that one may take ¢, = 10.
Meshalkin (76] has given a much stronger bound, namely ¥5(n) < csn™t. Meshal-
kin also considered the problem of the uniform approximation of the multinomial
distribution by df. of i.d.r.vec.

Studnev [92] has derived asymptotic expressions for infge; p(F,, G) where
Fu(y) = P(X.n < y). As one should expect, this expression depends on F(y).
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Kolmogorov [51] considered also the problem of uniform approximation, for the
case of Y ; not identically distributed. The result, he had obtained, has been
used by Hodges and LeCam [35] to obtain the following result: Let
P(Y;=1) =p;, P(Y;=0) =1 — p;and @« = max (p1, - -, pa). Then,
there exists a sequence Z;,j = 1,2, 3, - - -, of ind. Poisson r.v. with EZ, = p;
such that

(21 supy | P(Xa S 9) = P(3 255 9) | 5 8(e)’

Of importance is the fact that the right side of (27) depends on « only. Formula
(27) contains, as special cases, the classical theorem about approximating the
binomial distribution (Poisson), and the generalized binomial distribution (von
Mises), by the Poisson distribution. (See also LeCam [58].)

A result conceptually related has been obtained by Prohorov [78] who has
shown that for an arbitrary d.f. F(y) there exists a sequence G,(y) of i.d.d.f. such
that limg.. sup, |[F™(y) — G.(y)| = 0. If F contains an absolutely continuous
component or if it is a step function, the result can be strengthened to

limp.o Var{F ™ (y) — Ga(y)] = 0.
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