DISCRETE DYNAMIC PROGRAMMING!

By DaAvip BLACKWELL
University of California, Berkeley

1. Introduction and summary. We consider a system with a finite number S of
states s, labeled by the integers 1, 2, - -, S. Periodically, say once a day, we
observe the current state of the system, and then choose an action a from a
finite set A of possible actions. As a joint result of the current state sand the
chosen action a, two things happen: (1) we receive an immediate income (s, a)
and (2) the system moves to a new state s’ with the probability of a particular
new state s’ given by a function ¢ = ¢(s’ | s, a). Finally there is specified a dis-
count factor 8,0 < 8 < 1, so that the value of unit income n days in the future
is B". Our problem is to choose a policy which maximizes our total expected in-
come. This problem, which is an interesting special case of the general dynamic
programming problem, has been solved by Howard in his excellent book [3].
The case 8 = 1, also studied by Howard, is substantially more difficult. We shall
obtain in this case results slightly beyond those of Howard, though still not
complete. Our method, which treats 8 = 1 as a limiting case of 8 < 1, seems rather
simpler than Howard’s.

2. Definitions and notation. Denote by F the (finite) set of functions f from
S to A. By a policy w, we mean a sequence {f, ,n = 1,2, -- -} of functions f, ¢ F.
Usthg policy = means that, if we find the system in state s on the nth day, the
action chosen that day is f,(s). For any sequence g1, - - , gv, g» € I, and any
policy = = {f.}, we denote by g1, ---, gn, = the policy {h.} with h, = gx,
1=nZN,hky = fon,n > N.For any g ¢ F, we denote by g™, « the policy
{ho} with b, = g,1 £ n = N, by = fan,n > N, and by g™ the policy {h.}
with kh, = g for all n. Finally, we denote by T the policy {h.} with A, = fut1
for all n.

We associate with each f ¢ F (1) the S X 1 column vector r(f) whose sth
element is i(s, f(s)), and (2) the S X S Markov matrix Q(f) whose (s, s’) ele-
ment is ¢(s' | s, f(s)). Thus r(f) and Q(f) specify the income and the law of
motion, as a function of the current state, on a day when our rule of action is f.
If we use policy = = {f.} and the system is initially in state s, the probability
that the system will be in state s’ at the end of the nth day is the (s, ) element
of the matrix Q,(7) = Q(f1)Q(f2) - - - Q(f») . Thus the total expected return from
« is the column vector

V(e = 3 60w (fan),
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where Qo(7) = I, the 8 X S identity matrix. We have

I

V(r) = r(5) + BQUD 3 Qua(To)r (i)

r(fi) + BQUA)V(T).

We associate with each f ¢ F the transformation L(f) which maps the S X 1
column vector w into L(f)w = r(f) + BRQ(f)w. Thus V(f, r) = L(f)V(x), and
V(fi, - ,fw,m) = L({f1) --- L(f») V(x). For any two column vectors w, , w; ,
we write w; = w, if every coordinate of w, is at least as large as the corresponding
coordinate of w, , and w; > w, if w1 = w; and w; # w, . Note that L(f) is mono-
tone, i.e., wy = w, implies L(f)w, = L{f)ws .

For any two policies m; , m , we write 1y = m if V(m) = V(m),and m > m
if V(m) > V(m). A policy =" is called optimal if =* = = for all =.

3. Optimal policies for 3 < 1. The methods of this section are familiar to work-
ers in dynamic programming, from the work of Dvoretzky, Kiefer, and Wolfowitz
[2], Karlin [4], and Bellman [1]

TureorEM 1. If 7 = (f, ™) for all f € F then = is optimal.

Proor. Our hypothesis is that

L) V(*) 2 V(=" forall f e F.

Then for any policy = = {f.}, we have L(fy)V(x*) £ V(«x¥), so that, using
the monotoneity of L(fy) - -+ L(fyw), L(fy) -+ L)V (x™) = L) ---

L(fN-—l) V(ﬂ'*), i'e'7 (fl y 0 7fN ] T*) = (fl y °°° 7fN—l ’ 7'-*)' Thus

= (fly e ,fN,ﬂ'*)
for all N, i.e., V(7*) = V(f1, -+ ,fx, =) for all N. Letting N — « we obtain
(B <1),

V(r*) z V(m),

and the proof is complete.
TueoreM 2. If (f, ©) > =, then f > .
Proor. Our hypothesis is L(f) V(7x) > V(x). Applying the monotone oper-

ator LY'(f) yields
LY(f)V(x) = L") V(x),

so that (f%, ) = (f, =) for all N = 1. Letting N — o yields f = (f, 7), so
that £ > |

Our principal result, describing the Howard policy improvement routine for
B<1,is

TuroREM 3. Take any f € F. For each s € S denote by G(s, f) the set of all a for
which

i(s, @) + Bp(s, ) V(f) > V.(f),
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where p(s, a) is the 1 X S row vector whose s'th coordinate is q(s'|s, a) and
V.(f*) denotes the sth coordinate of V(f). If G(s, f) s empty for all s, then
1 is optimal. For any g such that

(a) g(s) € G(s,f) for some s and

(b) g(s) = f(s) whenever g(s) z G(s, f), we have g > f*.

Proor. The sth coordinate of V (g, f) is i(s, g(s)) + Bp(s, g(s)) V({F).
This will exceed V.(f) if and only if g(s) & G(s, f), and will equal V,(f) if
g9(s) = f(s). Thus if G(s, f) is empty for all s, f = (g, f), for all g so that,
from Theorem 1, f** is optimal. On the other hand, for any ¢ satisfying (a) and
(b), we have (g, f”) > f so that, from Theorem 2, g > .

Call a policy = = {f.} stationary if f, is independent of n, i.e., if = = f for
some f ¢ F. As a consequence of Theorem 3, we have the

CoroLLARY. There is an optimal policy which is stationary.

Proor. According to Theorem 3, if we take any stationary policy f ) either
it is optimal (case G(s, f) empty for all s) or it has a stationary improvement
g“ (case G(s, f) nonempty for some s). Since there are only finitely many sta-
tionary policies, there is one which has no stationary improvement, so that it
must be optimal.

4. Optimal policies for 3 = 1. For the case 8 = 1, the total income from a given
policy is typically infinite. We may attempt instead to maximize the average
rate of income or to find policies which are optimal for all 8 sufficiently near 1.
We shall adopt the second approach. Since 8 is now variable, it will sometimes
be desirable to exhibit the dependence of V(7) and other quantities on B3; thus
we shall write V() and speak of S-optimal policies. Denote by U(B) the ex-
pected total return from a B-optimal policy. We shall say that a policy = is
optimal if it is B-optimal for all 8 sufficiently near 1, i.e., if Vg(7r) = U(B) for
all B sufficiently near 1, and shall say that = is nearly optimal if

U(B) — Vs(x) =0 as B — 1.

Our problem is then to find optimal and nearly optimal policies.
We shall need certain known facts about Markov matrices, summarized as
LemMA 1. Let Q be any S X S Markov matriz.
(a) The sequence I 4+ Q + -+ + Q"/N + 1 converges as N — « to a Markov
matriz Q* such that

QQ* = Q'Q = Q*¢" = @',

(b) rank (I — Q) + rank Q* = 8.
(¢) For every S X 1 column vector c, the system

Qr ==z, Q' =Q%

has a unique solution.
(d) T — (Q — Q%) is nonsingular, and

HE) = 26@ - @Y~ H=(-Q+Q9" - ¢
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as B — 1.
H(B)Q* = Q*H(B) = HQ* = Q"H = 0
and
I-@QH=HI-Q =1-¢Q"
These facts may all be found in Kemeny and Snell [5]; we indicate the proof of
(d) only.
Proor orF (d). From (a) we have, forn > 0, Q" — Q* = (@ — Q*)", so that
HB) = 2568Q—QH" — Q" =[I —8(Q — Q™" — Q% ie,
(HB) +@HI —B(Q — Q") =1,
ie.,
(1) (HEB) + QI —Q+@Q") =1—(1—pHMB®Q - Q.
gog C — 1 summability of {Q"} to Q* implies Abel summability of {Q" — Q%
1-936@ -@) =(1-PHE® >0  ws-1.

Thus the matrix on the right of (1) goes to I as 8 — 1,and I — Q + Q* is non-
singular. Multiplying (1) by (I — @ + Q*) ™" and letting 8 — 1 yields H(8) +
Q" — (I — Q4+ Q"' as B — 1. Verification of the equalities asserted in (d) is

straightforward.
Qur results for 8 = 1 are summarized as Theorem 4 below. We shall some-

times, to simplify statements, speak of ‘“the policy f”” when we mean the policy
. For example, we write V(f) instead of Vs(f™).
TuEOREM 4. Take any f & F and denote by Q*(f) the matriz Q* associated with

Q(f). Then
(a) Ve(f) = [=(£)/1 = B+ y(f) + «B, 1),
where x(f) is the unique solution of
I—-QMz=0, QNz = Nr(N,
y(f) is the unique solution of
I =@My =r(f) —=(f), QWy=0,

and ¢(B,f) - 0as B — 1.
(b) For each s, denote by G(s, f) the set of a for which either

p(s, A)z(f) > z.(f)
or

p(s, @)z(f) = z(f)
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and
i(s, @) + p(s, )y(f) > 2:(f) + v:(f),

where 2,(f), y.(f) denote the sth coordinates of z(f), y(f). For any g such that
g(s) € G(s, f) for some s and g(s) = f(s) whenever g(s) & G(s,f), g > f for all B
sufficiently near 1.

(¢) For each s, denote by E(s, f) the set of a for which

Z’(S, a)x(f) = xs(f)
and
i(s, @) + p(s, A)y(f) = z.(f) + y.(f)
(always f(s) € E(s, f)). If, for each s, G(s, f) is empty and E(s, f) contains only
the point f(s), then f is optimal.
(d) If for each s, G(s, f) is empty and g(s) € E(s, f) for all s implies
Q" (9)Q* () = @%(g),

then f is nearly optimal. :

(e) For any fo for which G(s, fo) is empty for all s, z(fo) = x(g) for all g. De-
note by F* the set of all g such that £(g) = z(fo). There is an f* & F* with y(f*) =
y(g) for all g £ F*. The nearly optimal g’s are ezactly those for which x(g) = x( )
and y(g) = y(f").

Proor. For (a), we have

Vo) = [ = BT = 5 8@ ()
- (Srew + @ - ¢w) W)
= T 4 5(pretr) + (@6, — HO)D.

Thus (a) is established, with z(f) = @*(/)r(f), y(f) = H(f)r(f), and «(8,f) =
(H(B, f) — H(f))r(f). For the rest of the theorem, we simply calculate
Va(g, F), using the representation (a), and ask when, for 8 near 1, does this
exceed V(f™). We have

Vi(g, £) = r(g) + BQg) V()

2
(2) _ Qig)_x%f) + r(g) — Q@)=(f) + QNy(f) + «lB, 1, 9),

where «(8, f,9) = —(1 — B)Q(9)y(f) + BR(9)«(8,f) = 0asB— 1.
We see that g(s) & G(s, f) implies that, for 8 near 1, the sth coordinate of

Va(g, ) exceeds that of Vs(f*). Since g(s) = f(s) implies equality of the
sth coordinates of Vs(g, f©) and Vs(f) for all 8, we obtain (b) at once from
Theorem 3. Similarly, the hypotheses of (¢) imply that, for all 8 near 1,

Va(g, f) = Va(Ff*)
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(with strict inequality unless g = f), so that from Theorem 3 f is optimal.

For (d) we shall need

LeMMA 2. For any f, g € F for which g(s) € E(s,f) for all s, we have z(g) = z(f).
If in addition Q*(9)Q*(f) = Q(9), then y(g) = y(f)-

Proor oF LEmma 2. That g(s) ¢ E(s, f) for all s is equivalent to, writing z,
y for z(f), y(f),

(3) Qglz ==

and

(4) r(g) + Qg)y =z +y.
Multiplying (4) by Q*(g) yields

(5) Q*(9)r(9) = Q*(9)=.

But (3) and (5) have the umque solution z = z(g), so that x(g) = z(f). Also
from @Q*(f)y = 0 we obtain Q*(9)Q*(f)y = 0, so that, if Q*(9)Q@*(H) = @*(9),

we obtain

(6) Q@ = o.
But, since z = z(g), the unique solution of (4) and (6) is y = y(g), so that
y(g) = y(f).

We return to (d). Let f satisfy the hypotheses of (d), and choose 8 so near 1
that, for any pair fi , f2 , we have Ve(fi,f5) = Va(f5) implies fi(s) € G(s, f1) U
E(s, fi) for all s. If our f is not B-optimal, let fo = f1, f2, - - -, fi be a sequence
of B-improvements, obtained as in Theorem 3, terminating in a B-optimal fx .
Then

Jina(s) € G(s, fs) U E(s, fi)

for all . We show by induction on 7 that z(f;) = z(fo) and y(f:) = y(fo). This
is true for 7 = 0. If true for a given 7, then, since G(s, f), E(s, f) depend only
on z(f), y(f), we have G(s, f:) is empty and E(s, f;) = E(s, f). Then f, fina
satisfy the hypotheses of £, g in Lemma 2, so that 2(fi11) = z(f), y(fir) = y(f).
Thus, writing f(8) for the B-optimal f; , we have

U) = (f)/(1 = B + y(f) + B, fs)-
Since
Ve(f) = le(f)/(1 — B)] + y(f) + (B, 1),

we have U(B) ~ Vg(f(”)) — 0as 8 — 1, and f is nearly optimal.

To establish (e), we obtain from (2), if G(s, fo) is empty for all s, the in-
equality ~
(7) Va(g, £§7) = Va(f™) + 7(8)8 for 8 near 1,

where 7(8) is a scalar function of 8, the maximum coordinate of (B, fo, 9) —
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(B, fo), and 6 is the S X 1 column vector with all coordinates unity. We have
7(8) — 0 as 8 — 1. Denoting Ls(g) by L, we rewrite (7) as LVs(fo) = Vs(fo) +
7(8)6 for B near 1. We show by induction on n that, for all »

(8) L"Ve(fo) < Va(fo) + (1 + B+ --- + 6" 7)r(B)8 for B near 1.
If (8) holds for a given n, we obtain, applying L,

L™Ws(f) < Lirhs. of (8)]
r(g) + BQ(g) Va(fo) + B+ B+ -+ + 8"7)7(B)3,
Ve(g, f6) + B+ B+ -+ + ") 7(B)d
SVe(fo) + 1+ B8+ -+ + B7r(8)S,

where the last inequality is obtained by using (7).
Thus, L"Vs(fo) < Vs(fo) + [7(B)/(1 — B)16 for all n, so that, for all g ¢ F

(9) Va(g) = limp.ew L"Vs(fo) = Vs(fo) + [7(8)/(1 — B)]6  for B near 1.
But

(10) Vilo) = Vi) = ZLZEI) 4 y(g) — o) + B, 0) — (8,10

Il

Il

(9) and (10) imply z(g) =< z(fo).

Take any f* which is 8-optimal for a set of ’s having 1 as a limit point. From
(10), with g = f* we obtain z(f*) = z(fo), so that z(f*) = 2(fo). For any
g & F*, we have Vs(f*) — Va(g) = y(f*) — y(g) + «(8,§") — €(B, ), so that,
letting 8 — 1 through a sequence for which f* is B-optimal, we obtain y(f*) =
y(g) for all g ¢ F*. The last assertion of (e) is now immediate.

Theorem 4 does not describe an algorithm which is guaranteed to lead to op-
timal or even near optimal policies, and which is comparable in simplicity to the
algorithm described by Theorem 3 for 8 < 1. The algorithm is simple until we
reach an f for which G(s, f) is empty. At this point, if E(s, f) contains for each s
only the single element f(s), f is optimal. If not, we know only that z(g) < z(f)
for all g, so that we have a policy which maximizes our average return. In one
case the verification of (d) is immediate. This is the case in which there is a
single terminal state s* which is certain to be reached eventually, no matter where
we start or which policy we use, and which can never be left once reached. In
this case for every g, Q*(g) is the matrix with every row the s* unit vector, so
that f will satisfy the hypothesis of (d) and be nearly optimal. In general, the
checking of (d) is tedious and, if it fails, we are reduced to determining the set
F*, calculating y(g) for each g ¢ F*, and selecting a g for which y(g) is maximal.

TukorEM 5. There is an optimal policy which is stationary.

Proor. For each s and f, the sth coordinate of V() is a rational function of g,
as the representation V = (I — 8Q)™'r shows. Let f* be B-optimal for a set of
@’s having 1 as a limit point. Then, for every g, Vea(f*) = Ve(g) for a set of Bs
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having 1 as a limit point. Since all coordinates of Vs(f*) and Vs(g) are rational
functions of 8,

Ve(f™ = Vs(g) for all 8 near 1.

Since this holds for every ¢ ¢ F, f* is optimal.

We close with two examples.

ExampLE 1. An f which satisfies the hypotheses of (d) of Theorem 4, but is not
optimal. There are two states, 1 and 2, and two actions, 1 and 2. In state 1 action
1 yields $1, and the system remains in state 1 with probability .5 and moves to
state 2 with probability .5 while action 2 yields $2 and the system moves to state
2 with certainty. In state 2, either action yields 0 and the system remains in state
2. There are clearly only two effectively different elementsof F: f:f(1) = 1 and
g:9(1) = 2. We have, starting in state 1,

Ve(f*) =1+ 3+ 38+ --- =2/(2 - 8),
Ve(g™) = 2.

Thus, U(B) = 2 and f** is nearly optimal but not optimal. The verification that
f satisfies the hypotheses of (d) of Theorem 2 is straightforward.

ExampLE 2. An f for which G(s, f) is empty for all s, but which is not nearly
optimal. Again there are two states, 1 and 2, and two actions, 1 and 2. In state
1, action 1 yields $3 and the system remains in state 1 with probability .5. Action
2 yields $6, and the system moves to state 2. In state 2, either action loses $3
and the system remains in state 2 with probability .5 and moves to state 1 with
probability .5. Again, there are only two effectively different elements of F':
f:f(1) = 1and g:g(1) = 2. Straightforward calculations yield

(0 =20 =(J),  wn=(2), v0=(24)

so that
Ve(g) — Ve(f) — (i) asg —1

and f is not nearly optimal. The verification that G(s, f) is empty for each s is
straightforward.
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