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1. Introduction:independence of linear forms. Let X, , - - - , X, be independent
p-dimensional random row vectors, and let there exist non-zero constants
@i, +*+, @n, by, -+, by, such that Y X.a; is independent of Y Xb.. By
considering all linear combinations 6X; , where § = (6;, ---, 6,), it follows
from the well-known univariate result, first proved completely by Skitovié
[7], that the X; are normally distributed. (For a history of the subject, see
Lukacs [4, Section 5].) However, when the scalars a; , b; are replaced by p X p
matrices A;, B;, this reduction to the univariate case no longer holds. The
matrix case for n = 2 was treated in [2). In this paper we treat the general
multivariate case.

Another peculiarity of the matrix case stems from the distinction between
singularity and vanishing of a matrix. In the one-dimensional problem, if one
of the coefficients a; or b, is zero, the distribution of the corresponding random
variable can be completely arbitrary. The same is true in the matrix case if one
of the matrices 4; or B; is zero. However, if a matrix 4;, say, is singular but
not zero, then some linear combinations of elements of the corresponding random
vector X; are normally distributed, but the distribution of X is partly arbitrary.
An example of a possible consequence is the following:

Let X, , X, be independent random row vectors, and let 4 be a singular matrix
of rank r such that X; + X, and X; + X,A4 are independent. There exist non-
singular matrices M and N such that A = M (é’ g)N , where I, is the identity

matrix of order r. Writing
XiM=Y;= (Y-il, Y{z), and NM =B = (B,'j),i,j = 1,2,

we have that (Yu, YY) + (Ya, Ys) is independent of (Yu, Yi) +
(Y2uBu , YaBiz). Consequently, the hypothesis does not restrain Y, sufficiently
to determine its distribution, and in fact, if Y3, is independent of Y , it can
have any distribution without affecting the hypothesis.

We now state the principal result and outline its proof. The main details,
which have an intrinsic interest, are given in the next section.

TuEOREM. Let X, -, X, be n mutually independent p-dimensional random
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row-vectors, and let Ay, -+, An, By, -+, B, be non-singular p X p matri-
ces. If > A:;X: is independent of >, B.X:, then the X; are normally distrib-
uted.

REMARKS ON THE ProoF. Let ¢ and u denote real-valued p-dimensional row
vectors. In terms of characteristic functions, the hypothesis states that
Eoexp i( D tA;X) + > uB;X;) = Eexp (i 2 tA,X;)E exp (i 2 uB,Xj),
or equivalently,

L eied; + uBy) = T o/t es(uBs) = FOGW,

where ¢;(t) = E exp (itX;).

The proof involves a series of steps. We first show that the ¢; have no zeros
(Lemma 1), and then show that the above functional equation, which is a
generalization of the equation of Skitovié [7], implies that > log ¢;(2) is a
polynomial in the vector ¢. By letting ¢ = v, where u is a real variable and v a
fixed vector, and using the univariate theorem of Marcinkiewicz [5], it follows
that _ log ¢;(uv) is a quadratic polynomial in u for each fixed vector v. This
implies that > log ¢;(t) is a quadratic polynomial in the vector ¢. Finally, as a
consequence of the multivariate theorem of Cramér [1, p. 112], each log ¢;(¢)
is a quadratic polynomial.

2. An extension of the functional equation of Skitovi€. We first show that the
¢; have no zeros.

LemMA 1. Let ¢;(t) be characteristic functions on R,. If there exist non-singular
matrices A; ,B;,j = 1,2, --- , n, such that

M TLesea; + uBy) = I estdesuBa,

for all t, u € Ry , then the ¢; have no zeros.

Proor. The general outline of the proof follows that of Skitovi¢ for the case
p = 1. Denote the right-hand side of (1) by F(¢) G(u), and suppose that one
of the functions, say ¢;, has a zero. Then there exists a vector v such
that ¢;(»4;) = 0, and consequently that F(»)G(v) = 0. Let A be the largest
characteristic root of (4; B7") (4, B7")’. Choose an r such that 0 < r < min
(1, A|™), and define

w=(1—r)y, v =rvA;B;.
Then v, < v’ and vws < w'. On putting ¢ = v; and u = vy in (1), we obtain
I—i[?’i(lei + v.B;) = F(v1)G(v) = 0,

since 1,4, + 1.B; = vA; . Hence, either v; or v, is a zero of F(¢) G(t). Thus, cor-
responding to every zero of F(¢)G(t), there exists another which is nearer the
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origin. But this contradicts the fact that the zeros of F(¢) G(t), which is a charac-
teristic function, form a closed set, bounded away from the origin.||*
Hence, f;(t) = log¢;(t),7 =1, - -+, n, is defined for all ¢&. From (1) we obtain

@) XA + uB) = Df0A) + SpuB), foralliuck,.

This equation can be simplified somewhat by writing C; = B;A7' and
gi(t) = fi(tAi), namely,

®) St +uC) = 2o + 3 gucy).

Equation (2) is a generalization of the equation of Skitovié. A further
generalization is given in Lemma 3. The proof of Skitovié, when 4;, B; are
scalars, uses a complicated method of exhaustion. Zinger and Linnik [8] give a
very elegant solution. Kemperman [3] discusses this equation under weak
conditions on the f; . We treat an extension of (2), which incidentally yields a
stronger result for the scalar case.

LeMMmaA 2. Let P(u |t) be a complex-valued function of the real, p-dimensional
vectors t = (f1, *++ ,tp), u = (Ur, +++, Up), which for each fixed value of t, is
a polynomial in w of degree = r. If to each wvector v, there corresponds a
vector w = w(v), depending only on v, such that

Qt,u) =Plu+w|t+v) — P(ult)

s a polynomial in (¢, u) of degree < s, then P(u|t) is a polynomial in (i, u)
of degree = s + 1. )

Proor. By the hypothesis, P(u | t) can be written in the form Y ¢ P;(u |t),
where

Piult) = 2pilaa, -+, ap; t)uf -+ us?,
J

and Y, denotes summation over all a; £ {0, 1, --- , 7} with oy 4+ - -+ + o, = 7.
Hence, Q(t, uw) = > 4 [Pi(u + w|t + v) — Pi(u|t)].
The proof is by induction on r. The lemma is true for r = 0, since,

if Po(t + v) — Py(t) is a polynomial in ¢ of degree =< s for every v, then Po(t)
is a polynomial of degree =< s + 1. Suppose the lemma to hold for
r=20,1,---,m — 1andlet P(u|t) = D oP;(u|t) be a function satisfying
the hypothesis of the lemma. Then

Qtw) = 3 Pilu+wlt+0) = Pylu] )]
@)+ Zlpalar, a0 w)® e (4t )

— pmlar, o, aps Uit - up’l

3 The symbol || denotes end of proof.
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The monomials in u of degree m occur only in the last expression. It follows from
the hypothesis that [pm(ar, -, ap;t-+ v) — Pm(ar, -+, ap; ¢)], which is
the coefficient of ur® -+ uz? with oy + --- 4+ @, = m, is a polynomial in ¢
of degree < s — m. Thus the pm(ar, -+, ap;t), foray + -+ 4+ a, = m,
are polynomials of degree < s — m + 1, from which we obtain that P.(u | ¢)
is a polynomial in (¢, u) of degree < s + 1. Consequently, the last expression
in (4) is a polynomial in (¢, ) of degree < s 4 1, as is the second term, which
is the difference Q@ — D... By the induction hypothesis, this implies that
> o7'P;(u | ¢) is a polynomial. Hence D 5 P;(u|t) is a polynomial in (¢, u)
of degree < s -+ 1, which completes the proof.||

Lemma 3. Let fi(t), «--, fa(t) be complex-valued functions on R, which are
bounded on every finite set. Let A(x |y) and B(z | y) be defined on R, X R, , and
for each fixed y € R, , be polynomials in x of degree = a and b, respectively. If

there exist real, non-singular p X p matrices, Cy, - - - , C, such that

(5) S fi(t + uC) = A(t|w) + B(ul|t), forallt,ueR,,
T .

then

(1) 2.7 fu(t + uCy) is a polynomial in (¢, u) of degree < a + b + n.

(ii) If, ¢n addiiion, there exists a non-empty set N = {41, -+ , 4} C {1, --- ,n},
such that C; = C; whenever i, € N and |C; — Cj| # 0 whenever i ¢ N, je N,
then D ienfi(t) and X iunfi(t + uCs) are polynomials of degree < a + b +
n—r+1

REMARKS. The lemma is similar to Theorem 6.1 of Kemperman [3], in which
B(u | t) is assumed to be of degree zero in u, for each given ¢. However, his con-
cern is somewhat different, and his assumptions regarding f; are weaker than
ours. Presumably, the lemma could be proven with weaker conditions on the
fs, but at the cost of simplicity of presentation. To a certain degree, our proof
is an elaboration on that of Kemperman.

Proor. We first prove (i) by induction on n. We use the notation
A}(hy, -+, h:) to denote []i Au(h:), where A(h) is the difference operator
defined by A(h)F(¢,u) = F(t + h,u) — F(t,u). Here by, - - - , h, are p-dimen-
sional vectors. . .

Choose ho, hy, -+, hs € R, and difference (5) a + 1 times with these in-
crements in ¢. This yields

(6) Z:gi(t + uC;) = AT (ho, b, ++, k) B(u|t) = P(ul?),

where
(7 gi(t) = AV (ho, b,y - -, ha)fi(2).

For the present, the h; are held constant. We show by induction on n that
(6) implies that P(u | t) is a polynomial in (¢, u) of degree < b + n — 1.
Note that P(u |t) is, for each ¢, a polynomial in u of degree < b. Hence, if
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n = 1 in (6), we see by putting ¢ = O that g is a polynomial of degree =< b.
Consequently, if n = 1, P(u | t) is a polynomial in (¢, ) of degree < b.

Let H, denote the induction hypothesis that (6) implies that P(u |t) is
a polynomial in (¢, w) of degree < b + n — 1. Since H, is true, we need to
show that H,_; implies H, .

Suppose we have functions gy, ---, g. and P(u |t) satisfying (6), where
P(u|t) is a polynomial in u, for each fixed ¢, of degree < b. Choose a vector
veR,,andlet v; = v(I — C5'C;). Then from (6), we have

Xl:g;(t + v + uC) = Zl gt + v + (u = vCHCH)

= P(u — vC3' |t + v).

Subtracting (6) from (8), writing g7 (f) = g:(t + v:)) — gi(¢), and noting that
v, = 0,.we obtain

(8)

n—1

9) ;ﬁw+waw=mu—wfu+w—Pwux

which is of the same form as (6) with n — 1 terms, instead of n, on the left-hand
side. The function on the right-hand side of (9) is, for each ¢, a polynomial in
u of degree < b.

By the induction hypothesis H,_, , the right-hand side of (9) is a polynomial
in (¢, u) of degree < b + n — 2. Consequently, by Lemma 2, P(u |t) is of
degree = b + n — 1, thus establishing that H,_, implies H, .

As a result, if we consider any rth degree monomial in » in P(u | t), its co-
efficient is a polynomial in ¢ of degree < b + n — 1 — r. By (6) and (7), this
means that the coefficient of the corresponding monomial in » in B(u |t) is a
polynomial in ¢ of .degree < a + b 4+ n — 7.

Write Fi(t) = f:(tC;), so that (5) becomes

(10) 3 Fi(u +107) = B(u|0) + A(t|w),

which is of the same type as (5) with the roles of 4 and B interchanged. Hence,
A(t}w) is also a polynomial in (¢, w) of degree < a + b + n, thus verifying
part (i).

To prove (ii), let C denote the common value of C; for ¢ ¢ N and
g(t) = D infi(t). Then (5) becomes

(11) g(t + uC) + %f.-(t +uC) = A(t|u) + B(u|?),

which is again of the same form as discussed above, but with = re-
duced ton — r + 1. Hence, eachside of (11) isa polynomial of degree < a + b +
n—r-+1.

Choose row vectors ky, --+ , ks € R, , and take the (b + 1)st difference of
(11) with these increments in . Denoting the resulting functions with asterisks,
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we obtain
(12) g*(t + uC) + me?<¢ + uCi) = A*(t|u).

Rewrite (12) with v = ¢t + «C in the form
(13) 2 i+ uCt) = A*(w — uC [u) — ¢*(v),
1¢N

where Cf = C; — C.

Since A*(¢|w) is a polynomial in ¢ of degree =< a, we see that this equation
has the form of (5) with b = 0 and » replaced by n — r. Hence the right-hand
side of (13) is a polynomial of degree < a + » — r. In particular,
A*(v|0) — g*(v) is of degree < @ + n — r. Since the first term is of degree
< a, the degree of g* itself cannot exceed a + n — r. This holds for each set
{ko, -+, ks}, and since g*(£) = AI™'(kC, - -+, ksC)g(1), it follows that g(¢)
is a polynomial of degree at most a + b + n — r 4 1|

CoroLrARy 3.1. (Skitovié [7], Zinger and Linnik [8], Kemperman [3]). In the
special case where all the C; are scalars, let ¢y, ++- , ¢k, (¢; # 0) denote the dis-
tinct points of {Cy, -+, Cy}, and let 2 ¥ denote summation over all 7 such that
C; = ci . If the hypotheses of Lemma 3 are satisfied, then ) ¥ fi(t) is a polynomial
of degree < a + b + k.

ReEMARK. We note that this inequality for the degree is sharp in the sense that
equality can be achieved. For, suppose we are given k distinct sealars¢; , - - - , ¢,
we can always find & real numbers «; , such that the terms

k

ta—Hub—*:k—l in 21: a;(t + C‘_u)a+b+k

a+k—1 b+l
t U y Tty

have zero coefficients. Consequently, this sum can be written in the form of
the right-hand side of (5). This follows from the non-singularity of the Vander-
monde matrix with distinct arguments c; .

3. Related results. As indicated in the previous remark, Corollary 3.1 gives a
complete solution to the functional equation of Skitovi¢, in which the C; are all
scalars. This was possible because of the fact that, given two scalars, either they
are equal or their difference is non-singular. This, of course, is no longer true in
the matrix case. In order to see what may happen when two of the matrices are
not equal, but their difference is singular, we consider formula (5) in detail for
n = 2. In particular, we find that there is a partial resolution of the problem
corresponding to the partial distinctness between C; and C, .

CoroLrLARY 3.2. If in (5),n = 2,and B = C, — Ca:p X p, has rank r, then
fi(tB), i = 1, 2, are polynomials in t of degree < a + b + 2. Furthermore, there
exists a non-singular matrix N such that fi((z1, O)N), © = 1, 2, are polynomials
of degree = a + b + 2, where 2, and x, have dimensionality r and (p — 1), re-
spectively.

Proor. From Lemma 3, 2 fi(t + uC;) is a polynomial in (¢, u) of degree
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< a+ b+ 2. Writing v = ¢t 4+ uC,, we have that fi(v + uB) + fo(v) isa
polynomial in (v, u) of degree < a + b + 2. Putting v = 0, f;(uB) is a poly-
nomial in u of degree < a + b + 2. Putting u = 0, v = B, fi(tB) + f:(tB) is
a polynomial in ¢ of degree = a + b + 2, so that f;(¢B) is a polynomial in ¢ of de-
gree = a+ b+ 2.

Note that f;(uB) is a function on an r-dimensional space. This is emphasized
in the second assertion of the corollary, which follows from the fact that there
exist non-singular matrices M and N such that B = M (é’ g) N. Writing
uM = z, we then see that f:((z;, 0)N), ¢ = 1, 2, is a polynomial.||

CoROLLARY 3.3. Let fi(t), « - - , fu(t) be complex-valued functions on R, , which
are bounded on every finite set. If there exist non-singular matrices 45,1 =1, --- | n,
j=1, -, 7, such that D iy Al(mdAa, -+, uAy)fi(t) s independent of ¢ for
all vectors uy , + -+ , ur € B, , then Z{‘ fi(t) 2s a polynomial of degree < nr.

Proor. Using Lemma 3, the result is easily proved by induction on r. First
note that if » = 1, the hypothesis states that D1 fi(t + wdy) = — > ¢ £:(0) +
Z{‘ fi(®) + E{' fi(u A1), which is the hypothesis of Lemma 3 witha = b = 0.
Hence the statement is true for r = 1. Suppose that it is true for
r=1,2,---,s — 1, and that we are given the data of the corollary with r = s.
Let f:‘(t) = At(u,A,-,)f,-(t). Then Z;‘ A:‘l(ulAﬂ, crty u,_lA,-,s_l)f}k (t) iS
independent of ¢. Hence, by the induction hypothesis, Y 1fF () is a polynomial
in ¢t of degree = n(s — 1), whose coefficients might depend on u, ; i.e., in the

notation of (5),
S A+ wd) = DA = A w),

witha = n(s —1),b = 0. Consequently Y f:(t) is a polynomial of degree
< n(s — 1) 4+ n = ns, which completes the induction. |

Finally, we wish to draw attention to the rather ingenious method of Zinger
and Linnik [8] for solving the equation of Skitovi¢ when p = 1. We elaborate on
their method, and obtain a stronger result—in particular, the conclusion of
Corollary 3.1 for p = 1—while avoiding the use of the Zinger-Linnik extension
of Cramér’s Theorem.

Lemma 44 Let fi(1), -+, fa(t) be continuous, complex-valued functions of a
real variable. If there exist distinct, non-zero numbers ¢1, - -+ , ¢, such that
(14) 2 Fit + ca) = At w) + B(ul),

where A(z | y) and B(zx | y) are, for fixed y € R, , polynomials in x of degree < a
and b, respectively, then the f:(t) are polynomials of degree < a + b + n.
Proor. Choose %, , -+ , hs , and difference (14) b times with these increments

4 While this paper was in proof, the Editor received a communication from B. Rama-
chandran, Catholic University, in which a result similar to Lemma 4 is independently ob-
tained by essentially the same method used here.
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in u. Denoting the resulting functions with asterisks, we obtain
n a

(15) ;f:-"(t + cu) = b*(t) + Zoja;!‘(u)t’.

Continuity of the f; implies continuity of the functions on the right-hand side
of (15). Multiply (15) by (z — t)7, and integrate with respect to ¢ over (0, z),
namely,

Xj: f:f?‘(t + ciu)(x — t)" dt

(16) - fo () (z — ) dt + ]Z; ot (u) [o Bz — 1) dt

- [‘ b (¢)(x — t)" dt + z‘; B(j + 1,7 + Dat(u)a™™,

where B(p, q) is the Beta function. In each term of the sum in the left-hand
side of (16), make a change of variable from¢ttov byt =v —cas,2 =1, --- ,n,
respectively. This yields

n ztesu n ciu
;-/l; f?(v)(x+c,-u—v)'dv=;fo (@4 ciu—v) dv
(17) . )
+ fo b0 (@ — &) dt + 3 BG + 17+ Daf (w3

The left-hand side is differentiable (r + 1) times with respect to u, and on the
right-hand side the terms containing u appear as coefficients of powers of z.
Hence, the coefficient of each power of z is differentiable (r 4 1) times with
respect to u. Performing this operation and setting v = 0, we obtain

n atr+1 X
(18) Sorlctfi(z) = D, Afl.
1 0
Letting r = 1,2, ---, n, we have a system of n linear equations in the » un-

knowns f;, the coefficients of which form a Vandermonde matrix. Since the c;
are distinct, the matrix is non-singular, so that each f¥(x) is obtained as a
polynomial of degree < a + n + 1. But f (z) is the bth difference of f;, and
hence f; is a polynomial of degree < a + b 4+ n 4 1. By substituting such
polynomials for the f;, we find that (14) cannot be satisfied if any of the poly-
nomials is of degree a + b + n + 1. Consequently the degree a 4+ b + n of
the lemma cannot be improved upon.||

REFERENCES

[1] CraMER, HaraLD (1937). Random variables and probability distributions. Cambridge
Tracts in Math. and Math. Physics, No. 36. Cambridge Univ. Press, London.
[2] GHURYE, S. G. and OLkIN, INeraM (1958). Independence of statistics and characteriza-



MULTIVARIATE NORMAL DISTRIBUTION 541

tion of the multivariate normal distribution (Abstract). Ann. Math. Statist. 29
617.

[3] KEmPERMAN, J. H. B. (1957). A general functional equation. Trans. Amer. Math. Soc.
86 28-56.

[4] Luracs, EvceNE (1956). Characterization of populations by properties of suitable
statistics. Proc. Third Berkeley Symp. Prob. Stat. 2 195-214. Univ. of California
Press.

[5] MARCINKIEWICZ, J. (1939). Sur une propriété de la loi de Gauss. Math. Z. 44 612-618.

[6] SkrToVIS, V. P. (1953). On a property of the normal distribution (Russian). Doklady
Akad. Nauk SSSR (N.S.) 89 217-219.

[7] Sk1TOVIE, V. P. (1954). Linear forms of independent random variables and the normal
distribution law (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 18 185-200.

[8] ZINGER, A. A. and LiNNIK, YU V. (1955). On an analytical generalization of a theorem of
Cramér and its application (Russian). Vestnik Leningrad. Univ. 10 No. 11, 51-56.



