SOME MODIFIED KOLMOGOROV-SMIRNOV TESTS OF
APPROXIMATE HYPOTHESES AND
THEIR PROPERTIES!

By JupaH ROSENBLATT

University of New Mexico and Sandia Corporation

1. Summary and introduction. The paradox of almost certain rejection of the
null hypothesis in the Chi Square test-of-fit, when many observations are used,
has been pointed out by Cochran [4], and largely removed by Lehmann and
Hodges [7]. The same paradox arises in most tests of goodness-of-fit. In this
paper the Kolmogorov-Smirnov tests are modified to remove this difficulty and
some properties of this modification are investigated. In particular, a rigorous
method for choosing sample size (Theorem 3.2 and corollaries) is presented.

Given independent random variables X, , - - - , X, with common distribution
function F, suppose that we desire to determine whether or not F is in some
class 3C, . If we are only interested in whether F is close, in some sense, to some
distribution function in 3¢, , we can let 3¢} D 3¢, , where 3¢ is the class of distri-
bution functions “close” to those in 3¢, , and test the more reasonable hypothesis
that F ¢ 3¢ .

In what follows we consider tests based on the uniform metric d, , given by
d\(F, H) = sup,|F(z) — H(z)|, where 3, consists of a single distribution
function F, .

2. The proposed tests and asymptotic probability of type I error. Let F, be a
distribution function, and let H; and H; be monotone functions satisfying H, <
F, < H,. We define the null hypothesis 3¢ by

(2.1) 3y = {G:Hy(z) £ G(z) £ Hy(x), all z, G a distribution function}.

For each vector (x;, - -+ , Z,) of possible observed values, the empirical distribu-
tion function F, is defined by

(2.2) ‘F,,(x) = proportion of x;, --:,z, not exceeding =.
With any distribution function G, we associate the distribution function G¥,
given by

H,(x) for G(z) < Hy(z),
(2.3) G*(z) =<G(x) for Hy(z) £ G(z) = Hy(z),
Hy(x) for G(z) > Hy(z).
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514 JUDAH ROSENBLATT

It is easily seen that
(2.4) di(G, G*) = infaee di(G, H),

where d; is the uniform metric. For X, , - - - , X, independent random variables
with common distribution function F, let

(2.5) T1(2) = infraa.t. lima,e Pp{n* di(F,,F) < z.

It can be shown that T1(2) = lim,.. Pe{n’dy(F., F) < z} for any continuous
F; see e.g., Anderson and Darling [1]. Finally, let

(26) Tl(hl'a) = 1 -, 0 < (¢4 < 1

(8ee [1] for formula for T4 .)
The proposed test, for sample size n, has as rejection region, rej 3¢J , the set
for which

(2.7 n dy(F , FE) = hya.

A simple consequence of (2.4) is the following:

THEOREM 2.1. When F & 3¢F , lim Sup,.. Pr{rej 3¢i} < a. On the basis of
numerical computations, see Birnbaum [2], it has been conjectured that
P{rej 5¢¥} < awhen F £ 3C5 , no matter what the value of 7 is. From Birnbaum’s

work, [3], it can be shown that
(2.8) lim,.. SUpPrege? Prirej 3¢5} = /2.

This result demonstrates that, with regard to the probability of type I error,
the proposed tests are not overly conservative.

3. The choice of sample size. Let {r] denote the greatest integer contained
in r. The following theorem is well known; see e.g., [8].
TaEOREM 3.1. If the sample size m for the test given by (2.6) satisfies

[n(p+1)—nthyq] n
(3.1) S Jra-pmrz1-s
pe(0,1-1] y=0 v
then
(3.2) Prirej 303} = 1 — B when infuges di(F H) = 1> 0.

It can easily be seen from the Chebychev inequality that there is an » satisfying
(3.1) for each ! ¢ (0, 1). However, use of Chebychev’s inequality to obtain
such an n would give a much larger value than is needed.
Thus, we are led to seek a workable technique for determining n satisfying
(3.1) but much smaller than that n obtainable from Chebychev’s inequality.
One technique which is quick and not too inefficient is based on a theorem
of Okamoto [9], stating that if X is a random variable with the binomial distribu-
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tion, based on sample size n, probability p, then

(33) P{(X/n) —p = |c]}
’ < exp[—2nc’], P{(X/n) — p £ —|¢]} = exp[—2ncl.
From this we see that if

(3.4) n

[{[(—log.8) /21t + hu.o}*/1* + 1},

then (3.1) will be satisfied.

A simple technique for choosing n which often achieves a considerable re-
duction in sample size over that given by (3.4), and which satisfies (3.1) will
now be given. After an outline of the main theorem, a table will be given com-
paring these results to those of (3.4), and also to those given by the usual in-
tuitive procedure which is obtained under the invalid assumption that the
normal approximation to the distribution function of

(W}[Fu(z) — F(2)]))/(F(2)[1 — F(z)])}

is exact. The procedure to be given results from a rigorous modification of this
intuitive procedure.
Now let ® be the standard normal distribution function and define ¢, by

(3.5) B(p) =1 — ), Ae(0,1).
The sample size
(3.6) e = {(h« + 65/2)"/1 + 1]

specified by the usual intuitive procedure not using a continuity correction will
be seen to be smaller than that demanded by the rigorous procedure to be out-
lined. Let

) o i)
»(¢p + in, o/ +|\ds+ n, o/

3
(3.7) ¢ﬁ<2¢ +1 206l 1 ):I

=2l 24/n,
2[2¢5 + 25 1/(1 — 21) — 4n7 ]

and

(3.8) P = ¢8/ (25 — 2n7Y).

Let

(3.9) p’ be whichever of the two numbers p*, p** is further from 3. Let
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S P
(¢ﬁ+4ne N +L Yt e T o/

3.10 Pra ’
(310 Py 24”’& B xl/ﬁ ] 1 ]
— = 2¢s +

e 1—2[1—%] 2\/EJ
() = g T 20s( = T D/ =20 = a1 = ywad]
(3.11) p'(n) =%+ [sup} — p(n), p™* — isgn [p(n) + p™ — 1,

ie., p'(n) is whichever of p(n), p** is further from %, and

7(n, p)

= |1 — 2p|/13.4(2mp[l — p])* + (073 + .09]1 — 2p|)/np(1 — p).
THEOREM 3.2. Given a = .1, 8 £ 1,1 £ .2, let n; be the smallest integer n for

which

(3.13) 27 — hia) — 17 2 Gpginn -
Recursively define n, , k > 1 to be the smallest integer m for which

(3.14) 200l — h1) — 07 Z Bpgtnprinen -

Then if for some k, n = max (109, n,) and

(3.15) 1/(Inl — n'ha}) < 8,

then n satisfies (3.2).
Further, if we let

Xe = il — b — 1/@0D)]/(p' ()1 = p'(ne) k= 2,3,

(3.12)

(3.16) ) ) )
x1 = [nil — h,a — 1/(201))/[p'(1 — D),
then
{[nx(p+l)——nzh1.u]] B
inf Z (nx> p;'(l _ p)n v
pe(0,1-1] r=0 v

|
»N
()

< {@(xo + 1(ne, Plral), k= 2,3, -
= | @(x1) + n2(m, p), k= 1.

For the purposes of application the following corollary is more useful than

Theorem 3.2.
CoROLLARY 1. The smallest integer n = 109, (satisfying (3.15)) and

(3.17) 2(n}l - hl,a) - n_} 2 Psnne.n" >
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satisfies (3.2), where p’ is defined by (3.9), n. by (3.6) and 5 by (3.12). This corol-
lary follows easily from Theorem 3.2, since 7 is a monotone decreasing function
of the first variable for fixed p’. Thus ¢g_,m.) increases as n decreases, and
since 7. is no larger than any n satisfying Theorem 3.2, any = satisfying (3.18)
satisfies (3.13). The sample sizes in Table 1 were computed using this corollary.
It may be that 8 — 5(n., p’) = 0, in which case this corollary is useless. The
following corollary, proved in the same way, remedies this difficulty.

COROLLARY 2. Choose n* so that 8 — n(n*,p’) > 0. Then any n = max (n*, 109)
satisfying (3.15) and

(3.18) Z(n*l — hia) — ntz Bp—n(n*,p")

satisfies (3.2). )
We now outline a proof of Theorem 3.2. This outline will be broken up into

several parts. For fixed n, let

[r(p+D)=nih1,q] n\ .
(3.19) am = x ()ra-o
and p, represent any value of p for which n(p + 1) — n’hy« is an integer. Let
(3.20) en=n(po+ 1) — nhia.

Lemma 1. The function A is decreasing on (p,, po + 1/n), for n satisfying
Theorem 3.2.

Proor. For pe (po, po + 1/n)
(3.21) A'(p) = —n<" . 1>p”"(1 -p)"" <0,
Thus in order to find where 4 achieves its infimum, we need only examine 4 at
points of the type p,— . We note that
A(po + 1/n—) — A(p,—)

. e -1 potl/n . e
= <f)po"(1—po) "—n(n )f (1 — p)" ™ dp.
n Do

Cn

The sign of
_ potl/n S
(3.22) C(po) = (por[l — poI"™™)/(n — ¢n) — f,, p"(1 —p)" " dp

is the same as that of A(p, + 1/n—) — A(p,—). Using the fact that n is of
the form

(3.23) n = [(1/1) (h1,« + ¢5-/2)]° > 7., for some & > 0,

it can be seen that for n satisfying Theorem 3.2 the integrand in (3.22) is convex
and increasing in the region of integration. Thus
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C(p) = (1/[n — c)por(1 — po)™™"

(3.24)
— (1/n) (po + 3n)™(1 — [po + 3n]) "7,
and
O o) = — Cn zn — Do n—cn _%
(3.25) (p) = (1/[n ¢ ])p (1 p) n

(P + 1/m)"(1 = [po + 1/n) """ + p*(1 — po) "7},

Setting the right side of (3.24), ((3.25)), less (greater) than or equal to 0,
transferring second term to right and dividing by it, taking logarithms, making
use of the inequalities log (1 + z) = z — 2%/2,log (1 — 2) < —=z, log (1 — z)
> —z—2/2(1 —2), =log[(1 +2)/(1 —2)] £ —2z — 22°/3forz ¢ (0, 1),
and using ¢g_s/2n' = | — hy,./n}, by judiciously discarding or dominating the
proper terms, we obtain

Lemma 2.
C(p,) =0o0n B,
_p be e (I = ha,o/n*)2¢s
(3.26) 2 T=p0 A= p)A—T — hio/nll/1 — p))
- (¢r3)/(4n1’§) - 1/(27’}1)0) g 0} )
and

(3.27) C(po) = 00n By = {p, :¢5/Do — b5/ (1 — po) + (2/n}) /(1 — p,) < 0}.

We can obtain a subset of B, by replacing n by « in the third term, and by =,
in the last two terms of its defining expression. A subset of B; is obtained by
replacing n by n, . Thus [1/n, p*] € By, and [p**, 1] C B,. Later we find a
better upper bound for n than «, and this is utilized to obtain a larger subset
of B, . Thus we see that in [1/z, 1], A takes on its infimum in [p*, p**].

In order to complete the proof of Theorem 3.2, we quote a revised version of
a theorem due to Uspensky [10], pp. 119-129. Let S, , have the binomial dis-
tribution from sample size n and parameter p. Then if np — & + ¥(np[l — p])}
is an integer and np(1 — p) = 25,

|P{Sn.» < np — % + ¢(npll — p])*} — &)
< 1 — 2p|/13.4(2mnp[l — p))* + (073 + 091 — 2p|)/(np[l — p).

Since this theorem is only to be applied on [p*, p**], and since under the condi-
tions of Theorem 3.2 [p*, p**] < [.36, .64], in order to legitimately apply this
theorem, we need only insist that n = 109.

We first show that if p € [1/n, 1], then

I[M(p+l)—"2h1.a]l <n1

(3.28)

14

)p"(l -p"z1-8, for n; = 109.

v=0
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‘That is
P{8.,» = fri(p +0) — nihl,a]}} =21-—-6.

From the previous work we know that the infimum of the above expression in
T1/n, 1] is achieved at some p,—, say Po1 € [p*, p**]. Thus, in order to make use
of Uspensky’s Theorem we define ¢; by letting this infimum

P{Su 501 S ma(Bon + 1) — ndhia — 1)
= P{Su 5,1 S mbos — % + Gilnpon(l — o)1}
Hence,
1/71 — nil — ha — (%)’nl—%
(Boall — po,))?
Then by Uspensky’s Theorem,
P{Sn,,ﬁm = 11(Pon + ) — nihl,a -1z '13(1/31) — n(n1, Do)
Z B(Ppning,pn) — (11, Poy) = 1 — B.

Using (3.21), we see that for p < 1/n, A(p) = 1 — 1/c,!. Thus (3.2) holds for
n = max (109, n;) satisfying (3.15). Using now this value of » as an upper
bound for sample size, (3.25) can be improved, and using identical reasoning,
(3.2) can be shown to hold for » = max (109, n,), satisfying (3.15).

Finally (3.16) is proved by letting

1 D
= 2nil — hel — nit Z Ppn(ny,p -

1 —_ 1 —1
A _n:l—hl,a—%ni< nil — hi,e — 30 &

T Tl — o)t = P (el — P ()]}

where P, makes A4 its infimum when n = n, ,and applying Uspensky’s Theorem.
The theorem is proved.

A few remarks on Theorem 3.2 are in order. The suggested procedure improves
faster than Okamoto’s result as ! decreases (for fixed @, 8) and as « decreases
(for fixed I, 8). Okamoto’s procedure improves faster as 8 decreases (for fixed
a, [). As an example of the use of (3.16), for a = .05, 1 = .07, 8 = .001 and
smallest sample size given by Theorem 3.2

[n(p+1)—nthy,q}

1 —.001 £ inf > (:’) p’(1 —p)"” <1 — .0008.

pe(0,1-1] v==0

It does not appear that a better result is obtainable when using the Uspensky
Theorem. For n < 109 the binomial tables may be used to find n. The usual
procedure for choice of sample size includes a continuity correction, and is given
by letting n be the smallest integer for which

(3.29) 8{(2[n/2 + nl — nlhd+ 1 —n)/nY} =1 — 6.

Table 1 compares sample sizes obtained from the usual procedure (3.29),
from Corollary 1, and from Okamoto’s result (3.4) for « = .1.
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TABLE I
Table of Sample Sizes for = .1
Based on (3.29) Usual Based on Okamoto’s
Procedure (nonrigorous) Based on Corollary 1 Result—(3.4)
} Yo .05 .01 ) { 1 ’ .05 o |, { 1 ‘ .05 ‘ .01

1 | 349 | 1390 | 34,600 | .1 | 350 | 1,400 | 34,600 | .1 | 525 | 2,100 | 52,500
05| 421 | 1680 | 41,800 | .05 | 429 | 1,600 | 41,800 || .05 | 598 | 2,390 | 59,800
01| 560 | 2270 | 54,600 | .01 | 585 | 2,300 | 54,600 | .01 | 750 | 3,000 | 75,000

(At best the above sample sizes are correct to 3 significant figures.)

4. Concerning whether the choice of sample size is too conservative. Suppose
n is chosen as in the previous section. A natural question to ask is whether there
is a distribution function F with infgeges di(F, H) = 1 such that Pr{acc 3¢5} is
“close” to Supge1—11 [ — A(p)] = B. The main results of this section are em-
bodied in the following theorem.

TuEOREM 4.1. If either of the functions Hy or H, defining 3CF is both continuous
and takes on the values [.44, .52], then for o = .05, 8 < .05, < .1, with n chosen
from Theorem 3.2,there is a distribution function F with infruges dy(F, H) =1,
such that

sup [1 — A(p)] = P {acc 3¢5}

p£(0,1-1]

> sup [1— A@I[ inf  Pe{(m0) di(F, Fuo) < (3)hia/o'}

(4.1) pe0.1-1] b fnteger

Pe{(nll — o)} &(F, Faas) £ Do/l — )Y} — 20 Pi]’
i=[(§) nth1,a+1]

where F is continuous and

]
1

0

IIA

P; = .099.

i=[(§) nthy,at1]}
Before outlining a proof, we make a few remarks about this theorem

lim inf  Pe{(n0)} du(F, Fuy) < (3)hu.o/0)
e e

Pef(n[l — o)} du(F, Faay) < (Dhi,e/(1 — )Y
> 1 —4dexp[—24hi,] = 94.

(4.2)

Thus, if the asymptotic theory of the Kolmogorov-Smirnov test were exact,
(4.1) would read

supyei—11 [1 — A(p)] = Pilace 35} = .84 suppea—u [I — A(D)],
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which would show that power computations based on one point deviation are
not very wasteful in sample size. Then from (4.2) and the fact (which will be-
come evident) that Y P; gets small as « gets small, it would also follow that
the smaller «, the less wasteful the “one point’ power computations.

It is immediately clear that we can assume 3¢; = {U}, where U is the uniform
distribution function on [0, 1], since the F defined in the proof of Theorem 4.1
takes on its maximum vertical distance ! from U at z, with F(z,) e [.44, .52].
But then clearly under the hypotheses of this theorem, there is always an F,
depending on 3¢} , with F(zo) € [.44, .52], and either Hi(zg) — F(zg) = I, or
F(xo) — Ha(xo) = I such that

Prlace 3¢5} = P#lace {U}}.

The proof of Theorem 4.1 is broken into several parts. Let p, = .52 be such that
n(po + 1) — n'hy . is an integer. For the moment we only specify that

(4.2) Flp,+1) = po.
Lemma 1.
Po{Fa(po+ 1) > po+ 1 — (B)hwa/n' | po + 1 = hia/n’ S Fulpo + 1)) < 099,
Proor. Let
3 Pi= Pi{nFu(po+ 1) = n(po+ 1) — 0hia+ 0| Do+ 1 — hio/n’
< Fa(po + D}
Then letting p, + 1 — hi,o/nt + ©'/n = 1, it only remains to show that

P;= .099.
i=[(§) n¥hy,at1]

Using (3.20) and (3.23), we see that

1 — (¢ps/2 + i/n})/n(1 — p,)

b= Pl P = T /2 F G+ D/nil/ip,

n—Ch— 1
=" — >
o F 19 Zpo/(l po)_O
is decreasing and convex as a function of the (continuous) variable ¢ = 0. There-

fore,
J
Py = PO,I_Ida,- < Po([60 + 8,0/2)""

and

!

> P, <P ZO 80 < Po([60 + 8,1/2) /(1 — b141).

1=J+1
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Since
J42 J42 i—1 J4+2 )
P11 — Pi=1“‘ZP0H5j§1"‘ZP05}+1
=1 =1 7=0 =1
thus
(44) 20 Po = (b + 8/ (1 — o).

Putting J = [($)n*hy..], then using (3.23), and the hypothesis p, < .52 it follows:
from some elementary manipulation that

(4.5) ;l Pi < (60 + &:/2)" 1 1.05/(1 — 8y0)”" "
i=Jt ;

where J* = (4)n*h; . and
5 = [1 — (¢p—s/2 + i/n)/m* (1 — p))/I1 + (¢—s/2 + i/n})/n'pl.
Let

(4.6) r2(po) = [1 — z/(1 — p,)]/(1 + z/p0)
and

_ Pp—s/2 _ 1 96-3/2 + ($)Ma
(47) o $8-5/2 + hia’ % = 08-5/2 + h1,a
Then

z < 2 < 1, and 8y = 7.,(po), e = T2z5(Do) -
r, has a maximum at p, = (1 — z)/2, the maximum being
(4.8) r(1 = 2)/2) = [(1 — 2)/(1 + 2)],
decreasing in z. Now considering I < .1, 8 £ .05 and considering the separate
cases by o in [2, ©), [, 9), [1.5, ), [1.42, 1.5), [1.36, .42), using (4.7) we obtain
lower bounds of the form ¢! (¢ known) for z; and z; . These lower bounds using
(4.8) give upper bounds for & and 67+ which may be plugged into (4.5). With
some more elementary manipulation we obtain the desired result.

Stronger results can be obtained in case we know more about 2, 2; and p, ;
in particular, in any given case z; and z; and a lower bound for p,(p’(n.)) are
known, permitting smaller upper bounds for & and dye .

The preceding lemma states essentially that if rejection of 3¢; = {U} does not
take place because F,(p, + [) is too small, then F,(p, + 1) with high probability
took on value in the 2’ths of the acceptance region for 3¢} nearest F(p, + 1). Let

{po/[po + 11— (%)hl,a/n%]}xy 0=z=p +1— (%)(hl,a/ﬂ%),
~ Do, Po + l — (%)(hl,a/n}) é z < Po + l,
Fa) = 11 4+ Pt (1 — p)/(1 — po — 1 — BDh1,o/m)I(Hhaa/n’ — 1 @—1)

po+l""1
rZ2p+1, =2el0,1],
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as illustrated in Figure 1. p, is that value minimizing A ( p). We know p, € [.44,
52]. F is chosen so that if F.(p, + 1) is in the §ths of the acceptance region
nearest F(p, + 1) there is small probability that F.(z) is ever outside the ac-
ceptance bands for other z. This accomplished by choosing F so that the condi-
tional distribution function of those X, to the left (right) of p, + I given
F.(p, + 1) in the nearest §ths of the acceptance band lies close to U. We make
use of the fact that given F.(p, + 1) the observations to the left of p, + lare
conditionally independent of those to the right of po + I. To fill in a bit more
detail, let

A, = {Fulpo + 1=) = ve[po+ 1 — ha/nl o+ 1 — (Dhio/vl,
R, = (Fu(z) 2 [t — (hia/n)), & + (hi,o/n))], some z & [0, po + D},
R, = (Fu(z) 2 [z — (hio/n)), z + (h1,o/n))], some 2 & (po + 1, 1}

We compute an upper bound u., for P#{R, | 4.} by noting that given 4, , the
conditional distribution function of these no observations to the left of p, + !
has an easily computed minimum vertical distance from the corresponding
(re-scaled) acceptance bands. Similarly we compute an upper bound wu,, for
P#R.| A,}. Then (1 — ue)(1 — uy) is a lower bound for P#{R; N R: | A.}.
Letting

(1 —u)(l —u) = inf (1 = Ue) (1 — Up),

v such that 4, holds
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we see that

IIA

Pi{rej 3¢5 | A} <1 — (1 — uo) (1 — u,).
Let Ry = {Fu(po + 1—) < po+ 1 — hy,o/n%}. Then

i’

Pi{rej 5c¥ | R} < D Pa{rej sk | A}P(4,) + > P;
v i=[ () nih1,et1]
SH—-0—u)@—u)2PA)+ >, P
v i=[(§) nthy,o+1]
< ue + ur — uu, + Z P;.
i=[ (9 n¥h1,at1]

Thus
Pslace 3¥} = P#{R:}[1 — P#{rej 5¢¥ | R}

.

2 sup [1— A(p)] [1 - (“e + U — ueur + 2 Pi)]

pe(0,1-1] i=[($)ndhy,at1]
-~ s D-4PI[0— WO —w— S Bi].
pe(0,1—1] i=[($) nthy,ot+1}

As outlined before, this expression is that appearing in (4.1).
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