TESTING THE HYPOTHESIS OF NO FIXED MAIN-EFFECTS IN
SCHEFFE’S MIXED MODEL

By J. P. ImuOF
University of Geneva

1. Introduction and Summary. Various approaches are available for the
formulation of linear models for the analysis of variance. The mixed model in
which one factor is a fixed-effects factor, and one factor is a random-effects factor
can be obtained for instance as a limiting case of the general models of Cornfield
and Tukey [3], and of Wilk and Kempthorne [8]. An entirely different approach
is that given by Scheffé [6], and is the one considered in the present paper. What-
ever the approach used, a hypothesis of interest will usually be the hypothesis
of no fixed-effects. Consider a two-way layout in which’ A denotes a fixed-effects
factor and B a random-effects factor. Let I and J be the numbers of levels of
factors A and B respectively at which measurements are taken (I > 1,J > 1).
Let K be the number of replications performed in each cell (K > 1). In the
light of Table 1 of [3], Table 3 of [8], and formulas (46) and (54) of [6], an ade-
quate F-type statistic to use for testing the hypothesis H, that all main-effects
corresponding to the levels of factor A are zero appears to be

(11) F = (MS)A/(MS)AE

The usual mean squares (MS) 4, and (MS) 45 corresponding to factor 4 and to
A X B interactions are explicitly defined below. With the normal theory models
which are commonly used in the case of two fixed-effects factors and in the case
of two random-effects factors (e.g., in [7]), the criterion (1.1) has under the
hypothesis H 4 the F-distribution with I — 1 and (I — 1) (J — 1) d.f. In Scheffé’s
mixed model [6], this is no longer the case. When J = I, a Hotelling 7" statistic
can then be constructed for the test of H,. When multiplied by a constant
factor, this statistic has the F-distribution with I — 1 and J — I + 1 d.f. While
requiring a larger amount of computational work, the 7" test will have little
power when J — I + 1 is small. It is therefore tempting to construct a test of
H, , based on the ratio (1.1), by assuming that the law of ¥ is not much dif-
ferent under H 4 from that of F with I — 1 and (I — 1)(J — 1) d.f. In Sub-
section 4.1, we investigate the possible ill-effects of this assumption. They can
be considerable, and remedies are suggested in Subsections 4.2 and 4.3.

2. Notation and preliminaries. We begin by recalling the basic assumptions
and some results relative to Scheffé’s mixed model. A complete two-way layout
is considered in which the subscript ¢ = 1, - -+, I corresponds to the levels of
the fixed-effects factor A, the subscript 7 = 1, - - - , J to the levels of the random-
effects factor B. Replications are labelled withk = 1, .-+ | K. Welet n = IJK.
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The familiar dot convention is used to denote averages over the permissible
values of a subscript. A matrix A with elements @ is written ((a.)), while
((a"")) = ((aw)) ™", and A’ is the transpose of A.

Effects are determined in [6] in terms of “true” cell means m.; , and the general
observation can be written

(2.1) Yijp = Mij + €ip = p + o + bj + ¢ij + €iji .

The general mean p and the main-effects o , - - - , ar are unknown parameters.
The main effects b; , interactions c;; and errors e;; are random variables. The
J vectors (my;, -+ ,ms;)" are assumed to be independently and identically
distributed like a normally distributed vector m = (my, ---,m;)’, with co-
variance matrix £ = ((oi)). As a result, the J vectors (b;, ¢ij, -+ , ;)" are
independently and identically distributed like a normal vector (b, ¢1, -+ ,¢r)’

with zero mean and )
Var(d) = o.., Cov(b, ¢;)) = o4 — 0.,

(2.2) ) (

COV(C{ , Ci') = 0‘?{! = giy — O4 — O.q + g.. .

In addition, the vector m is assumed to be independent of the errors e;;z , which
are independently and normally distributed with mean 0 and variance ae.
The following variance components are defined

=T —-1)"2al, o= Var(b),
2.3 '
&3 ohs = (I — 1)7' 2 Var(cs).

It is shown in [6] that the mean squares (MS) . = (I — 1)"JK > i. — g )’
and (MS),5 = (I — DT — DK >i 205 (yige — Yire — Y5 + y..)" are
independent. Their expected values are

(24) EMS), = JKo& + Kobs + o2,  E(MS) s = Kol + o0 .

For the test of H,4 , a test criterion with known distribution is obtained in
terms of the differences dr;j = ¥. — Yr;. and sums of products a. =
> i (dr; — dp)(dpj — dp), v, 1" =1, -+, I — 1. From (2.1) and (2.2) one
finds

(25) e = Cov(dy. , dp.) = J o — oot — o + o + K (1 + 6)0c],
where 8, is the Kronecker 8. The statistic

(2.6) F=JJ - I+ 1)I -1 X X d" dedn.,

has the F-distribution with I — 1and J — I + 1 d.f. and noncentrality parame-
ter

(2.7 8 = Z ; (ar — ar) (ar — al)YMI-
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The subscripts r, ' are used instead of 7, 7’ whenever the values taken range
only from 1 to I — 1.

Consider a fixed level of significance e. We call T the test which rejects
H, if §* > F¥, where F? is given by P[F1_1.;—141 > F¥] = e We also want to
consider tests of H, based on the statistic . Write F.(h) for the e-quantile
determined by P[F4,—nr > Fe(h)] = e Various choices of ~ will be considered,
all satisfying 1 £ h £ I — 1. We call then T.(h) the test which rejects H, if
F > Fe(h).

3. An expression for §. The numerator and denominator of § = (MS)./(MS) .4z
are independent quadratic forms in normal variables, and can be expressed
each as a linear combination of independent x* variables. Consider first (MS) 4 .
Let u; = ci. + €i.. ,2i = ui — u. . Then (MS), = (I — 1) ' JK(z+ a)'(z + @),

where @« = (a1, -++, ar)’ and the vector z = (2, ---, #r)’ has covariance

matrix .

(31) 22 = ((J_la'?il + n_l(I6ii: —_ l)o'i))

Because of. = o = 0 for all ¢, 7', row and column sums in X, are zero.
LemMa 1. The rank of 2,1s I — 1. The nonzero characteristic roots Ay, «++ , A1

of . are the characteristic roots of the I — 1 X I — 1 matrix

(32) M = ((J (¥ — or) + J 'K '6,m02)).

One has A, = J 'K %, JK Do\ = (I — 1)(Kohs + o3).

The proof is similar to that of Lemma 3 of [4].

Consider an orthogonal matrix P = ((pir)) such that P'S,P = A, the
diagonal matrix with the characteristic roots A, - -+, Ar-1, 0 down the main
diagonal. Let ¢ = (g1, ** , @11, ¢1)’ = P’a. The last column of P, which is
the normalized characteristic vector of ¥, corresponding to the characteristic
root 0, has all its elements equal to I ~* hence

I

(3.3) gr=0, 2 pi=0, r=1,-+,I -1

=1
Now let z = Pw. The vector w is N(0, A), and
(M8)a = (I — 1DTJK(W+ )'(w+ q).

Writing 87 = A\;'¢7, one obtains

LemMA 2. (MS). = (I — 1)7'JK D22 Mx(n; 52, where the noncentral x
variables xfr);ag with one d.f. each and noncentrality parameter 82 are independent.

Next, consider (MS) 45 . Writing l;; = ¢i; — ¢io + €5 — ei.. — e.;. + e...,
one has

MS)us = (I — D7 = 7K 20 251

and one finds Cov(li;, loy) = (Jojr — V[T ok + n ' (T6sr — 1)ol]. Let
1= (L, ,hry, - ,ln, -, Thenlis N(0, =;) and X, is the Kronecker
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direct product of the J X J matrix ((Jé;7 — 1)) with X, . The characteristic
roots of X; are therefore J\;, - -+, JA\;_1, each with multiplicity J — 1. It
follows that (MS).s = (I — 1)™(J — 1) " JK 2, Mxtn,s—1 , where the central
x variables x{r,s—1 with J — 1 d.f. each are independent. This, together with
Lemma 2, shows that

(3'4) ¥ = (J - 1) {Z )‘TX%r);Bﬁ/Z )‘rx%r),-l-—l}a

where the 2(I — 1)y variables are independent.
According to (3.3), 8, -+, 611 are I — 1 orthogonal contrasts among the

parameters a; , - - , oy . One has,
LemMA 3. Let A’ = 12162 and let 8 be the non-centrality parameter (2.7).
Then A* = &

Proor. Let P* be the I — 1 X I — 1 upper left corner of P. Let A* be the
I — 1 X I — 1 upper left corner of A. Let L be the I — 1 X I — 1 diagonal
matrix with elements A%, -+ -, Ai?; down the diagonal. Let

o = (g — ar, -+, ar1 — ar).

Because of (3.3) one has P¥o* = (g1, -+, gr1)". Therefore A’ = «*QQ’e*
where Q = P*L. Let v:» denote the 1, i'-element of X, . Let s, = vprr — 0,7 —
v + v, 7, =1,---, 1 — 1,and let S = ((s,)). One verifies by direct
computation, using (3.3), that P'S,P = A implies P*SP* = A¥. Therefore
Q’SQ = U, the identity matrix, from which it follows that (QQ’)™ = S. Thus
A* = ¢¥S7'a". But one verifies at once that s, = v, as given in (2.5). The
conclusion follows.

Equation (3.4) shows that if A; = -+ = Ay = X, then

(3.5) F = Fra,a-1@-1;s2,

an F-variable with I — 1 and (I — 1) (J — 1) d.f. and noncentrality parameter
&%, This is in particular the case when I = 2. When I > 2, it is easily verified
that (3.5) holds, if and only if all variances are equal and all covariances are
equal in the basic matrix X, so that

(36) Oir = 0'2[9 + (1 - P)aii'], 1, i = 1., I, lp‘ <L
The noncentrality parameter > = X ), ¢ can then be written
& = (Koia + 60) " JK 2 iai.

4. Testing H, with the criterion . Although the distribution of § reduces to
that of an F-variable only when (3.6) holds, it is tempting to assume that under
H, , it never departs much from the central F distribution with I — 1 and
(I — 1)(J — 1) d.f. Then, one would use for testing the hypothesis H, the
test T<(I — 1) described in Section 3. There is however no justification in
Scheffé’s mixed model for assumption (3.6); a more careful investigation of its
effects will therefore be made.
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4.1. Effect on the level of significance of using T(I — 1). Departure from the
assumption (3.6), under which T.(I — 1) is a test of H, with level of signifi-
cance e, results in § having the distribution (3.4) instead of (3.5). The true
level of significance for the test T'.(I — 1) then equals

(4-1) Pl(J — 1) Z )‘rX%r)/Zr: )\rx%r),.l—l > F(I — 1)]

When computing values of (4.1), there is no loss of generality in assuming
> A = I — 1. Then, according to Lemma 1,

(4.2) MZ e, o= (Kois+ ob) lor.

If Ko’y is small compared to oo , the lower bound ¢ will be little different from
unity and so will the \,, irrespective of the structure of the basic covariance
matrix X. This means that the distribution of & will be close to that of F with
I —1land (I — 1)(J — 1) d.f. Our interest, however, lies mainly in the case
where interactions are not negligible. Then, ¢ will often be close to zero. If for
instance K = 3 and o%5 = 30> ,one has ¢ = .1. This means that if the covariance
matrix £ departs sufficiently from condition (3.6) (examples will be given),
the A, can be highly unequal. Little information is available concerning the
effect of inequality of the values of A;, - -+, A;_; on the probability (4.1) (see
Box [2], Table 4 and page 301). Some results are given in Table 1 for the case
I = 5. They show that with the ‘“usual F-test” T.(I — 1), the probability of
type I error can be considerably higher than the nominal level e. The trend
found in Table 1, namely that the true level of significance always exceeds the
nominal one, only reverses itself for a value of e larger than .3. That the same
trend will prevail for small values of ¢, whatever the values of I and J, can be
shown by a heuristic argument similar to the one used at the end of Section
5 of [4]. An example might be in order to show that with a matrix X that does
not appear exceptional, the ratio of largest to smallest of the \’s can already

TABLE 1
Exact probability that F exceeds the upper e-quantile of Fs,4;_1y when H , holds
Ay eee M)
100e J—-1 ) @ 3) 4) (5)
3.7,.0,.1,.0)  (19,19,.1,.1)  (2.2,.6,.6,.6) (1.8, 1, .6, .6) 11,1

1 4 .078 .036 .023 .016 .010
8 .070 .034 .024 .017 .010
5 4 .140 .096 .073 .063 .050
8 129 .092 .072 .062 .050
10 4 .186 .149 — — .100

25 4 .280 274 — — .250
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be considerable. Let I = 4 and let = be the circular symmetric matrix

u v ow v

s_|? v w

w v U v

vow v U

Then M =N = J (u —w+ K '%0h),h=J (u+w— 20+ K '0;),\s = 0.
Thus, if (u, v, w) = (1, —.4, 4), which gives ohp = 1.13 and if K 'ob = 2,
one has \s/A; = 3. The situation is then comparable to that in column (4) of
Table 1. More extreme examples are contained in Lemma 4 below.

4.2. Approximating the distribution of § under H, . When H, holds, 8 =
... = §;_; = 01in (3.4) and the distribution of & can be approximated by using
a method first suggested by Satterthwaite [5]: Substituting gxi for s Axin
and ¢'xi for Dr\ix(n.s_1, where g, ¢’, h, b’ are determined so that in each
case the first two moments coincide, one obtains

(4.3) F = Fr_nn, h = (Z kf)_l( Z >\r)2'

Box [2] has given some numerical results which indicate that when h is known,
this type of approximation is satisfactory for determining upper 5% -points of
&. Further evidence of this is contained in Table 2, which gives values of the
probability P[F > F.(h)] for I = 5, ¢ = .01 and e = .05, J — 1 = 4 and
J — 1 = 8, for five combinations (\;, -+, As). The approximation (4.3) is
poor, only when both J — 1 and k are small (in column (3), h = 1.58). Its use
then results in the probability of type I error being kept below the nominal
value ¢, which causes no concern.

In practice, the \, are unknown and & must be estimated from the data before
(4.3) can be used. Lemma 1, (4.3) and the relations of = 0, D ;0% =
(I — 1)o%5 give

h= (-1 =14+ 8(chs+ KD,  S=2 2o+ I —1)oks.
An estimator of h is obtained by substituting for ;- the unbiased estimator
(63) of [6], namely
5‘?,'/ = (J —_ 1)_1 Z:lijli’j “+ (IK)—I(Il;“' —_ 1)(MS)¢ s
J

TABLE 2
Ezact probability that T exceeds the upper e-quantile of Fi,—yn when H 4 holds
ST WY
100e J—=1 ) (2) 3) 4) (5)
(.1, .7, 1.6, 1.6) 7,7, 1, 1.6) (1,.1,.7,3.1) (.8,.5,1.3,1.4) a,1,1,1)

1 4 .0095 .0096 .0072 .0097 .0100
8 .0103 .0103 .0096 .0102 .0100

5 4 .049 .048 .043 .049 .050

8 .049 .049 .047 .049 .050




TESTING SCHEFFE’S MIXED MODEL HYPOTHESIS 1091

where the I;; are as in Section 3, and substituting for ¢%s, ¢ their unbiased
estimators K '[(MS) s — (MS),.] and (MS).. Thus an estimator of A which
has the same range as h is

k= max{l, (I — DI — 1 + K*S(MS)72™Y,

where 8 = > Sva¥ + (I — DK [(MS) s — (MS).]% The level of sig-
nificance of the resulting test T.(A) is unknown. When J is small, it may well
differ considerably from e, and the use of this test does not seem advisable.

4.3. A quick test based on F. For fixed values of o5 and o:, Lemma 1 and
(4.3) show that h is a monotonously decreasing function of Y A} . The min-
imum of % is achieved when all but one of the A, equal the lower bound (JK) o7 ,
and is
(4.4) hin = (I — DL+ (I —2)(1 —¢)77, Bmin > 1,
This can easily be estimated, using only the mean squares (MS) 45 and (MS), .
An estimator of ¢ which has the same range as ¢ is

¢ = inf{1, (MS)./(MS) 45}.
Substituting @ for ¢ in (4.4) yields the estimator
foin = (I — DL+ (I —2)(1 — @)

We propose to use for testing H 4 the test T'(fimia), that is reject H 4 if § exceeds
the upper e-quantile F.(Amin) of F with Amin and (J — 1)Ani d.f. Although
the true level of significance of this test is again unknown, it should be well
below the nominal level e, except when the A, are such that & is close t0 Amin -
Lemma 4 below gives indications about the possibility of this occurring. One
has Amin = 1, hence F(hmin) < F(1). A lower bound for the power of the

test Te(hmin) is therefore
PI(J — 1) 22 Mxtmist/ 20 Mxin,o—1 > Fe(1)].

TABLE 3
Lower bound for the power of the test T ,(Amin)
(A1, Az, A3, 1) P

5 ower
100e (8%, 83, 63, &) J -1 1.(61:1_.76,) 1, 1,1,1.6) (‘1,313 7, (.8,1.:'54)1.3, 01,11 of T

) 1 (100, 25, 0, 0) 4 .04 .61 .01 .65 .88 <.2
2) 1 (40, 10, 0, 0) 8 .01 .36 .01 .41 .69 .66

@3) 1 (25, 50, 25, 25) 4 .81 .83 .69 .80 .88 <.2
4) 1 (10, 20, 10, 10) 8 .61 .62 .49 .58 .69 .66

(5) 1 (10, 25, 25, 65) 4 .95 .89 .97 .93 .88 <.2
(6) 1 (4, 10, 10, 26) 8 .84 .71 91 .79 .69 .66
) 5 (36, 9,0, 0) 4 .09 .64 .05 .67 .85 .19
®) 5 (20, 5, 0, 0) 8 .06 .50 .04 .54 .74 .72
()] 5 9,18,9,9) 4 .79 .81 .66 .79 .85 .19
(10) 5 (5, 10, 5, 5) 8 .67 .69 .53 .66 .74 72
11) 5 (4, 9,9, 23) 4 .92 .86 .94 .90 .85 .19
(12) 5 2, 5, 5, 13) 8 .84 .75 .88 .80 .74 .72
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Table 3 contains values of this probability for I = 5, J = 5and J = 9, ¢ =
01 and ¢ = .05, and various combinations (A;, ---, As) and (&3, -+, 61).

A comparison can be made, between the lower bound of the power of the
test Te(hmin) and the power of the Hotelling T%-test TF . According to Lemma
3, the values in lines (1), (3) and (5) should be compared with the power of
the F-test with 4 and 1 d.f. and noncentrality parameter 8 = 125, which is less
than .2: Those in lines (2), (4) and (6) with the power for 4 and 5 d.f. and
8’ = 50, namely .66: Those in lines (7), (9) and (11) with the power for 4 and
1 df. and 8* = 45, namely .19: Finally those in lines (8), (10) and (12) with
the power for 4 and 5 d.f. and 8 = 25, namely .72. To facilitate comparison,
those values have been reproduced in the last column of Table 3.

It is seen that T.(/min) compares very favorably with T , especially if one
takes into account that unless hmin is close to one, the lower bounds tabled will
be considerably smaller than the true values of the power. As expected, the
gain in power due to the use of T¢(/imin) is most considerable when J — I + 1
is small. T.(hmin) is poor only against the alternatives for which most of &° is
contributed by 87’s corresponding to very small values of the \,’s. Some idea
regarding the occurrence of such alternatives can be gained from

Lemma 4.

(1) If (rank 2) = p < I, then at least I — p — 1 of the \, equal the minimum
value (JK) 'ob .

(il) If = has t 4+ 1 identical rows (we may assume they are the last ¢ 4+ 1),

then t of the \s equal (JK) ‘o (we may assume they are Ar_¢, - -+ , Ar—1) and
I—1 t J

(4.5) ; o = (t + 1)7'JKo,? lel(az_j — ari_i)%
— sl

Proor. If Cis the I X I matrix ((8:v — I'")), then ((¢3i/)) = CXC implies
rank ((¢%)) < inf{I — 1, rank X}. Similarly one has rank ((o} — o17)) =<
rank ((¢#;/)). From the form of (3.2), ¢) follows. Next, suppose the last ¢ +1
rows of X are identical. Then one verifies that =, has ¢ + 1 characteristic roots
equal to (JK) ‘o5 , say they are the last ¢ + 1, and that one can take for the last
t + 1 rows of the matrix P’ which diagonalizes X, , (0, - - - , 0, —k[k(k + 1)]7%,
Kk + D o k(e + DD, k=1,---, ¢ and (I}, -+, I for the
last row. Formula (4.5) follows.

Lemma 4 shows that whenever = is of rank less than I — 1 and Kobs/o} is
large, there are “bad” alternatives against which Te(hmin) is powerless. If in
particular, (corresponding to the hypothesis in (ii)) for several levels of factor
A the “true means” m; are the same random variable except for additive con-
stants, then T.(Amin) is powerless to detect any nonzero contrast between the
expected values of those ‘“true means’” (notice such cannot be the case for all
mi , else o4z = 0). It should be pointed out that the same conclusions are valid
for the test T.(%) considered in Subsection 4.2.

5. Table of F os(h) and F «(h). To carry out the tests described in Section 4,
one must determine the upper e-quantile of the F-distribution with » and
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TABLE 4
Upper 5%-point of Frmn
2 3 4 5 6 7 8
1.00 18.513 10.128 7.709 6.608 5.987 5.591 5.318
1.05 16.936 9.554 7.366 6.358 5.785 5.418 5.163
1.10 15.613 9.053 7.062 6.133 5.603 5.261 5.023
1.15 14.488 8.613 6.790 5.931 5.436 5.117 4.893
1.20 ~ 13.523 8.223 6.545 5.746 5.284 4.984 4.774
1.25 12.687 7.875 6.323 5.578 5.145 4.862 4.664
1.30 11.957 7.563 6.121 5.424 5.016 4.749 4.562
1.35 11.314 7.281 5.937 5.282 4.897 4.644 4.466
1.40 10.744 7.025 5.768 5.150 4.786 4.547 4.377
1.45 10.236 6.792 5.612 5.029 4.683 4.455 4.294
1.50 9.780 6.579 5.468 4.915 4.587 4.370 4.216
1.60 8.997 6.202 5.210 4.711 4.413 4.214 4.073
1.70 8.350 5.880 4.986 4.532 4.258 4.076 3.946
1.80 7.806 5.602 4.789 4.373 4.121 3.952 3.831
1.90 7.343 5.358 4.615 4.231 3.997 3.840 3.728
2.00 6.944 5.143 4.459 4.103 3.885 3.739 3.634
2.10 6.597 4.952 4.319 3.987 3.784 3.646 3.548
2.20 6.293 4.781 4.192 3.882 3.691 3.562 3.469
2.30 6.024 4.627 4.077 3.786 3.606 3.484 3.396
2.40 5.784 4.487 3.972 3.697 3.527 3.412 3.328
2.50 5.568 4.360 3.875 3.616 3.455 3.345 3.266
2.60 5.374 4.244 3.786 3.541 3.387 3.283 3.207
2.70 5.198 4.137 3.704 3.471 3.325 3.225 3.153
2.80 5.038 4.038 3.628 3.405 3.266 3.1711 3.102
2.90 4.892 3.947 3.557 3.344 3.211 3.120 3.054
3.00 4.757 3.863 3.490 3.287 3.160 3.073 3.009
3.20 4.518 3.710 3.370 3.183 3.066 2.985 2.926
3.40 4.313 3.577 3.264 3.091 2.982 2.907 2.852
3.60 4.134 3.459 3.169 3.008 2.907 2.836 2.785
3.80 3.977 3.354 3.084 2.934 2.838 2.772 2.724
4.00 3.838 3.259 3.007 2.866 2.776 2.714 2.668
4.20 3.714 3.174 2.937 '2.804 2.720 2.661 2.618
4.40 3.602 3.096 2.873 2.748 2.667 2.612 2.571
4.60 3.501 3.026 2.815 2.696 2.619 2.566 2.527
4.80 3.410 2.961 2.761 2.648 2.575 2.524 2.487
5.00 3.326 2.901 2.711 2.603 2.534 2.485 2.450
5.20 3.249 2.846 2.665 2.561 2.495 2.449 2.414
5.40 3.178 2.795 2.621 2.523 2.459 2.415 2.382
5.60 3.113 2.747 2.581 2.487 2.425 2.382 2.351
5.80 3.052 2.703 2.544 2.452 2.394 2.352 2.322
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TABLE 4—Continued
Upper 1%-point of Fumn

3 2 3 4 5 6 7 8
1.00 98.503 34.116 21.198 16.258" 13.745 12.246 11.259
1.05 83.954 30.786 19.606 15.236 12.985 11.631 10.733
1.10 72.597 28.025 18.247 14.349 12.317 11.086 10.265
1.15 63.570 25.706 17.075 13.571 11.726 10.600 9.846
1.20 56.278 23.736 16.054 12.884 11.199 10.164 9.467
1.25 50.303 22.045 15.159 12.274 10.726 9.770 9.124
1.30 45.345 20.581 14.367 11.727 10.299 9.413 8.812
1.35 41.183 19.302 13.662 11.236 9.913 9.088 8.526
1.40 37.655 18.178 13.032 10.791 9.561 8.790 8.264
1.45 34.635 17.183 12.464 10.387 9.239 8.516 8.022
1.50 32.029 16.296 11.950 10.017 8.943 8.264 7.798
1.60 27.779 14.788 11.058 9.368 8.419 7.814 7-397
1.70 24.481 13.554 10.310 8.815 7.968 7.425 7.048
1.80 21.862 12.528 9.673 8.339 7.576 7.084 6.741
1.90 19.743 11.663 9.125 7.924 7.231 6.783 6.469
2.00 18.000 10.925 8.649 7.559 6.927 6.515 6.226
2.10 16.545 10.287 8.231 7.236 6.655 6.275 6.008
2.20 15.314 9.732 7.861 6.948 6.411 6.059 5.810
2.30 14.262 9.243 7.532 6.689 6.191 5.863 5.631
2.40 13.354 8.811 7.237 6.455 5.991 5.684 5.467
2.50 12.563 8.425 6.970 6.242 5.808 5.521 5.317
2.60 11.869 8.079 6.729 6.049 5.641 5.371 5.178
2.70 11.255 7.768 6.509 5.871 5.487 5.232 5.050
2.80 10.709 7.485 6.308 5.708 5.345 5.104 4.932
2.90 10.220 7.227 6.123 5.557 5.214 4.985 4.821
3.00 9.780 6.992 5.953 5.417 5.092 4.874 4.718
3.20 9.020 6.577 5.649 5.166 4.872 4.674 4.531
3.40 8.389 6.222 5.386 4.948 4.679 4.497 4.367
3.60 7.856 5.915 5.156 4.755 4.508 4.340 4.220
3.80 7.400 5.648 4.953 4.584 4.355 4.200 4.088
4.00 7.006 5.412 4.773 4.431 4.218 4.074 3.969
4.20 6.662 5.203 4.611 4.293 4.095 3.960 3.862
4.40 6.360 5.015 4.465 4.168 3.982 3.856 3.763
4.60 6.001 4.847 4.333 4.054 3.880 3.760 3.673
4.80 5.852 4.694 4.213 3.950 3.786 3.673 3.590
5.00 5.636 4.556 4.103 3.855 3.699 3.592 3.514
5.20 5.442 4.429 4.001 3.767 3.619 3.517 3.443
5.40 5.265 4.313 3.908 3.685 3.545 3.448 3.377
5.60 5.104 4.205 3.822 3.610 3.476 3.383 3.315

5.80 4.956 4.106 3.741 3.539 3.411 3.322 3.258
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(J — 1)h df. When both & and J — 1 are small, interpolation between integral
values of & gives inaccurate results. A table of upper 5% - and upper 1% -quantiles
of Fumn, where m is integer but h is not, is therefore included. Other uses of
this table can be found, e.g., in [1].

The entries in Table 4 have been computed by successive approximations,
using the Newton-Raphson method for solving the equation P(x) — ¢ = 0,
where P(z) = P[Fnm. > z]. Values of P(x) were obtained by the method of
numerical integration described in [4a], and a finite difference approximation
was used for dP/dz. Calculations were performed so that an error smaller than
10~ could be guaranteed for the solution. When the fourth decimal was a 4, 5
or 6, calculations were repeated with higher accuracy to make sure the rounding
to three decimal places was correct. In the upper-left corner of the table for
e = .01, it was necessary to compute P(z) with six decimal accuracy, and a
rapidly convergent series for P(x) was used instead of-the method of numerical
integration. For integral values of h, four decimal agreement was obtained in all
cases with existing values of the percentiles. For A = 1.2, m = 5 and h = 1.5,
m = 2(2)8, agreement exists also with the values of the percentiles obtainable
from the tables of Vogler and Norton [7a).

6. Acknowledgments. Professor Henry Scheffé has made valuable criticism
and given generous advice during the elaboration of the paper. The Referee’s
comments have been of great help in revising the presentation of the material.
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