ABSTRACTS OF PAPERS

(Abstracts of papers presented at the European Regional Meeting of the Institute, Dublin,
Ireland, September 3-6, 1962. Additional abstracts appeared in the June
and September, 1962 issues.)

8. A Note on Sequences of Attributes (Preliminary report). FRANCIsSCO AZORIN-
PocH, University of Santiago de Compostela, La Coruna, Spain.

Some situations of ‘“‘intrinsic’’ lack of randomness in finite sequences (ordered popula-
tions or samples) of attributes are examined. A simple case consists of m classes or ‘“levels’’,
each with 7 items, and 71/h periods of mh items. The extreme cases are h = 1 and h = 7,
corresponding to maximum and minimum (non random) mixture. A diagram of serial as-
sociation is considered as a characteristic feature of these attribute sequences. The con-
tingency tables for successive values of: ¢t = (k — 1)k + @, (@ < h), are obtained for m = 2
(cases:k — 1 =0 (mod.2)) and k¥ — 1 = 1 (mod. 2), and form = 3 (cases: k — 1 =0, 1, 2,
(mod. 3)). As measures of association, taking the value 1for¢ =0, X2/r(m — 1) (r = number
of pairs), Yule’s @ (in the case of two letters or classes), and Wallis and Roberts coefficients
are calculated. The diagrams show as expected a succession of ones (preceded alternatively
by + and — if association and dissociation are distinguished), in the extreme case h = 1,
and diminishing values until 0 in case A = 7i. Another approach is based on intraclass as-
sociation. The usual formulae of intraclass correlation is now applied to the analysis of
variance identity, for absolute frequencies of attributes instead of values of z in quantita-
tive situations. The association refers to successive clusters of equal size in which the
sequence is divided.

9. Inequalities Applicable in Reliability Theory. Z. W. BirNBaUM, University
of Washington.

A function f(p), increasing for 0 < p < 1, is called S-shaped when f(0) = 0, f(1) = 1,
F'O) =f1) =0,f®) >f)1 - f@)]/lpA - p)lfor0 <p <1, and f(p) = p has a
unique solution in (0, 1). It has been previously shown (Birnbaum, Esary and Saunders
(1961) Technometrics 8 55-77) that under certain general assumptions the reliability func-
tions of multi-component structures are S-shaped. The number Sy =1 — f° o)1 —fp)l/
[p(1 — p)] dp is now introduced to describe the degree in which f(p) is S-shaped. Inequali-
ties are obtained which show that the closer S; is to 1 the more S-shaped fis in an intuitive
sense. Furthermore, if f and g are S-shaped, and b = f(g), then S, > Sy and S, > S, . If
f@) = 2o Aip(1 — p)»—%, then S can be written explicitely in terms of the 4; .

10. Minimax Almost Invariant Confidence Procedures and Related Optimal
Ones. Ruporr Boraes, University of Cologne, West-Germany. (Intro-
duced by G. Elfving)

Let the indexing set © of the family (M, &, Ps), ¢ ¢ O, of probability fields be a group.
The elements of © are assumed to be transformations of the sample space M onto itself
which leave the family (M, &, Ps), ¢ € ©, invariant. Furthermore, there is a o-finite measure
field (©, B, ») on the group ©. If r denotes the true parameter and B ¢ B the confidence
region (decision), the loss is given by »(r1B) + ¢ — c¢I (+, B), where c is some non-negative
constant and I (r, B) = 1 for r ¢ B and 0 otherwise. Under weak assumptions the class of all
almost invariant confidence procedures is given which is minimax within the class of all
almost invariant confidence procedures. Under additional topological assumptions on the
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group O it is shown from Kudé’s (1955) theory that the elements of the same class are mini-
max within the class of all confidence procedures measurable in the product space (M, ©).
It is shown that these minimax confidence procedures are optimal in the sense of average
expected size (see Pratt, 1961), and are subjective most accurate (Borges, 1962), if the
measure » is semi-invariant.

11. The Statistical Theory of Radar Interferometry. R. C. Davis, General
Dynamics, Pomona, Calif.

In several applications of radar interferometry, one poses the following simplified prob-
lem of statistical estimation: Given continuous observations of two random time functions,
e1(t) and e:(t), in a finite time interval of known duration, 7T, where e (t) =
G(Oa - 01)0381(0 + G(00 - 03)0¢82(t) + m(t), Oz(t) = G(oo + 01)0381(t + a sin 01) +
G (80 + 05)645:(t + a sin 6;) + na(t). The random functions, s (¢), s2(t), ni(t), and ne(t),
are independent continuous stationary Gaussian processes with absolutely continuous
spectra known to the observer. 6, and a; are known constants and G(8) is a known function
with G(—6) = G(0) and G’(8) < O for 6 > 0. 6, 6., 6; , 6, are unknown constants with
63 > 0, 6, > 0. The problem is to obtain estimates of 6; and 8 (6; and 6, being nuisance
parameters) based entirely upon observations of e;(f) and e (f) in the time interval, 0 <
t = T. Maximum likelihood estimates of 6; and 8; are obtained in implicit form and approxi-
mate solutions obtained for the practical case in which e; (¢) and e, (¢) are random functions
with band-limited spectra. The multi-parameter form of the Cramér-Rao inequality is
used to obtain explicitly the covariance matrix of the M.L. estimates valid for large values
of the time-bandwidth product.

12. A Method for the Selection of Tests. WaLter DE AMBROGIO, Laboratorio
Ricerche Elettroniche Olivetti, Borgolombardo (Milano), Italy. (Intro-
duced by L. Lombardi)

The decision whether it is convenient or not to execute a certain test, calls for a com-
parison between its cost and the informations which it supplies. In my paper the analysis
of the principal factors is taken as the point of departure for the determination of the
quantity of information given by each test. In order to do this: (1) One eliminates all
factors which are non-significant, (2) One uses an iterative method to form an estimate of
the community, (3) One arrives at the relations X; = aunFy; + awF2 + -+ + aimFm and
from this F, = buXi1 + bseX2 + -+ + benXs . The product (a:sb.:) measures the importance
of variable X as a ‘“‘determiner”’ of F, (Harman, Modern Factor Analysis). One proposes
to extend the analysis to all the factors considered, keeping account of the total contribu-
tion of each factor to the variance of all the variables. The expression Q; = Y m; aibsihe/n
is a measure of the quantity of information given by a certain variable.

13. Random Functions with Reciprocal Variances. B. H. pE JoneH, Amsterdam,
Netherlands. (Introduced by J. Hemelrijk)

If ¥2(-) is a given probability density of a given random variable x, on the understanding
that a parameter ¢ is unknown, and if there exists a function g(-) whose values depend on
z, but not on ¢, such that /'g(z)¥2(x, 9) dz = ¢, then under certain regularity conditions,
the inequality Var g(x) Var [¥(x, ¢)/%(x, )] = % holds. The Heisenberg inequality
Var x Var [¥'(x)/%(x)] = %is equivalent to the former inequality.
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14. A Central Limit Theorem for Classes of Dependent Random Variables.
FriepHELM EIckER, Albert-Ludwigs-Universitdt, Freiburg, West-
Germany.

Let z{F} be the set of all sequences {---, z_1, %o, &1, -++} of independent random
variables with zero means and positive, finite variances, and having distributions out of a
given set F. Let be & = > je— @ik ,j = 1,2, -+ , the aj; being given real numbers with
the property 0 < D & dix < » for each j. If Anx= SR ask , o = var zy , let B =
> AZ401 be > 0 for all n. Then the sums generating the £; exist as limits in the mean,
and the limiting distribution of {n = B7lY pui &5 = BulD pe—w Amis equals N (0, 1) for
every sequence {zix} ¢ z{F} if (I) max; A%/ > e Abi — 0 for n — . (II) There exists
for ¢ = 0 a bounded function g(c) withlim,., g(c) = 0 such that S'|z|z¢ ¢2dG(c) < g(c) for
¢ = 0 and each @ in F. (III) The second moments of all G ¢ F are greater than a positive
constant. If the theorem is to hold simultaneously for all sequences of z{F} (shortly: over
F) then (I)-(III) are also necessary.

An application (which generalizes related results of Moran (Biometrika 34 (1947) 282-
283) and Diananda (Proc. Cambridge Philos. Soc. 49 (1953) 241-242) is made to moving
average type processes £ = 9o . Cj_i&i, k= 1,2, -+ ;0 < 27, ¢j < = (which are
strictly stationary if, in addition, the z; are identically distributed). Condition (I) is
always fulfilled unless > o, ¢; = 0 and T» = 2 joc; — T in which case the divergence
of Z;‘,l [(T; — T)* + (X it——icx — T; + T)?] is necessary and sufficient.

15. Weighted Sums of Chi-Square Variates. JouN GURLAND, University of
Wisconsin.

The author has previously (Ann. Math. Statist. 1955, Sankhya 1956) employed a Laguer-
rian expansion to approximate the distribution function of a weighted sum of chi-square
variates. In the present paper it is shown that the coefficients in this expansion apart from
a simple factor, are probabilities corresponding to a convolution of Negative Binomial
distributions. This simplifies the required computations. A simple expression for a bound
of the remainder term is obtained when the distribution is approximated by a partial sum
of the Laguerre series. Its form strongly suggests the approximation will work better the
farther one is out in the right hand tail of the distribution. Preliminary computations on
some examples have substantiated this.

16. On a Functional Equation Arising in the Theory of Queues. WARREN M.
HirscH, New York University.

The functional equation¢ (b)) = S o e — t + ) dF (t) dG(z), b = 0, where F (z)
and G (z) are arbitrary distribution functions vanishing for z < 0, arises in the theory of
queues. In the probabilistic setting in which this equation occurs, it can be shown that
(a) 0 = ¢ < 1 and (b) ¢ is non-decreasing. Using these conditions and a combination of
probabilistic and analytical arguments, it is possible to study the dependence of the solu-
tions on F and G. In these arguments the monotonicity of ¢ plays a decisive role, and it is
natural to wonder how the solutions behave when this assumption is relaxed. In this paper
it is shown by purely analytical methods that if S5 z dG(z) £ S0 % dF (z), So- « dG (z)
< «, and not both F and G degenerate at the same point, then there is a unique bounded
solution, namely, ¢ = 0 a.e. (Lebesgue measure). There are, however, non-zero un-
bounded solutions, which are exhibited. A partial result is obtained in the case

S zdG@) = So-zdF(z) = .
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17. Estimates of the Parameters of the Weibull Distribution (Preliminary
report). GERALD J. LiEBERMAN, Stanford University.

The density function of the two parameter Weibull distribution can be written
as f(z) = ##! (exp — ##/a) (B/a) for £ > 0, @, 8 > 0; = 0 otherwise. If testing is termi-
nated when the first r out of n items fail at times ¢, , ¢, --- , ¢, , respectively, the maximum
likelihood equations for estimating o and 8 are not readily solved. A useful computational
formula for 8 is given by 0 = Z{“‘ a + Bz) exp— (14 B2z) 4+ n —r + A + Bz)
exp — (1 + Bz,) where z; = z; + [(1‘— r)/r1> 1 In & and z; = Silnti — Int; . &is then
given by @ = (1/r) X% t,f + (n—r) t8 . An approximation for § is given by the solution of
the equation exp fv = Bo[l—{(n — r)/r} (2 + Bv)] + 4)/(4 — Bv) wherev = Int, — In ¢, .
As an example, for the case of n = 2r, this equation becomes 8 = 2.42/v.

18. Characterization of the Asymptotic Distribution of a Transformed Normal
Random Variable. Lroyp J. MonTzinGo, JrR. and NormaN C. SEVERo, .
University of Buffalo.

Let h be a function of the real variable y such that: (1) the nth derivative of &, k(®, is con-
tinuous in some neighborhood of y = a, (2) A (a) = 0if 0 <m < n, and (3) A(™ (a) = 0.
Let y = a + bz, b also a constant. Furthermore denote a function of b, whichis O (b*) = o (b™)
as b tends to zero, by O*(b"). It is shown that lims-o[k(a 4+ b2) — po]/oe = kiz® + ke
for all 2, where k1 , k; are constants, k; 0, if and only if uo = h(a) + O (b*) and oo = O* (b™).
An interesting application to random variables follows. Let ¥ be a normal random variable
with mean u, and variance o , and let Z = (¥ — py) /oy . As gy — 0, the random variable
W = (X — uo)/oo, where X = h(Y), po = h(uy) + O(oy') and oy = O*(oy'), has an asymp-
totic distribution equal to the distribution of the random variable k1.Z" + k. . Finally, as
oy — 0, W is asymptotically normally distributed if and only if n = 1.

19. A Characterization of the Wishart Distribution. INgrRaAM OLKIN and HERMAN
Rusin, Stanford University and Michigan State University.

If X and Y areindependent random variables having a Gamma distribution with param-
eters (6, n) and (9, m), respectively, then X + ¥ and X/(X + Y) are statistically in-
dependent. Furthermore, this independence property characterizes the Gamma distri-
bution. (Lukacs (1955). Ann. Math. Statist. 26 319.) The principal result is an extension to
the Wishart distribution.

Theorem. If X and Y are p X p positive definite matrices which are independently dis-
tributed, and (1) X 4+ Y = WW’ is statistically independent of Z = W-1YW'~1, (2) the
distribution of Z is invariant under the transformation Z — I'ZT’, where T is orthogonal,
then X and Y have a Wishart distribution with the same scale matrix.

20. On Markov Chains the Transition Function of Which is a Finite Sum of
Products of Functions of One Variable. J. TH. RUNNENBURG and F. W.
SteUTEL, Mathematical Institute and Mathematical Centre, Amsterdam,
Netherlands. (Invited paper)

Time-discrete stationary Markov chains with transition function A(y| z) =
> 14 (@) B; (y), where r is finite and the Ax(z) as well as the B;(y) are linearly independ-
ent (to give meaning to the number r), have ergodic properties which depend to a large
extent on the eigenvalues of the matrix with elements C;x = J° Ai(x) dB;(x). A number of
theorems generalizing those true for time-discrete stationary Markov chains with a finite
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number of states are proved by making use of the methods developed for the latter chains.
In the case r = 2, given the invariant distribution function of the Markov chain, those
transition functions for which the correlation between successive variables of the chain is
maximal (minimal) are derived.

921. Statistical Models and Methods in Analysis of Multiple Decrement and
Transfer Schemes. ErriNG SvErDRUP, University of Oslo, Norway.
(Invited paper)

Models applicable, to, e.g., populations of patients in different state of health are con-
sidered. Probabilities of transfer or remaining in the same state of health are expressed by
means of basic forces of death and transfer. Statistical methods for testing hypothesis and
estimating these forces are developed.

.99. Waldian Identities for Asymptotically Homogeneous Additive Processes.
M. C. K. TweepIe, University of Liverpool, England.

It is well known that Wald’s fundamental identity of sequential analysis, and identities
which are obtainable from it by differentiation, can be proved by considering suitable
martingales. As a variant of this method, some general lemmas on conditional expectations
are proved in the present paper and are applied to obtain identities of these kinds in which
the duration of the process is subject to certain conditions. Heterogeneous univariate or
multivariate additive processes of unbounded duration lead to simple results if the cumu-
lants of the process variable or variables are asymptotically proportional to the duration
when the latter is a non-stochastic variable. Processes with this property are termed asymp-
totically homogeneous. The proof of the generalized fundamental identity, for such proc-
esses, requires a negative exponential bound on the duration law. The proofs of the derived
identities which involve moments up to order r require conditions which increase in strin-
gency as r increases. Martingales (or their equivalents) for derived identities of fairly low
order can be found by a recursion formula or by the evaluation of the determinant of a
leading principal minor of a formally infinite matrix.

23. Two Weak-Order Relations for Distribution Functions (Preliminary report).
W. R. van Zwer, Mathematical Centre, Amsterdam, Netherlands.
(Invited paper)

For the class of continuous c.d.f.’s that are strictly increasing from O to 1 and possess a
finite absolute first moment the following weak ordering may be defined: F (zr) < F*(z) if
F*-1(F (z)) is convex on the interval where 0 < F(z) < 1. Here F*~1(y) denotes the inverse
of F*(z). The gamma-distributions provide an example of this ordering: they follow one
another with decreasing values of the parameter. Let x;.» and x}";,. denote the 7th order
statistic of a sample of size n from F (z) and F*(z) respectively. If F(z) < F*(z) then
F(Ezi.n) < F* (Ez¥.,) for all n and 1 < ¢ £ n. Under a condition concerning differentia-
bility of the c.d.f.’s the converse can be proved if the inequalities hold for sufficiently large
n. For the subclass of symmetrical distributions a different weak ordering may be con-
sidered: F (z) <' F*(z) if F*~1(F (z)) is convex on the interval where # < F(z) < 1. The
symmetrical beta-distributions may serve as an example here. The same inequalities hold
in this case for 20 > n whereas the theorem can be reversed in the same manner and on the
same condition as mentioned above. Inequalities for F (Ez;.,) for specific F (z) can thus be
obtained by comparison with distributions for which this quantity is relatively simple to
calculate.
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(Abstracts of papers presented at the Annual Meeting of the Institute, Minneapolis,
Minnesota, September 7-10, 1962. Additional abstracts appeared in the June
and September issues.)

18. Vectorial Aspects of Analysis of Variance. Howarp W. ALEXANDER, Earlham
College.

The sample space of a random experiment may be regarded as a vector space. If the
experiment is of a type to which analysis of variance may be applied, then it is convenient
to regard the observation vector as being resolved into components corresponding to a
series of orthogonal subspaces of the fundamental vector space. These components are
actually the orthogonal projections of the observation vector on the subspaces. The present
paper relates these concepts to the standard procedures of analysis of variance.

19. A Definition of Subjective Probability. F. J. ANscoMBE and R. J. AUMANN,
Princeton University and Hebrew University, Jerusalem, Israel.

Most statisticians accept the notion of ‘“‘physical’’ probability (chance) measured by
frequencies, and the associated notions of independent random phenomena. For such a
person, say ‘‘you’’, subjective probability can be defined by a slight extension of the utility
theory of von Neumann and Morgenstern. Let @ be a set of basic prizes. If your preferences
between the prizes, and between chance mixtures of the prizes, satisfy the axioms of utility
theory, you have a utility for each prize or chance mixture of prizes. Let {h;} be the exclu-
sive and exhaustive possible outcomes of some particular uncertain trial, such as a horse
race. Let 3C be the set of all lottery tickets, each yielding a stated prize or chance mixture
of prizes from @ for each outcome &; . If your preferences between the members of 3¢, and
between chance mixtures of these, satisfy the axioms of utility theory, you have a utility
for each member of 3C. Two innocuous postulates connecting the two separate systems of
preferences and utilities permit one to deduce the existence and usual properties of the
probabilities that you associate with the outcomes {A;}.

20. Bayes Decision Theory: Insensitivity to Non-Optimal Design. Gorpon R.
ANTELMAN, University of Chicago.

For the two-action problem on the mean of a Normal process of known variance, with
linear terminal utilities, proportional sampling costs, and a Normal prior distribution of
the process mean, Schlaifer conjectured that the ratio of the total expected opportunity
loss for a fixed sample of size n to the total expected opportunity loss for a Bayes optimal
fixed size sample of n, is = 14 (n./n + n/n,) if n, > 0. It is shown that this inequality holds
for this problem, for several closely related two-action problems, and for many estimation
problems with quadratic terminal losses and proportional sampling costs. Another in-
equality of interest which holds for all of the problems considered is that at the optimum
sample size, the expected terminal loss exceeds the expected cost of sampling.

For the two-action problem mentioned above, with Normality of the prior relaxed to
continuity, the asymptotically optimal sample size is derived and it is noted that both
inequalities hold asymptotically. For certain other terminal loss functions and sampling
cost functions, generalizations of the two inequalities are shown to hold asymptotically.

21. Some Significant Theoretical Problems in Reliability. LEo A. ARoian,
Space Technology Laboratories, Redondo Beach, Calif. (Invited)

The following problems in reliability are investigated: (1) Optimum structure and
allocation of reliability to subsystems. (2) Tests to show what reliability has been achieved
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and how this reliability may be improved. The counterpart of these problems in mathe-
matical statistics are the problems of optimizing the probability of success of a system by
proper redundancy or other techniques; the problem of confidence intervals; the problem
of effective truncation of sequential life tests; the problem of simple efficient designs; and
the problems of queueing theory.

Some comments are made on the role of computing machines and Monte Carlo methods
in mathematical statistics.

22. Adding Versus Deleting Predictor Variables in the Analysis of Incompletely
Specified Regression Models. T. A. Bancrorr and HarorLp J. LARsON,
Iowa State University and Stanford Research Institute.

Considering only the magnitude of the two bias functions, a certain assumed range of
tabular values for the nuisance parameters, and a range of values of the significance levels
of the preliminary test of significance, it appears that a decision rule based on sequential
preliminary tests of significance deleting predictor variables of a ‘doubtful’ ranked set is to
be preferred to such a rule which adds predictor variables of the same ‘doubtful’ ranked
set. This appears in contradiction to the ‘practical’ recommendation to use a decision rule
based on testing for possible addition of predictor variables of a doubtful ranked set, since
it provides positive information or terminates at any step beginning with the first.

23. Goodness Criteria for 2-Sample Distribution-Free Tests (Preliminary
report). C. B. BELL, San Diego State College.

Extending Chapman’s (1958) 1-sample results to tests of Ho:F = G vs. Hi:F > G (F, G
continuous and strictly increasing) based on F-sample (X;) and G-sample (Y;), one defines
a test fen. to be (1) of structure (d) if T = ®[F (X1), -+ , F(Ym)]; (2) strongly distribution-
free (SDF) if P(T ¢ A | F, @) depends only on GF~1 ; (3) mono. if T(F, @; (X;), (¥;)) =
TF,G; (Xs), (Y;")) whenever ¥; < Y7 forallj; (4) P.O. if its power fen. 8 (T'; -) satisfies
B(T; F,H) = 8(T; F, G) for H = @G. All four conditions are satisfied by several 2-sample
tests; e.g., {, Smirnov, Cramér-von Mises, Wilcoxon, Fisher-Yates, Van der Waerden,
Epstein-Rosenbaum and Siegel-Tukey. One proves

Theorem 1. (a) (d) implies SDF; SDF implies 8(T'; F, G) = 8(T; U, GF~'), where U is
the uniform epf on (0, 1); (b) mono. and (d) imply P.O.; P.O. implies unbiased.

Theorem 2. If T is a SDF test fen., then for alternatives @ such that sup(F — @) = A,
power bounds are (a) inf 8 = infy, B[T; U, G(uo;-)]; and sup 8 = g(T; U, @), where G
and G are the Birnbaum (1953) alternatives such that G(uo ; 4) = u for 0 £ w < uo and
o+ ASus1l;=uforu <u <uo+ A;and Gu) =0for0 = u <A;u —AforA =
u < 1. Further, for 2-sample SDF tests, power bounds are being computed; consistency
and admissibility are being studied.

24. On an Analog of Regression Analysis. P. K. BHATTACHARYA, University of
North Carolina. (By title)

(X, Y) has a bivariate distribution with0 £ X = 1.0 < p < 1is a specified number and
¢p(z) is the p-quantile of the conditional distribution of Y given X = z. (X;, Y3), ---,
(X#n , Yin) are independent observations on (X, Y). Let X1y < -+ < X () be the ordered

values of X1, - , X, Ywy=Y; if Xiy=X;. For r=1,--- /k and s =1,--- ,n,
X = Xrs, YeTones = Yrs, Yrqy < -+ < Yyny are the ordered valuesof Y , ---,
Yin. Let Iy = [0, X1n), Itr = Xrctyny Xenly 7 =2, -« kb — 1, Itk = (X&1, n, 1] and
fae@) = Yooy if €Il , 7 =1, --- , k. Under some regularity conditions, fnr — ¢, [unif]

in probability as k — « if n = kY ,v > 0, and fnr — ¢p [unif] a.s. as k — « if n = k. To
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test the hypothesis Ho: ¢, = u, a specified function, against Hy: ¢, 5 u, we make the trans-
formation, U,s = 1if Y,, < u(X,.) and 0 otherwise. Let U, = Domy Uye/n,r = 1, -+ , k
and 7u; = Supr_y, .. 02 |U, — p|/[p( — p)It. The limit distribution of 7, (suitably stand-
ardized) as k¥ — « is obtained when n 2 k7, > 0, and the test which rejects Hy, when
Tak 18 “‘too large’’ (making use of the above distribution) is shown to be consistent. Exten-
sions have been made to the cases when X is vector-valued and/or when several quantiles
are studied simultaneously.

25. A Sequential Test for the Two-Sample Problem. SAuL BLUMENTHAL,
University of Minnesota. (By title)

Let X,, X2, ---,and Yy, Y., ---, represent two sequences of independent random
variables. Let each X; have ¢df F(z) and each Y; have cdf G(x) where F (z) and G (x) are
absolutely continuous. The problem is to test Ho:F (x) = G(z) vs. Hi:F (z) = G(z). We
propose a sequential test of the problem which is analogous to the test described by Weiss
for the ‘““goodness of fit”’ problem (Ann. Math. Statist. 32 (1961) 838-845). If X, --- , Xn 1
and Y1, .-+, Yem4 (r an integer =1) have been observed, a region S, of the real line
[Sn=8X1, -, Xn, Y1, -+, Y,a)] is formed and the random variable Z, is defined as
unity if Xn»,1 is in S, and zero otherwise. The decisions to accept Hy , reject Hy or take
another observation are the same that would be made by the Wald Sequential Probability
Ratio Test if Z,, --- , Z, were independent, identically distributed random variables and
the problem was to test Hy:P(Z = 1) = 4 vs. Hi:P(Z = 1) = p > }. Weshow that when the
error probabilities « and 8 of the WSPRT are small, the power curve of the proposed test
is similar to that of the WSPRT and the average sample size of this test can be represented
by the well known ASN approximations for the WSPRT.

26. A Test of the Two-Sample Problem with Nuisance Location and Scale
Parameters, and an Estimate of the Scale Parameter. SAUL BLUMENTHAL,
University of Minnesota.

Two related problems are considered. Given 2n independent observations, the first »
having common c.d.f. F(z) and the second n common c¢.d.f. G(z), let X; = X, --- = X,
represent the ordered values of the first n, and Y; £ -+ £ Y, , the ordered values of the
second n. Define Z; a8 (X;41 — Xi)/(Yipa — Yi) G =1, -+, n — 1). Define S.(p, h) =
u(p, h(n)) > Z?, (0 < p < 1) where 4 runs from h; (n) to hs(n) and where u(p, h(n)) is a
normalizing constant dependent on p and on the limits of summation k;(n), h2(n). Also,
define S»(p, k) = u(p, k(n)) >~ (1/Z;)? . The first problem is that of testing the hypothesis
Hy:F(x) = G(Az + B) where A(> 0), and B (real) are unspecified constants, against the
alternative H;:F (z) ¢ G (Az + B). This is the two-sample problem with nuisance location
and scale parameters, and can be regarded as a generalization of the usual two-sample
problem. We show that the test which rejects Ho when the product S.(p, h) Sn(p, h) is
“too large’’ is consistent against pairs of ¢.d.f.’s F (z) and G (x) satisfying certain restric-
tions. The type of restriction needed depends on the summation limits ky(n), he(n). The
second problem is estimation of the scale factor A assuming that F (z) = G(Az+ B), A > 0,
B real. We show that S, (p, k) is a consistent estimator of 4 under the restrictions on F (z)
mentioned above.

27. Maximum Likelihood Estimates of Restricted Means of Discrete and Con-
tinuous Normal Processes (Preliminary report). H. D. BRunk, University
of California, Riverside.

Let X, , --- , X, have a multivariate joint normal distribution withmean 6 = 6, , --- , 6
and covariance matrix o2T', where I' is known and ¢2 known or unknown. For the case of
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independent X, , +-- , X, , the maximum likelihood estimates of 8 subject to order restric-
tions on @ , -+ , 0, were described by van Eeden (Proc. Koninkl. Nederl. Akad. van Wet.-
Amsterdam, Ser. A, 60 = Indag. Math. 19 (1957) 128-136, 202-211), by Bartholomew (Bzo-
metrika, 46 (1959) 37-48); and (for sampling from populations of equal variance) by Brunk
(Ann. Math. Statist. 36 (1955) 607-616). They are described here for arbitrary positive
definite T'. This estimation problem is an instance of the general problem discussed: that
of minimizing S* (X — 6)B(X — 0) du where (2, @, 1) is a measure space, X is a given func-
tion in Ly = Ly (®, @, 1), B is a positive definite operator on L. , and 6 ranges over the class
of functions in L, measurable with respect to a given o-sublattice of @. Another instance is
the problem of maximum likelihood estimation of the mean function 6 (t) of a normal process
X (t) with known covariance function, subject to conditions requiring that 6(¢) be meas-
urable with respect to a given o-lattice of square-integrable functions.

28. Subsample Order Statistics Estimates. BENjaMIN BUCHBINDER, General
Electric Missile and Space Division, Valley Forge, Penna. (By title)

A sample of mn = N observations is divided into m subsamples of size n. Each group of
n observations is then ordered. Subsample order statistics estimates of the mean and
standard deviation (for normal and rectangular distributions) are developed, and the
efficiency of each estimate is determined relative to the corresponding single sample order
estimate. The computational effort required for each estimate is also determined. Whereas
single sample estimates are in general more efficient than those based on subsamples, for
very large samples the variance of either type of estimate is extremely small, and the
computational savings effected by the use of order estimates based on subsamples is the
important consideration.

Confidence intervals on the population median based on subsample order statistics were
constructed, and their lengths compared with intervals based on single ordered samples.
Although intervals based on single samples are shorter, for large N and best choice of m,
considerable computational savings may be realized by the use of subsampling.

29. Asymptotic Expansion for a Class of Distribution Functions. K. C. CHANDa,
Washington State University.

Investigations have been made in the past by several authors on the possibility of ex-
tending the content of the classical central limit theorem when the basic random variables
are not mutually independent. Mention may be made in this connection of the work done
by Hoefiding and Robbins (Duke Math. J. 16 (1948) 773-780), Diananda (Proc. Cambridge
Philos. Soc. 49 (1953) 239-246) and Walker (Proc. Cambridge Philos. Soc. 60 (1954) 60-64).
However, no attempt has been made so far to investigate whether the type of asymptotic
expansions as discussed by Cramér (Random Variables and Probability Distributions (1937),
Cambridge University Press), Berry (Trans. Amer. Math. Soc. 49 (1941) 122-136), Psu
(Ann. Math. Statist. 16 (1945) 1-29) and others for the distributions of means of independent
random variables could as well be extended to apply to situations where the random vari-
ables are not independent. An attempt has been made in this paper to investigate this
problem somewhat systematically. The main results are the following: (i) Let X1, --- X,
be a sequence of stationary m-dependent random variables with E(X:) = 0. If Fn(z) de-
notes the distribution function of Y .ruX./s, where s% = V(> taX:) and F(z) is
the standardized normal distribution function, then under usual regularity conditions
SUP—w < v < o |Fn(x) — F(z)| £ M/nt where M is a finite positive constant. (ii) If {X ¢
is a linear process with E(X;) = 0, E |X.|r < « for somer 2 3,then Sup_, < z < |Fn(z) —
F(z)| S M/nc-202,



ABSTRACTS 1489

30. The Choice of a Decision Procedure for Finite Decision Problems Under
Complete Ignorance. J. D. CeurcH and BERNARD HaRRIs, University of
Nebraska.

Consider the triplet (S, D, u) where 8 = {81, 8z, -+, sa} i8 a set of n states of Nature,
D ={dy,ds, -+, dn} i8 & set of m strategies available to the statistician, and u is a real
valued function on D X 8 such that u(d: , s;) is the loss (negative utility) incurred by the
statistician upon choosing d; when Nature is in state s; . We are concerned with determining
a decision procedure for choosing a mixed strategy ¢ ¢ ® where ® is the m — 1 dimensional
probability simplex over D. Let = be the n — 1 dimensional probability simplex over S.
A mixed strategy for Nature is an element £ ¢ E. The statistician may have the information
that £ £ 5, C E. If =, = = the statisticianis said to bein complete ignorance. A set of desirable
properties is developed for decision procedures for use in the above decision problem under
the hypothesis of complete ignorance. It is shown that there exists a family of decision
procedures, each of which satisfies all required properties. An algorithm for determining
optimal strategies is given. It is established that two very general classes of decision proce-
dures fail to satisfy at least one of the required properties. These classes contain the mini-
max and minimax regret criteria, and Laplace’s criterion as special cases.

31. Asymptotic Independence of (d)-Structured Order Statistics and (d)-
Structured Statistics of Kolmogoroff-Smirnoff Type (Preliminary report).
H. T. Davip, Iowa State University.

Consider the function & associated with a statistic Sg of structure (d), as defined by
Z. W. Birnbaum (Ann. Math. Statist. 24 (1953) 1-8). Let 8 be the order in n of
sup|®(®1, -+ ,%n) — ®(21, - , 2a)|, where the sup is taken over the region 0 < z;, z; <
1, |z; — 2;| £ K/n. Let @ be such that neSeg (X1, -+ , Xa), (X1, -+ , X») a random sample
from F, possesses a continuous limit ¢.d.f. ¢ (s). Then, if « 4+ 8 < 0, Sr is asymptotically
independent of the (d)-structured order statistic F (X ™*®), in the sense that Pr{neSp <
8, n[l — F(X»®)] < t} tends to the product of the two respective asymptotic c.d.f.’s.
All the usual statistics of structure (d) satisfy the above condition; for example, in the
case of the Kolmogoroff-Smirnoff statistic itself, « = 4, and 8 = —1. The proof of asymptotic
independence utilizes a multivariate probability transformation given by Murray Rosen-
blatt (Ann. Math. Statist. 23 (1952) 470-472).

32. Estimation of Multiple Contrasts Using a Multivariate ¢-Distribution.
Ouive JEAN DunN and FrRANK J. MAssEY, JR., University of California,
Los Angeles.

Simultaneous confidence intervals for the means of normally distributed variates involve
the evaluation, over a hypercube centered at the origin, of a multivariate analogue of the
Student-t distribution. This paper summarizes some tables which for the special case when
the correlations among the variates are positive and equal, and compares the lengths of
the confidence intervals obtained by use of these new tables with conservative sets of
intervals which use (a) tables of the studentized maximum modulus and (b) tables of the
univariate student-distribution. The number of contrasts considered is from one to twenty,
simultaneous confidence levels from .50 to .999 are considered.

33. Poisson Limits of Bivariate Run Distributions (Preliminary report). CAROL
B. Epwarps and H. T. Davip, Iowa State University.

Consider 7 trials, each with probability of success p(n). Let RB;(n), ¢ = 1, 2, be a run of
a;(n) successes, o1 (n) # a2(n). Let N;(n) be the number of runs R;(n). Then, if E[N;(n)] —
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K;:, K; > 0, Ni(n) and N:(n) are independent Poisson asymptotically, with parameters
respectively K; and K, , this in contrast to the usual normal limit, which exhibits correla-
tion. The correlated Poisson appears in the case of the joint distribution of the number
M;(n) of configurations C;(n), ¢ = 1, 2, where C;(n) is defined as a succession of oy (n)
successes immediately preceded by a succession of 8;(n) failures. Let a;(n), 8:(n) = 1,
and @ = max a;(n), B = maxB;(n) = 2. Also let @ = min a;(n), 8 = min 8;(n). If E[M:(n)]—
K;, K; > 0, and if Iim,w,[p&“l‘qﬁ_g] =C,0 = C £ 1, then M,(n) and Ms(n) tend in
distribution to the bivariate Poisson with correlation coefficient Ct.

A useful tool has been the following bivariate extension of a formula of Fréchet. Con-
sider 2n events Ay, -+, An, B1, -+, B, . Let (I4, Is) count the materializations of
A’s and B’s. Then the mixed factorial moment of (I4,Ip) of order (v ,r:) equals

Py, -+, As, , Bjy, -+, B;,.), where the summation extends over all{ ™ ) ( " ) dis-
1 2 n 4]

tinct subscript choices.

34. Basic Ideas and Methodology Underlying the Stochastic Approach to Reli-
ability and Life Testing. BENsaMIN EpsTEIN, Palo Alto, Calif. (Invited)

This paper summarizes some of the basic methodology developed during the past decade
for the design and analysis of life tests.

35. The N-Response Problem. Joun Leroy Forks and CHARLES E. ANTLE,
Oklahoma State University and Missouri School of Mines and Metal-

lurgy.

The problem of experimentally determining a point z so that a single response depending
upon z will be maximized is extended to include the situation in which there are N' responses
of interest. An efficient point is defined to be any point 2° such that the responses at 20 are
not dominated by those at some other «. It is shown that under fairly weak conditions on
the response functions the set of all efficient points possesses the further property that
given any point z* not in the set, there is a member of the set whose responses dominate
those at 2 . The set of all efficient points is then called the complete set of efficient points.
Means for identifying the members of this set are derived, and they are especially con-
venient to apply when the responses are quadratic functions. Consideration is also given
to the effect of restricting the domain for z.

36. Multivariate Analysis of Variance for a Special Covariance Case. SEYMOUR
GEIssER, National Institutes of Health.

In general a & X k covariance matrix of a multivariate normal distribution is specified
by k (k + 1) /2 different parameters. In certain instances the number of different parameters
can be considerably reduced. We will consider here multivariate hypothesis testing for a
special reduced parameter covariance situation that we shall call the uniform case of order
m, i.e., (u)m . Certain applications of this case to a general serial correlation model will be
given when k = 3, 4, 5 for testing the null hypothesis as in the analysis of variances that
the k means are all equal. This is in a sense analogous to the mixed model analysis of vari-
ance situation where the errors are not independent but are serially related.

37. Minimax Properties of Hotelling’s and Certain Other Invariant Tests.
N. C. Girr and J. KieFgR, Cornell University. (By title)

Many well-known and commonly used best invariant tests, especially ones arising in
multivariate analysis (e.g., Hotelling’s test 72 , the test based on the multiple correlation
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coefficient R?, etc.), are known to be best invariant; however, due to the fact that the
Hunt-Stein theorem does not hold for the full linear group, they have not been known to
possess any minimax properties. In fact, N. C. Giri has shown (Abstract, Ann. Math.
Statist. 1962) that Hotelling’s test does not maximize the minimum power 84 (§) among all
tests ¢ of size @ > 0, on the contour u’E—'u = & > 0, where x and ¥ are the unknown mean
vector and covariance matrix in the usual normal model and é is fixed. In the present paper
a general theorem is proved which nevertheless yields local (as § — 0) and asymptotic (as
8 — 0 ) minimax results for many of these tests. For example, in Hotelling’s problem it is
shown that,forevery a > 0, lim; | o[maxs84(8) — «]/[Br2(8) — «] =1 and lims~{log ming[l
— B4 (8)]}/log [1 — B72(5)] = 1.The first of these yields a result which can be expressed in
terms of D-optimality (local maximization of Gaussian curvature of the power function),
following Isaacson, Kiefer, Lehmann. The latter may be compared with Stein’s proof of
the admissibility of T'2, which yields 872(8) — B,(8) > 0 for § > C(¢) (depending on ¢)
for every ¢ = T2.

38. On Median Unbiased Estimation from Discrete Data. W. J. HarL, Uni-
versity of North Carolina.

A possible interpretation of the method of median unbiased estimation is that the stat-
istician takes a value for his estimate such that, if asked whether the true parameter value
were larger or smaller than the estimated value, he would be content to flip a coin. Although
median unbiased estimators are not available from discrete probability models without
randomization, estimators having the above property (interpreted in the sense of classical
statistical inference) are frequently available; we call them pseudo median unbiased. This
method shares with that of median unbiasedness, but not ordinary unbiasedness, the
attractive property that an estimator of a monotone function of a parameter is the function
of the estimator of the parameter. Methods and tables for obtaining the estimates are given
for binomial, Poisson and negative binomial models; the estimates coincide with ran-
domized median unbiased estimators with the added random number replaced by one-half.
The method is illustrated with some biological examples in which neither ordinary un-
biasedness nor true median unbiasedness is attainable (with a non-randomized estimator).

39. Percentage Points of the Ratio of Two Ranges and Power of the Associated
Test. H. Leon HARTER, Wright-Patterson Air Force Base. (Invited)

In testing the hypothesis that the variance of two populations are equal, a test based on
the ratio F’ of the ranges of two samples, one from each population, is simpler than the
conventional F test based on the ratio of the sample variance, and it is only slightly less
powerful. In order to apply such a test, more extensive and more accurate tables of the
percentage points of the ratio of the ranges of two samples from a normal population are
needed, and the author has endeavored in this paper to supply them. This required the
computation of auxiliary tables of the probability density function of the range and both
the probability density function and the cumulative distribution function of the ratio of
two ranges. Next came the computation of the table of percentage points of the ratio of
two ranges. Finally, a table of the power of the F’ and F tests was computed. This paper
contains the tables of percentage points and power, together with a description of the
method of computation and an example of their use.

40. Tables of Non-Central Chi-Square. GEORGE E. Haynam and F. C. LEoNE,
Case Institute of Technology.

Three tables of the cumulative non-central chi-square have been computed. These
cover a range of values of non-centrality parameter from 0 to 34 and of degrees of freedom
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from 1 to 100. Further, the power of the non-central chi-square distribution has been com-
puted for selected values of alpha ranging from 0.001 to 0.1. The construction and use of
these tables is discussed.

41. Controlling of Non-Recurrent Lattice Random Walks. KArL F. HINDERER,
University of California and Technische Hochschule, Stuttgart, Germany.

Let {X,} be a sequence of independent, identically distributed, two-dimensional random
vectors with integer-valued components. We assume that X; has a non-degenerate dis-
tribution with E|X;|? < . It is well known that the planar random walk {S,}, S, = > X,
has no recurrent states if £X; # 0. In that case one may ask for the existence of a sequence
of two-dimensional constant vectors ¢, with integer components such that the ‘controlled’
random walk V = {V,}, V, = Z{' (X: + ¢i), possesses recurrent states. Let cn, (nr T )
be the non-vanishing of the c. . Denote by 271D (a, b, c) the area of the triangle formed
by any points a,b,c of the plane. Let M be the set of possible values of X; and
put g = gr.c.d. {D(a, b,0);a,be M}, h = gr.cd. {D(a, b, c);a,b,c, € M}.

Theorem 1. If V has a recurrent state and if nx41/nx— 1 (k— «), then limy inf |[EX; +
ng' D kea;| = 0.

Theorem 2. All points of the planar lattice are recurrent states of V if the following
conditions are satisfied: (i) supx |nmEX, + ch,.'.l < w; (ii) g = 1; (iil) supx(ne+1 — ni) <
o ; (iv) there exists an integer m > 0 such that for s = 1, 2, --- max{(nxs1 — nx); k = s,
s+ 1,---,s8+ m} = h. Analogous results hold for linear random walks. The proof of
Theorem 1 uses the strong law of large numbers. The proof of Theorem 2 is based on a result
of Chung and Fuchs and a number-theoretic analysis of the set M.

42. Combinatorial Results in Multi-Dimensional Fluctuation Theory. CHARLES
HosBy and RonarLp Pyke, University of Washington.

Let {X.::t = 0} be a multi-dimensional stochastic process which has symmetric and
exchangeable increments. Let K (X;) denote the sphere with the line joining X, and the
origin as a diameter. Assuming that the process is measurable and is one for which the
rationals form a separating sequence, define Jr , for T > 0, to be the Lebesgue measure of
the set {te (0, T]; X e K(Xr)} and define Ly = inf{te (0, T]; supogus<t |Xu — 3X7p| =
supo<u<r |Xu — 3X7|}. Theorem. If for each t < T, X, does not fall on the boundary of
K (Xr) with probability 1, then P[Jr < z]= P[Lr < z] = 2/T for0 < z < T. The proof
of this theorem is based on a simple combinatorial result for the set of partial sums of a
finite number of multi-dimensional vectors.

43. Some Properties of Tukey’s Test for Non-Additivity. D. HogsEN, R. S.
PinkuaM and M. B. Wik, Rutgers—The State University.

The power and sensitivity properties of Tukey’s test for non-additivity in a r X ¢
classification (Biometrics 6, (1949) 232-42) are studied under an alternative multiplicative
model. Assuming known error variance, a canonical form of the standardized test statistic
is shown to be T = (X + 7Q.Q.)? where X, Q, and Q. are statistically independent, X is
standard normal and each @ is related to the non-central ¢. Properties of @, including the
moments, have been obtained previously by Hogben et al. (to be published in Ann. Math.
Statist.). The distribution of T is approximated by that of a non-central x2, the approxima-
tion being exact for a 2 X 2 and asymptotically. Power results for several circumstances,
obtained by using a scaled x?2, which compare satisfactorily with Monte-Carlo results and a
Cornish-Fisher approximation, show that the power of Tukey’s test compares favorably
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with that of a “best’’ test. The test was also evaluated by means of the distribution of the
significance level as characterized, partially, by sensitivity and stability, defined respec-
tively as the mean and variance of the significance level. The latter properties are of course
independent of a pre-selected ‘“‘size’’ of test. Also, robustness to non-normality under null
conditions is studied with respect to a specific class of alternative distributions.

44. Tterated Tests of the Equality of Several Distributions. RoerT V. Hogg,
University of Iowa.

Two important examples of this iterated procedure are given. The first one describes the
test of the equality of the means of m independent normal distribution having common,
but unknown, variance. The test is based on a sequence of Student ¢ statistics: the first ¢
tests the equality of the first two means, the second ¢ tests the equality of the first three
means (given that the first two means are equal), and so on. It is proved that these ¢ statis-
tics are mutually independent if the null hypothesis is true; hence it is easy to determine the
significance level of this procedure. In addition, it is demonstrated that certain of these ¢
statistics are mutually independent even though the null hypothesis is false; accordingly,
in these cases, the probability of rejecting the null hypothesis, for a correct reason, is rela-
tively simple to compute. Moreover, a rejection by this iterated scheme provides some
reason why all m means are not equal. In the second example, the test of the equality of m
distributions of the continuous type is based on a sequence of two-sample distribution-free
statistics, such as the statistics proposed by Smirnov and Wilcoxon. If the distributions are
equal, these statistics are proved to be mutually independent. In addition, in connection
with this second example, another proof of an independence theorem of I. R. Savage is pre-
sented.

45. Invariant Decompositions of Sums of Squares and Linear Sample Spaces.
Aran T. James, Yale University.

Let z be a column vector and @ a transitive group of permutations of its n components
z; . A solution is given of the following mathematical problem. What are the possible de-
compositions of the sum of the squares of the x; into quadratic forms z’Ez invariant under
the permutations, with idempotent matrices E; , ¢’z = 2’E1z + z'Esz # --- , and how can
one calculate the E; ? Applications: (1) The solution is used in calculating zonal poly-
nomsals of latent roots in terms of which many multivariate distributions may be expanded:
(2) If the z; are regression coefficients arising from a symmetrical experimental design, the
solution might be used to simplify the normal equations and invert a patterned matrix:
(8) If «; is the yield of the ith plot of an experiment whose basic design is not affected by
permutations of the plots belonging to G, then a subspace, specified by a linear hypothesis
for the vector of means, will usually be invariant, i.e., it will be a subspace upon which
one of the above E; projects. Hence one can characterize all possible invariant linear hy-
potheses.

46. Biological Examples of Small Expected Frequencies and Chi-Squared Test.
S. K. Karri and A. N. Sastri, Florida State University and Duke Uni-
versity.

C. A. G. Nass (Biometrika 1959) has discussed the analysis of contingency tables with
small expected frequencies using the chi-squared test. The method consists of evaluating
two constants ¢ and » such that the first two moments of cx? are the same as those of a chi-
squared distribution with » degrees of freedom. The aim of this paper is to see how much
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improvement this correction makes in biological problems in which the total frequencies
are small—of the order of ten, distributed over a number of cells—of the order of five.
Data from 21 experiments were gathered and the results of the analyses using the ordinary
chi-squared and the refinement were tabulated. It has been of interest to see that the cor-
rection increases (or decreases) the degrees of freedom and the value of the chi-squared
simultaneously, thereby affecting the level of significance by a considerably smaller amount.

47. Asymptotically Optimum Sequential Procedures. I. Inference. J. KIEFER
and J. Sacks, Cornell University and Northwestern University. (By
title)

Considerations of Schwarz (1962) are extended by treating k-decision problems with or
without indifference regions and with infinitely many possible states of nature, which are
no longer assumed to be Koopman-Darmois (so that the shapes of regions are less explicit).
As the cost ¢ per observation approaches zero, an asymptotic lower bound on the risk is
again obtained, and for any a priori distribution F we obtain a family {4.} whose risk ap-
proaches this bound uniformly on the support S of F, and which is thus asymptotically
Bayes relative to all G with support S. Such k-decision sequential problems are seen to be
solvable in terms of simultaneous sequential tests. For example, in testing N (—1,1) against
N (1,1) with indifferent state N (0,1), Schwarz’s pentagonal bound results from three simul-
taneous SPRT’s. For this problem a truncated (at 2|log ¢|) SPRT of N(—1,1) against
N(1,1) is also optimum, but no triangular bounds are. (Donnelly (1957) and Anderson
(1960) studied the properties of these last two.) The former two, but not the latter, asymp-
totically minimize the maximum expected sample size as specified bounds on error prob-
abilities approach zero.

48. Asymptotically Optimum Sequential Procedures. II. Designs. J. KIErFEr
and J. Sacks, Cornell University and Northwestern University. (By
title)

Considerations of Chernoff (1959), Albert (1961), and Bessler (unpublished) regarding
sequential choice among infinitely many designs are extended to the setting of the previous
abstract. The same form of conclusion regarding a family {5} is obtained, strengthening
previous results. Rather than to use procedures whose choice of design is based on maxi-
mum likelihood estimates at each stage as in the above references, the present development
uses an extension of an idea first implemented by Wald (1951) in certain simpler estimation
settings. A preliminary sample of size o(|log c|) but 1/0(1) is taken with designs chosen at
the outset, and is used to ‘“‘guess the true state’” and thus to choose, once and for all, the de-
signs to be used in the subsequent sequential procedure. (In Wald’s case the choice was of a
second sample size in a two-stage procedure.) Thus, the choice of designs is made easier in
practice, and the theoretical proofs of optimality are largely referred back to the non-
design considerations of the previous abstract.

49. Linear Hypotheses With Intraclass Correlation. H. S. Konwun, Yale Uni-
versity.

Fori=1,---,n>k+121let yi = a + D BpZpi + us , where the k linearly inde-
pendent vectors z, are nonstochastic with zero sum of components, and the u; have a joint
nonsingular distribution ® with zero means, finite and identical variances o2 and identical
correlations p. (The Greek letters denote unknowns.) (1) When & is multinormal the like-
lihood does not possess a maximum. Of course, for a given p it does; denote the maximum
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likelihood estimates of a and the 8, when it is given that p = 0 by %, 8 3.(2) o and By are
the minimum variance unbiased linear estimates of « and 8, no matter what is p. (3) Con-
fidence intervals for sets of linear combinations of « and the 8, based on ® multinormal and
o = 0 remain valid for the case in which p is unspecified when the set does not effectively
depend on « as in the usual analysis of variance cases [Halperin (1951) Ann. Math. Statist.
22, 573-580], but otherwise lose their validity as in the case of estimation of « [Walsh (1947),
Ann. Math. Statist. 18, 88-96] or of & + D _Byepo for given zo . Sometimes approximations
are feasible.

50. Some Remarks on Negative Estimates of Variance in Unequal Probability
Sampling. J. C. Koop, North Carolina State College. (By title)

In sampling a finite universe of N units with unequal probabilities and without replace-
ment negative estimates of variance have been found for almost all estimators. The sign of
an estimator of variance depends on the discriminant of the quadratic form in the underly-
ing variates, and for the most part there are difficulties in arriving at meaningful interpreta-
tions for each specific case because of the complexity of the probability functions which are
enmeshed in the expressions for these estimators. However, for an unbiased estimator of
the population total T = >N . z;, belonging to one of the seven possible classes (Koop,
J. C. (1957). Institute of Statistics, Mimeo Series No. 296), and given by T’ = > ies i/

N -1 . . . .
( 1 ) P, , where s is a sample of n units selected without replacement with total prob-
n —
ability P, (in regard to which >+ P, = 1), it can be shown that a simple unbiased esimator
of its variance :

V(1) = G
(N—I)Pa
1 N -1

n—1 n—1

N
is always positive whenever P, < 1 / (n) . Thus all samples with high probabilities of

. N . . .
appearing (in the sense of being greater than 1 / (n )) will have negative estimates of

variance even if the P, are the theoretical optimum probabilities which make V (T’) = 0.

51. Multiple Comparison Tests in Multi-Response Experiments. P. R.
KrisaNAIAH, Univac, Blue Bell, Penna.

Let the rows of X:n X p be nindependent random vectors having a p variate normal dis-
tribution with a common unknown covariance matrix ¥ and means given by E(X) = Mo,
where M:n X m is known and 6:m X p is unknown. In the present paper, a test based on
“Step-Down Procedure’’ is proposed for simultaneous testing of the hypotheses H;:1:6 = Q,
(=12 -+, K) whereli = (la, -+, lim) i8 8 row vector of known elements subject
to the restriction Z;"_, I;; = 0. This test can be applied when the variates can be arranged
in descending order of importance. It is shown that the lengths of the confidence intervals
associated with the above test are shorter than the lengths of the corresponding confidence
intervals connected with J. Roy’s test (these Annals, 29 1177-1187). In the univariate case,
the method considered in the present paper results in narrower confidence intervals than
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Scheffé’s method. Another test is proposed to test the hypotheses Hj , --- , Hg simultane-
ously when these hypotheses can be also arranged in descending order of importance.

52. Complete Class Theorems for Unbiased Estimation. EveceENe Laska, IBM
Corporation, Newark, N. J.

Let f(z, 6) be a given density function continuous in 6 where 6 ¢ @, a compact subset
of the real line. Let D be the class of randomized unbiased estimators, 5(x), of 8. For squared
error loss function, the class of Bayes solutions is shown to be essentially complete relative
to . If @ is convex then every randomized &(z) is inadmissible since E3(z) has smaller
risk. A theorem of Stein concerning locally best unbiased estimators is generalized to pro-
vide conditions for uniqueness (and therefore admissibility) of Bayes solutions and func-
tional equations for their determination. If the uniqueness condition is satisfied, then the
above class is a complete class of admissible unbiased estimators.

53. The Expected Intersection of a Random Sphere and a Fixed Sphere. A. G.
Laurent, Wayne State University.

Let the center of a n dimensional sphere W with radius R follow a spherical normal dis-
tribution centered at the origin with standard deviation ¢ = 1;let T be a n dimensional
sphere with radius r, whose fixed center is at distance D from the origin. Then the expected
value of W T is EIW N\ T] = (2xRr/D)™2 D [§ J sz (Ru)J a2 (rw) T nsz—1 (Du)u="* exp —
(u?/2) du, where Ji(-) denotes the Bessel function of order K of first kind. The paper gives
also a new formula for the non central chi-square distribution. These results generalize
those obtained by E. H. Smith and D. E. Stone for n = 2. They have direct applica-
tions to bombing problems.

54. Some Tests for Gamma Parameters With an Application to a Reliability
Problem. M. M. LENTNER and R. J. BUEHLER, Iowa State University.

If 2z, and 2; are gamma variates with scale parameters 6, and 6, , then a UMPU similar
region test can be found for the hypothesis v = vy, where y = ¢1/6; + ¢2/6; (Lehmann and
Scheffe). Appropriate conditional distributions are given for (c:, ¢;) = (1,1) and (1, —1).
Application: A series system has two dissimilar components whose expected lives are 6;
and 6; . When component failures are exponentially distributed, so are system failures, the
mean being § = (6" + 6;")~1. From separate estimates of 6, and 6, one can obtain confi-
dence limits for 6.

55. Exact Power of Some Tests Based on a Generalization of Mood’s Statistics.
Frep C. LEoNE, I. M. CHAKRAVARTI and G. E. Havynam, Case Institute
of Technology.

The exact power of Mood’s test based on the median of “‘c’’ combined samples is de-
veloped. The power function for the median test is obtained for alternatives of translation
of the exponential distribution as well as alternatives of change in location and scale of the

rectangular distribution. These powers are compared with the two-sample case developed
earlier. Tables of the power for selected values of a sample size are presented.

56. A Theoretical Model for Achieving Selective Biological Effects. JamEs B.
MacQuEeeN, University of California, Los Angeles.

A biological system S is composed of k¥ component systems S; , Sz, --- Si . Embedded
in these systems is a system S, which is to be destroyed without destroying S. To accom-
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plish this there is available a treatment space 2. When a multiple treatment ¢, an additive
measure on 2, is used, the response of the ith system,: = 0,1, --- k, is given by [ g: de,
where g; is the sensitivity spectrum of the sth system. The systems have critical response
levels ao, a1, -+- ai such that the ith system is destroyed if and only if [ gide > a:.
The system S can survive as a whole if all of the elements of at least one of certain essential
subsets Vi, Va2, -++ Vy of the set {Si, Sz, --+ Si} are not destroyed. Whether or not
there is a multiple treatment which selectively destroys S, can be determined by solving
the M problems: Maximize [ go dp subject to the constraints [ g:; dp < a;; where 7,
ranges over the 7 for which S; ¢ V; ,8 = 1,2, --- M. If one of these problems gives an op-
timal treatment ¢* for which [ go do* > a0, a successful multiple treatment is possible.
The maximization problems are easily handled as linear programming problems. Since
typically such problems are approached by means of a pure treatment; i.e., a point or very
small region in £, and this has certain advantages, it is desirable to investigate conditions
under which only multiple treatments are effective. Some results on this problem are pre-
sented and a general type of critical experiment is suggested.

57. A Generalized Branching Process. PETER E. NEY, Cornell University.

The usual age dependent branching process (see e.g., R. Bellman and T. E. Harris, Ann’
of Math., 66, No. 2; N. Levinson, Illinois J. Math., 4, No. 1) is generalized by associating a
random valued characteristic with each particle. (In a cascade process the characteristic
would be the energy of the particle.) Let Z (¢) be the sum of characteristics at time ¢, and
P(z, t | 20) be the d.f. of Z (¢), given that the initial particle had characteristic zo . The defi-
nition of the process suggests that P (z, ¢ | z0) satisfies an integral equation (I.E.). Starting
formally with the I.E. given, it is shown that it has a solution which is a d.f. and is unique
among bounded solutions. Let pm (t | 20) = [§ 2P (dz, t | 20). Conditions are given for the
existence of s , and it is shown to satisfy a renewal I.E. Thence its asymptotic behavior
for large t is determined. It is shown that under certain conditions the r.v. Z (t)/u(t | 20)
converges in mean square to a r.v. w(t | z0). In a special case w(t) is shown to possess a
density function.

58. On Reliability Inference (Preliminary report). Epwarp L. PucH, System
Development Corporation, Santa Monica, Calif.

Let F(t) be the c.p.f. of the time to failure of a given system. This paper considers the
problem of making a statistical inference concerning the reliability R = 1 — F (¢») (where
tm denotes “mission time’’) from the point of view of (i) no assumption concerning F (t)
except continuity, (ii) assuming F () is Weibull, and (iii) assuming F (¢) is exponential (a
special case of the Weibull). In each case a fiducial distribution ®(R; z) of the reliability,
depending on a statistic z, is derived and is consistent with the theory of confidence inter-
vals. In case (i), ®(R; z) is distribution-free (independent of F(¢)) whereas in cases (ii)
and (iii) it depends on F (t) as well as on the statistic z. This raises the question of the defi-
nition of a “best’’ fiducial distribution for a given F (¢), and such a definition is offered. In
case (iii), fiducial distributions are derived from two statistics: the rth order statistie, ¢, ,
and the sample mean, §. It is shown that the random variable | o Rd®(R;9) is a sufficient
and consistent estimate for B with less bias than the maximum likelihood estimate.

59. On Discriminating Between Two Gamma Processes-I. A. S. QUREIsHI and
K. J. NaBaviaN, The Service Bureau Corporation, San Jose, Calif. (By
title)

Given two processes, the units from which fail in accordance with the gamma distribu-
tion (in which shape parameter can only take integral values), the problem of selecting
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the particular process with the larger mean life is considered. Three procedures are con-
structed to solve this problem. They are: R, , a non-sequential, non-replacement type of
procedure; R: , a sequential replacement type of procedure and R; , an alternative sequen-
tial replacement type of procedure where the actual life times of failed items are considered
in making a decision. Let 6 and 6: be the true values of the unknown scale parameters of
the gamma distribution such that 6; > 6, . It is not known which process has the parameter
60, and which has 6, . Let « denote the true value of the ratio 6:/6, which must be greater
than or equal to one, then the specifications of R; and R, consists of two quantities a* (a* =
1) and P*(3 < P* < 1) where, (1) a* is the smallest value of « (say @ = o* > 1) that is
worth detecting, and (2) P* > } is the minimum value for the probability of a correct selec-
tion whenever & 2 o*. For R, let 6{ > 6; be specified and it is desired to have the prob-
ability of a correct selection of at least P*(3 < P* < 1) whenever 6, = 6f > 6; = 6.

60. A Method For Estimating Linear Functionals in a Time Series (Preliminary
report). PAuL H. RanporpH, Purdue University. (By title)

Consider a vehicle whose position z(¢) at times ¢, , ¢, , --- , ¢, is measured, giving the
values X;, Xz, -+, X. . It is often desired to estimate some value, such as velocity, by
means of an estimator L*[X (t1), X (2), - -+ , X (¢n)]. It is assumed that the signal is X (¢) =
z(¢) + n(¢), where the z(¢) is the true position and n (t) is a noise in the system. Often some
information is available regarding the position and thus we can say that

z(t) = zg(t) + za(t)

where z4(t) represents this knowledge and belongs to a class 6 of functions and zp(t) is a
component about which we have a statistical description. We base our choice of an estimator
on a risk funetion g(zs, L*) = P[|L*(-)(¢t) — L(z)(t)] > h] where h is a known con-
stant. We choose L* so as to minimize sup .49 (zs , L*). Examples are given to illustrate
this procedure.

61. On Rotation Sampling (Preliminary report). J. N. K. Rao and Jack E.
GranawM, Iowa State University.

When the same population is sampled on repeated occasions, it is well known that the
use of rotation sampling may increase the precision of the estimators on the current occa-
sion and of the change. Hansen et al. (J. Amer. Statist. Assoc., 1955) have developed com-
posite estimators of the population total on the current occasion and of the change (e.g.,
quarter-to-quarter change in a quarterly survey). However, the variance of these estima-
tors was not investigated in detail and, moreover, the population size N on each occasion
was assumed infinite. The purpose of the present paper is to develop a unified finite popu-
lation theory for the composite estimators. This is accomplished by considering that the
finite population is the N! possible rotation patterns (assuming that N is constant from
occasion to occasion) and the sample consists of one random rotation pattern from this
population. The rotation pattern of the sample is formulated as follows: n, units stay for r
occasions (nyr = n where n is the number of units in the sample on any occasion) and leave
the sample for m occasions and then come back, where m is seen to be equal to 7 (N/n — 1).
Then the general variance formulae for the composite estimators are developed and the
optimum values of @, the weight factor in the composite estimator, and the optimum values
of r are determined for certain special correlation patterns of the characteristics in different
occasions.
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62. Some New Inequalities of Chebyshev Type. Donarp RicaTER, C. L.
Marrows and MivroN SoBeL, Bell Telephone Laboratories, Inc. and
University of Minnesota.

A number of new inequalities of Chebyshev type are derived, all of which have the prop-
erty that they involve conditional expectations. A typical result is the following, valid
for any real random variable X with finite second moment and any measurable set A:
P(XinA4)[E(X|XinA) — E(X)]12 £ [1 — P(Xin A)] Var X. Similar results are derived
for the case when the single set A is replaced by a number of sets, and for the case when X
and A are k-dimensional; in each case conditions for equality are given. By specializing
the results, useful bounds are obtained for percentiles and for sample values. The relation
between the new inequalities and previous results is carefully discussed.

63. Approximate Uncorrelating Transformations for Normal Order Statistics.
SamueL S. SHapiRo and MarTIN B. WiLk, Rutgers —The State Uni-
versity. (By title)

Let V be the n X n symmetric matrix of covariances for standard normal samples of
size n. Let T be the n X n lower triangular matrix with positive diagonal elements, such
that TVT’ = I. Then T is unique. If y is a vector of order statistics from N (u, ¢2) then the
transformation z = Ty yields uncorrelated variates. The matrix T has been found to be
well approximated by a ‘“‘double diagonal’’ matrix, T*. The non-zero elements of T* have
been tabulated for samples up to size 20. The adequacy of this approximation to T is indi-
cated by the extent to which I* = T*VT* approximates I. The diagonal terms of I* lie
between 1.000 and 1.001, the (¢, ¢ — 1) terms lie between 0 and .001 and all others lie be-
tween —.014 and 0. This approximation has been found to be very good for use with best
unbiased estimates based on order statistics (censored and uncensored). The ‘‘triple diag-
onal’” matrix V*-1 = T*T* provides a good approximation to ¥V~1. Further the non-zero
elements of V*~! can be easily generated (approximately) from the first one half of the diag-
onal elements. The use and interest in these results lie in the following directions: in par-
simony of tabulation (for normal and other distributions); in indicating that linear com-
binations of adjoining pairs of order statistics may, to a good approximation, be made
statistically uncorrelated; in reducing substantially the arithmetic load in finding best
linear unbiased estimates based on order statistics (censored and uncensored). A prelimi-
nary report of some of this work has been given in Technical Report No. N-6, Rutgers
Statistics Center.

64. On the Inadmissibility of Some Standard Estimates in the Presence of
Prior Information. Morris SKIBINSKY and Louis J. Cotg, University of
California, Berkeley, and Purdue University.

Suppose O, X are random variables such that P(X = 2| ©® = 6) = f(z8), 2 = 0, 1,

-,n,0 £ 0 =1, where f(z, 9) is the value at z of the binomial frequency function with
parameters n, 6, and © is distributed for some «, 5,0 < « < 1,0 < § < % s0 as to be in
|8, 1 — 8] with probability =1 — «. A maximum likelihood method is proposed for pre-
dicting ® from X. Each member in a class of predictors for © suggested by the method is
shown to be uniformly better over the class of distributions above described than the
standard X | n, relative to the squared difference loss function, provided only that « > 0
is sufficiently small. Numerical computations give precise values of « for selected =, 3. A
second analogous example concerns prediction for the random mean of a normal distribu-
tion with known variance, for which similar results are obtained.
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65. A New Approach to Factorial Experiments. J. N. Srrivastava, University
of North Carolina.

In this paper, a new approach to factorial experiments has been introduced. It is some-
what parallel to Hotelling’s method of principal component analysis. The new approach
combines most of the good properties of the classical and response surface approaches, and
is largely nonparametric. A new criterion in the estimation of response surfaces, namely,
the principle of contiguity (due to 8. N. Roy) has been explained, and the new approach is
shown to satisfy it. Preliminary theory has been developed for two cases (i) when all the
factors are structured, (ii) when all the factors are completely unstructured.

66. Use of Some Extraneous Information in the Estimation of Regression
Coefficients. Yukio Suzuki, Institute of Statistical Mathematics, Tokyo,
Japan.

Consider the normal regression model: y = > 2, 8:z; + e. In this paper, we treat the
problem of the estimation of regression coefficients {8:;} (i = 1,2, --- , p) in the situation
that some extraneous information is given and from it a joint probability measure of a
certain subset of regression coefficients, say {8:} (¢ = 1, 2, -, k), can be derived. This
probability measure can be regarded as a prior information concerned regression coeffi-
cients to be estimated. Thus by means of Bayes’ theorem, for a sample obtained by ob-
servation on the regression model, there corresponds a posterior distribution of {8:} (¢ =
1,2, ---, p). The unbiased estimate with minimum variance of our problem, is the mean
vector of the posterior distribution corresponding to the sample obtained. Of course, this
estimate is more or less different from the one obtained by using only the sample informa-
tion. Also, several analogous problems are discussed here.

67. On Characterization and on Complete Solution of Two-Person Zero-Sum
Games (Preliminary report). JosepH V. TaLacko, Marquette University.

Every Two-Person Zero-Sum Game G, equivalent to a quadruple G = (T, S; ((ai;));
1., —1m ; 0), has, as a complete solution, a finite set of distinct resolvents R = {8, T;
((@)); e, B; v}. The sets S, T are indices; the ((as;)) is the original pay-off matrix; and
1, and 1n are vectors of units of dimensions m, n. The scalar v is the value of the game;
((@7)) = A is a set of resolvent [pseudoinverses] matrices, where  C A submatrices,
called characteristic kernels, have the property that every H; = ((hi));

DI EEDIN LN
1 7

Characteristic kernels are invariant with respect to the value of the game. Every distinct
resolvent is identified unmistakably by the distinet characteristic kernel and by the pair of
strategies. A single algorithm called The Symmetric Method solves mechanically every
Two-Person Zero-Sum Game without adjustments of the given pay-off matrix, even if the
value of the game is zero; the large problems, degenerate games.

68. Reduction of Wasted Stringency in Ranking and Counting Procedures
Through the Use of Supplementary Criteria (Preliminary report). Joun
W. Tuxkzry, Princeton University.

Procedures centered on ranks and counts habitually give rise to distributions offering
limited choices of actual significance level. Randomization offers only an impractical solu-
tion. Separation of configurations giving borderline values to the initial criterion into
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“‘gignificant’’ and ‘‘non-significant’’ on the basis of a supplementary criterion cannot only
greatly reduce wastage of stringency but can have additional value. Since supplementary
computation will only be necessary for borderline configurations, the increase in average
effort is small. Use of the sum of squares of ranks (or the highest [lowest] rank) as a supple-
mentary criterion for Wilcoxon and signed-rank procedures, and of sums of ‘‘next-cell”
counts for Duckworth and quadrant-sum procedures are straightforward applications.
Where the observations occur in time order, bear rationally-assigned serial numbers, or
have rationally-alphabeticizable names or titles, the supplementary criterion may well
be an indicator of trend, with more apparently trending configurations assigned to non-
significance. Sign-test procedures, other binomial significance and confidence procedures,
and the “‘exact test’’ for 2 X 2 tables can all be treated in this way. Computation of supple-
mented tables for Wilcoxon and signed-rank procedures has begun. '

69. Minimax Estimate of an Inverse-Binomial Parameter. M. T. Wasan,
Queen’s University, Ontario, Canada.

Let X be a random variable with a family of Probability functions P{X = z} = pg*=lz =
1,2, .-+, ©» where 0 < p = 1 and a loss function is squared error. We want to find a mini-
max estimate of p. Let us consider the following estimate in order to have constant risk,
i.e., p = 3/4 when z = 1 and p = 1/4 when = = 2, then risk, i.e., expected loss is 1/16.
We try a following apriori distribution of p:p = 1/4 with probability 2/3 and p = 1 with
probability 1/3. It can be readily checked that the constant risk estimate of p is Bayes
estimate corresponding to the apriori distribution. Thus by (*) Theorem 2.1 of Hodges,
J. L., Jr. and Lehmann, E. L., Some Problems in Minimax Point Estimation, Ann. Math.
Statist. 21, 182-197, it is a minimax estimate of p.

Now let X be a r.v. with a family of probability functions p[X = z] = ¢gp*~lz = 1, 2,

- »and0 =< p < 1and aloss function is squared error. It can be easily seen that p = 1/4
when # = 1 and p = 3/4 when z = 2 is the constant risk estimate. We try a following
apriori distribution of p:p = 0 with probability 1/3 and p = 3/4 with probability 2/3.
The constant risk estimate is Bayes estimate corresponding to the apriori distribution.
Hence from (*) it follows that it is a minimax estimate of p.

70. Sample Size Determination for Tolerance Regions for the Exponential
Distribution. Davip L. WeEks and Lee J. Bamv, Oklahoma State Uni-
versity.

v probability and 8 expectation tolerance regions are derived based on four commonly
used estimators of the parameter in the exponential distribution. These estimators are func-
tions of the sample mean, observations from a censored sample (with and without re-
placement), and the order statistics. The sample size required to obtain v probability toler-
ance regions of the form Prob[8 < Pr(§;) < B + €] = v based on each of the four estimators
is determined where P (4,) is the content of the tolerance region based on limits which are a
function of §;. Also 0<8<1,0<e<1-—6, and 0 <y <1.

The variances of the contents based on each estimator is also derived for the 8 expecta-
tion tolerance region.

71. A Generalized Single Server, Poisson Input, Queueing Process (Preliminary
report). PeErer D. WeLcH, IBM Corporation and Columbia University.
(By title)

The following generalization of the M /G/1 queueing process is considered. If a customer
arrives when the server is busy, his service time has an arbitrary distribution function
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G;(x); while if he arrives when the server is idle, his service time has a different arbitrary
distribution function G.(z). Results are obtained which characterize the transient and
asymptotic distributions of the queue size, waiting time, and virtual waiting time.

72. Pre-Emptive Resume Priority Queues (Preliminary report). Perer D.
WEeLcH, IBM Corporation and Columbia University.

The following queueing problem is considered. The input is the superposition of r inde-
pendent Poisson processes, each process corresponding to a priority level. Associated with
each priority level, there is a distinct arbitrary service time distribution function G (z);
k =1,---,r. A single server operates under a pre-emptive resume priority service dis-
cipline. For this process, Miller (1960, Ann. Math. Statist. 31, 86-103) has characterized the
virtual waiting time for the kth priority level, ¥ = 1, .- , r. We obtain results which
characterize the transient and asymptotic behavior of the actual waiting time and of cer-
tain queue sizes. Further, using an argument different from his, Miller’s results on the vir-
tual waiting time are obtained.

73. Estimation of Parameters of the Weibull Distribution. Joun S. WHiITE,
General Motors Research Laboratories, Warren, Michigan. (Invited)

The Weibull distribution, F (z) = 1 — exp [— (z/6)#], is frequently used for the analysis
of fatigue life. Several techniques for estimation of the parameters 8 = ‘“‘slope’’ and ¢ =
““characteristic life’’ are presented in this paper. The simplest approach is to plot the or-
dered failure times (21 , --+ , #,),7 =< n, of a random sample of size n on Weibull probability
graph paper and visually fit a straight line to the plot. A second approach is to fit the line
to the plot using least squares. Thirdly, the parameters may be estimated by the method of
maximum likelihood. These three methods are discussed in detail and Monte Carlo results
comparing least squares and maximum likelihood estimation are presented.

74. On Two-Stage Non-Parametric Estimation. Erizasera Y. H. YeN, Uni-
versity of Minnesota.

Let X and Y be two independent random variables with distribution functions F and G
respectively. An estimable parameter 6 (F, @) is to be estimated with a fixed sample size N
and with U-statistics as estimators. Two kinds of two-stage estimators are defined—U’, a
function of the second stage observations only, and U”, a function of all N observations.
Let U° be the unbiased one-stage estimator. When the ‘‘nuisance parameters’” concerning
(F, @) are known, the lower bound of the variance (or the asymptotic variance for large N)
of U° can be minimized by a suitable allocation of observations to X and Y. If the risk is
mean squared error, then denote the risks of U°, U’, and U” by R(U°), R(U’), and R(U")
respectively. It is shown that the ratios R(U’) /R (U°) and R(U") /R (U°) can, by the proper
allocation of the observations, be made to tend to unity as N tends to infinity. The asymp-
totic distributions of U’ and U” are shown to be normal. Using these estimators as test
statistics the relative efficiencies (Pitman’s criterion) of U’ and U” with respect to Ue
are unity. The same technique can be extended to estimable parameters of more than two
independent random variables.

75. On Conditions for Equality of Best and Simple Linear Least Squares Esti-
mators. GEORGE ZYSKIND, Iowa State University. (Invited)

Consider the model y = X8 + ¢ where X is a known n X p matrix of rank r and the
n X 1 vector of errors, e, satisfies E(e) = 0, E(ee’) = o2V, where V is nonsingular. Any
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one of the following conditions is both necessary and sufficient for the equality of every
simple least square estimator with the corresponding best linear unbiased estimator.

(1) The column space of the matrix X is an invariant subspace of the matrix V.

(2) A matrix @ exists satisfying the relation VX = XQ.

(3) A subset of r eigenvectors of V exists forming a basis for the column space of X.

(4) A full rank reparametrization exists so that B (y) = XB = W6, where every column
of the n X r matrix W is an eigenvector of V.

(5) The matrix V is expressible in the form

V= (g:) A0, 0),

where the matrix O = (0, , 0:) is orthogonal and O, is any orthonormal basis of the column
space of X, O is any orthonormal basis of the orthogonal complement of the column space
of X, and A is any diagonal matrix with positive diagonal elements.

(6) The covariance matrix V can be diagonalized by an orthogonal matrix specified as
in (5).

(7) If P denotes the orthogonal matrix projection operator on the column space of X
then VP = PV, i.e., the matrices V and P commute.

(8) The matrix VP is symmetric.

It should be noted that the simple least square estimator of E(y) = XB8 is X8 = Py.
Since for standard situations, such as those of the common experimental designs, the vec-
tor Py is known it follows that for those situations the projection operator P can be ob-
tained immediately. It is then a simple matter to check condition (8), i.e., the symmetry
(or the lack of it) of the matrix VP. An examination of induced covariance structures in
classification models is made by appealing to the above stated properties.

(Abstracts not connected with any meeting of the Institute.)

1. Asymptotic Power and Asymptotic Relative Efficiency of Mood’s Test for
Incomplete Block Designs. V. P. BHAPKAR, University of Poona, India.

In a previous paper (V. P. Bhapkar, Ann. Math. Statist. 32 (1961), 846-863) the author
generalized to incomplete block situations the M-test proposed by Mood for the hypothesis
of equality of ‘‘treatment’’ effects in a Randomized Blocks design. In this paper the asymp-
totic power of this generalized test is obtained for translation-type alternatives and the
asymptotic efficiency is computed relative to the F-test and Friedman’s x;-test. This in-
cludes, then, as a special case results obtained by Sathe (Ann. Math. Statist. 32 (1961), 631)
for the complete block situation with odd number of treatments. It has been shown that
the asymptotic efficiency of M-test relative to the F-test is the same for any block design
with the same number, say k, of plots per block, and moreover, depends only on k and the
distribution. A similar statement is shown to hold relative to the x’-test for BIBD and is
conjectured for PBIBD and any block design with the same number of plots per block.

2. Multivariate Tests of Hypotheses with Incomplete Data. R. P. BHARGAVA,
Stanford University and Forest Research Institute. Dehra Dun, India.

Consider a sample from a multivariate normal population in which some of the observa-
tions are missing. These missing observations form a certain pattern which we call a mono-
tone sample. The present paper deals with a discussion of the maximum likelihood estimates
of the parameters for a monotone sample which are then used in providing likelihood ratio
tests for many multivariate problems, e.g., Hotelling’s T2, Wilk’s tests, general linear
hypotheses, etc. In each case the results generalize the usual statistics when there are no
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missing observations. In addition some linear hypotheses which are more general than the
usual general hypothesis are defined and the test statistics obtained. The null distributions
of the likelihood ratio statistics are obtained implicitly (i.e., as products of powers of beta
random variables, etc.) as well as asymptotically using Box’s method [1949].

3. Note on a Conditional Property of Student’s ¢{. R. J. BueHLER and A. P.
FeppERSEN, Iowa State University.

For one degree of freedom the 509, fiducial interval based on Student’s ¢is Tmin < p <
Zmax - In the subset 3|z — x2| = 2|2 + .| it is shown that for all (4, 0), Tmin = & £ Tmax
occurs with probability exceeding 51.8%,. The choice of subset is based on Stein’s 1961
Wald Lectures.

4. Monotonicity of a Family of Test Procedures for MANOVA and for the
Test of Independence Between Two Sets of Variates. SomesH Das GupTa,
University of North Carolina.

It is known that under certain invariance restrictions and with the usual normality as-
sumption the test procedures for (i) testing multivariate linear hypothesis, or for (ii)
testing independence between two sets of variates, depend on the latent roots of a random
matrix; the power function of such a test involves certain non-centrality parameters which
can be expressed as the latent roots of a certain matrix and can be regarded as measures of
deviations from the hypothesis to be tested. It is shown that for each one of the above
cases (i) and (ii), there exists a fairly large class of test procedures, characterized by a set
of symmetric functions of the roots, such that the power function of any test belonging to
this class increases monotonically as each non-centrality parameter, separately, increases.
The likelihood-ratio test and the generalized T-test of Hotelling belong to this class and
thus the power functions of these two tests for each one of the above testing problems have
the monotonicity property. However, Roy’s largest-root test does not belong to this class
but the monotonicity of the power function of this test has been shown by Roy and Mikhail
(Ann. Math. Statist., 32 (1961) 1145-1151).

5. Some Special Problems in Classification. Somesax Das Gupra, Columbia
University.

Consider the problem of classifying an experimental unit into one of k£ univariate normal
populations such that the unknown population parameters satisfy the assumptions made
in the usual ANOVA model. This situation arises when the k& populations are identified
with the & cells of a statistical design and random samples are available from each of these
cells. It is shown that for this problem, the maximum likelihood (ML) classification rule
(the rule which assigns the experimental unit to that population for which the maximum
likelihood is the largest in the set of & possible maximum likelihoods) is an admissible rule
with simple loss function. This result is generalized to the multivariate case when the com-
mon dispersion matrix is known and the unknown mean vectors are restricted as in the
usual MANOVA model. Secondly, a class of admissible rules is derived for the problem of
classification into one of ¥ multi-normal populations M (u; , Z;), @ = 1, --- , k), when the
Z’s are known and it is further known that the experimental unit to be classified comes from
one of these populations; it is also shown that for this problem, the ML rule is e-admissible.

6. On Some Statistical Inferences for Weibull Laws (Preliminary report).
Sarya D. Dusey, Procter and Gamble Co., Cincinnati, Ohio.

Using moment estimators for the location, scale and shape parameters of the 3-parameter
Weibull law as trial values, their maximum likelihood (M.L.) estimators are computed by
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means of the Newton-Raphson method. The large sample covariance matrix of the M.L.
estimators for these three parameters is derived which exists when the shape parameter is
larger than two. This result is used to generate B.A.N. estimators or the approximate M.L.
estimators for the parameters, which are asymptotically jointly efficient. The asymptotic
properties of M.L. estimators are used to test hypotheses and construct asymptotically
smallest confidence regions for Weibull parameters. Special cases of Weibull laws are dis-
cussed. The first four cumulants of the derivative of the logarithmic likelihood funetion
have been derived for all the 1-parameter Weibull case which are used to indicate the effects
of skewness and kurtosis of M.L. estimators in case of small samples. They involve poly-
gamma functions in some cases. The Cornish-Fisher expansion has been employed to ob-
tain closer approximations to the approximate confidence interval for the location parame-
ter of the 1-parameter Weibull law. Finally, lower confidence limit for several reliability
functions and upper confidence limit for several intensity functions (failure rates) of
Weibull laws have been derived.

7. On Amounts of Information in o-fields. S. G. GHURYE, University of Min-
nesota.

Another proof of the following theorem proved by Kallianpur (On the amount of informa-
tion contained in a o-field, Contributions to Probability and Statistics, Stanford University
Press, 1960) is given: Let P,  be probability measures on a measurable space (S, &), such
that P is absolutely continuous with respect to Q. For any finite F-measurable partition
A=1[A1, Ay, -, A of S,let T(4) = D1 P(A:) log [P(A:)/Q(A:)], and let I (F) de-
note the supremum of 7(4) over all A. Then I(F) = [glog (dP/dQ) dP.

Other results concerning I (F) are proved; e.g., (1) If G is a sufficient sub-field of F for
the family [P, @], then I (F) = I(G); but the converse is not true. (2) If F; ,7 = 1, 2, are
sub-o-fields of § which are independent under both P and @, and G is the ¢-field generated
by 51 U 52 N then 1(9) = I(gl) + I(gg)

8. Effects of Inequality of Variance-Covariance Matrices in Multivariate
Analysis of Variance. I. The Case of Two Samples. K. Ito and W. J.
ScHULL, University of Michigan.

Current, interest in the multivariate analysis of variance (MANOVA) must inevitably
lead to a scrutiny of the robustness of this test. Among the assumptions underlying MAN-
OVA is the equality of variance-covariance matrices. The purpose of this paper is to ex-
plore the consequences of violation of this assumption. In the two-sample case when the
samples are both large, of equal or near equal size, and when the relationship of one vari-
ance-covariance matrix, Z; , to the other, =, , is such that the latent roots, A; , of =,;Z7'
are not distinet, within the range 0.5 < A =< 2.0, the effect on the confidence level and power
of the test of the inequality of =; to 2, is not pronounced, but increases with p, the number
of variates. When the latent roots of Z:2z" are distinct, then, for p = 2, two cases must be
considered. If both roots are less than unity, the effect on the confidence level and the power
of the test is somewhat more marked than when the roots are not distinet. If one root is
greater than unity and the other not, the effect is less than in the case where the roots are
not distinet.

9. Asymptotic Power of Certain Test Criteria Based on First and Second
Differences. A. R. KamaT, Gokhale Institute of Politics and Economics,
Poona, India.

In a recent paper (Kamat, A. R. and Sathe, Y. S. (1962). Ann. Math. Statist. 33 186-200)
the asymptotic power of the six ratio criteria w?, w; , u2, W, W, . and U (based on the first
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and second differences of observations) was discussed for the alternative of serial correla-
tion between successive observations. In the present paper a similar technique is used to
determine the relative asymptotic efficiencies of the same six criteria for certain other al-
ternatives of serial correlation and for alternatives of linear, quadratic and sinusoidal
trends. It is found that there are two different patterns of relative asymptotic efficiencies.
For certain alternatives of serial correlation the six criteria have efficiencies in the order
w2, wi, W, W, u?, U. For certain other alternatives of serial correlation, however, and for
all alternatives of trend the criteria are not all comparable. They separate into two groups
@) w?, W, ws, Wy and (ii) u?, U and the order of their efficiency in each group is the order
in which they are written above.

10. On a Theorem of Halmos Concerning Unbiased Estimation of Moments.
Henprik S. KoNwN, Yale University.

In “The Theory of Unbiased Estimation’’ (Ann. Math. Statist. 1946) Halmos investi-
gated which functions over certain classes of distributions of points on the line admit un-
biased estimates and which are all possible unbiased estimates of any such given function,
with particular attention to moments. He mentions the desirability of discussing this for
the class of normal distributions. That is done in the present paper. The results differ con-
siderably from those for the class discussed by Halmos.

11. A New Formula for Sample Sizes for Population Tolerance Limits. G. P.
Steck, Sandia Corporation, Albuquerque, New Mexico.

Let «,(b) denote the solution of the equation Iy(x — r + 1, r) = «, where I.(p, q)
is Karl Pearson’s notation for the incomplete beta function. Let L,(b) = z.(b)/z:1(b),
where z;(b) = log «/log b. It can be shown that L,(1) = xi(a)/(—2 log a) and L, (1) =
(r — 1)/ (@2 log ), where x3,(e) is the upper 100 « per cent point of a chi-square distribu-
tion with 2r degrees of freedom. Consequently, the Taylor expansion of L, to two terms is
L) =[x (a) + A — b)(r — 1)]/(—2 log «) and, therefore, z,(b) = z:(b)L,(b) =
[xr(@) + (1 — b)(r — 1)]/(—2 log b). Writing

—logb=—log{l — (1 —b)}=~1—b+3d—b)2=21—b)/A+b)

for the first term and writing —log b =2 1 — b for the second term, one obtains z,(b) =
%x‘f,, (@)1 4+ b)/1 — b) — (r — 1)/2, which is the empirically determined approximation
given by Scheffé and Tukey (Ann. Math. Statist., 16 (1944) 217).



