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(Q:,Qs, -+ ,Qun), (Qs,Qs, -+, Qu), etc., we finally obtain

Pri{Tu =B, Tin =By, Tim = Bu} = kIIlPI‘{Tjk = B4
as was to be shown.

Finally, it should be mentioned that if the waiting times are defined so as not
to include the service times, that is, as the quantities T — s, the question of
mutual independence of these quantities for k = 1, 2, --- , m is apparently an
open problem.
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A NOTE ON THE RE-USE OF SAMPLES!

By Davip R. BRILLINGER?

London School of Economics and Political Science

There are situations in statistical estimation in which the basic underlying
distribution is invariant under some family of transformations. In this note a
theorem similar to the Blackwell-Rao Theorem is proved demonstrating that
this additional structure can sometimes be exploited to improve an estimator.

TaEOREM. Consider a random variable x, sample space X, o-algebra X, prob-
ability measure P (). Suppose that G is a set of measure-preserving transformations
for the measure P, i.e. P(gA) = P(A) for all A in X, g in G. Let u( ) be a measure
of total mass 1, defined on a o-algebra G of subsets of G. Let ¢ (x) be an estimator
such that ¢ (gz) is § X X measurable.

(i) If ¢ (z) is an unbiased estimator of # then,

1@ = [ #lg) aug)

is also an unbiased estimator of 6.

(ii) If ¢ (x) takes values in a k-dimensional space and has an associated
real-valued, convex, bounded from below loss function Wi¢(x)], such that
Wip(gz)] is § X X measurable then, Ry, = R, where R is the associated risk
function, and in particular the ellipsoid of concentration of vy is everywhere
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contained in the ellipsoid of concentration of ¢. (¢ is not necessarily an unbiased
estimator in this part of the theorem.)

Proor. ’

(i) This part of the theorem follows trivially from Fubini’s Theorem.

(ii) It must be shown that [xWg ()] dP(z) = [xWly(x)]dP (z).

Take the following randomized procedure: choose a ¢ according to u, then
use the estimator ¢ (gz). This procedure has risk ffW[qS (gx)]1dP (x) du(g) or R,
using Fubini’s Theorem once again. The result of the theorem now follows from
Lemma 3.1 in [1].

If W is strictly convex one easily sees that there will be equality of risks if
and only if,

8@) = [ olgz) dulg).

(If the measure p is a Haar measure on a locally compact group this implies
that ¢ is invariant under G.)

Exampres. In applications the measure u on G' will most likely be a discrete
measure or a Haar measure.

The theorems concerning the unbiasedness and smaller variance properties
of Hoeffding’s U statistics may be derived from the theorem proved above. In
this case the probability distribution is invariant under the symmetric group and

the (Haar) measure attached to each group element is 1/ (Z) for an estimator

of degree m. Note that in fact one need not have independent observations from
the same distribution, but need only have a realisation of an n-dimensional
symmetric distribution.

The broadest class of techniques to which it appears useful to try to apply the
theorem are those of Monte Carlo. Here the theorem states in effect that under
certain conditions it is possible to use the same randomly generated sample
more than once. This is important if samples from the distribution under con-
sideration are expensive to come by relative to the calculations being carried
out on the samples. For example, suppose one wishes to derive the average of
some statistic from samples of size n from an N (0, 1) distribution by means of
Monte Carlo. The method suggested by the above theorem is as follows: draw a
sample of size n from N (0, 1). Apply k orthogonal transformations to this sample
obtaining k further “samples.” Calculate the statistic for each of the k 4 1
samples and average the k + 1 values so obtained. If the statistic is not in-
variant under orthogonal transformations the result will have a smaller variance
than that that would have been obtained by using the original sample alone. If
this method were taken to the extreme, one sample would be drawn and all
orthogonal transformations would be averaged out by means of say the Haar
measure on the orthogonal group. If the average did not depend on the original
sample it would have zero variance.

In [2] it is suggested that when one is estimating E[¢ (x)],  uniform, instead
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of using simply ¢ (z), z a single observation from the uniform distribution, one
should use,

{p@) + (1 —2) +o()}/3

where y=x (I
=%z <z =1

for example. The reduced variance property of this estimate is a result of the
above theorem. G consists of the identity transformation, the transformation

x — 1 — z, and the transformation z — y. Each of these transformations then
has weight %.
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ON STOCHASTIC APPROXIMATIONS

By SEMUEL FRIEDMAN

The Hebrew University, Jerusalem

0. Summary. The procedure of stochastic approximations suggested by
Robbins-Monro [1], for reaching a zero point xz, of a regression function, was
shown by Dvoretzky [4], to be a convergent w. p. 1. and in mean square under
certain conditions. In this paper we deal with two problems of modifying the
process to acquire convergence under weaker conditions.

1. Introduction. Let H(y/x) be a family of distribution functions, which
correspond to the parameter .

Let us write: m(z) = [ydH(y/z); o’ (z) = [(y — m(z))* dH (y/x).

Let {a,} be a sequence of positive members, such that, Y a, = ®, > a2 < .

Let 2; be an arbitrary number. The Robbins-Monro process is defined re-
cursively for all » by @,y = %, — @Y., where y, is a chance variable with
distribution function H (y/x,). The conditions for its convergence were shown
to be:

(1) m(@)| < L o] + K.
(2) (z) £ o < .
If z<ua, then m(z) <0,

IIA

3
®) while if z > o, then m(z) > 0.
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