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1. Introduction and summary. The following paper introduces a new class of
stochastic processes named dynamic stochastic processes. These processes have
important applications to the study of dynamic economic systems and to the
analysis of economic time series. In particular, they provide for time series
analysis a theoretical basis for a systematic treatment of trend and, with only
obvious modifications, of seasonal variation.

Dynamic processes belong to the class of second-order processes, the theory of
which was formally developed first by Lo&ve in 194546 [6]. Other notable con-
tributions to this theory include Cramér’s article on integral representations of
stochastic processes [1], and Karhunen’s “Uber lineare Methoden der Wahr-
scheinlichkeitsrechnung” [5]. For a very interesting application of the general
theory of Hilbert spaces to the study of stochastic processes the interested
reader is also referred to Hida’s article on canonical representation of Gaussian
processes [3], and Parzen’s recent article on time series analysis [7]. A most lucid
treatment of the theory of wide sense stationary processes is found in Doob [2]
for the univariate case and in Wiener and Masani [9] for the multivariate case.

The paper is divided in three sections. The first two develop systematically
the theory of discrete and continuous, univariate, dynamic processes while the
last section is devoted to vector-valued processes.

Before going any further I would like to express my gratitude to Professors
H. P. McKean and H. Furstenberg. Their generous help and constructive criti-
cism not only uncovered many misconceptions in earlier drafts of the paper but
also guided my research in the right direction. Neither one has seen the final
draft and the author alone is responsible for any remaining errors.

Thanks are also due to Professor Howard Raiffa for valuable comments and
encouragement.

2. Discrete dynamic stochastic processes. A stochastic process is a family of
random variables, {z(¢, w); te T}, defined on a probability space, (@, §, P),
and measurable with respect to the Borel field, &, of w-sets in Q. T is an index
set. In the sequel 7 = (---, —1, 0, 1, ---) for discrete processes, and T =
(— «, + =) for continuous processes. The space, L{z(¢, w); t ¢ T}, will denote
the Hilbert space generated by the elements within the parenthesis. If X, =
L{z(t, w); t e T}, then X denotes the pre-Hilbert space of random variables of
the form, Y bx(¢;, w), where ;& T and the b;’s are complex constants.
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The norm in X, is denoted by || ||x, . Finally the shift operators dealt with in this
paper are assumed to be null preserving.” That a shift operator is uniquely de-
fined will always be taken to mean that the operator is uniquely defined modulo
a w-set of measure zero.

DeriniTioN. Let {x(t) ;¢ ¢ T} be a stochastic process such that X, = L{z(f, w);
t ¢ T} is well defined. We say that z(t) is a discrete dynamic stochastic process if

(1) z(¢, w) can be represented by the relation, (¢, w) = y(t, w) + f.(¢, w),
where y(£, w) is a wide sense stationary stochastic process, and f,(¢, w) is a
deterministic non-stationary stochastic process of the form,

a nj—1

fo(t, w) = ; I;)Ajk(w)(zj-tk), and

(2) Xy = Ly ® F;,where L, = L{y(t,w);te T} and Fo = L{f,(t,w);te T}.

We assume throughout this paper that if f.(¢, w) has the representation given
above, then |z;| ¢ 1,7 = 1, - - - , a. That f,(¢, w) is deterministic means that it is
measurable with respect to its infinite past. Finally, the notation, @, indicates
that L, and F, are linearly independent.

Taeorem 1. If

(1) {x(t); te T} is a stochastic process such that X, = L{x(t, w); te T} s
well defined,

(2) the shift operator, S, is uniquely defined on X by the relation, Sz(t, w) =
z(t + 1, w), can be extended to all of X, , and has a continuous inverse, S,

(3) the complex polynomial M(2) = D i—o bz’ has no roots of modulus equal
to one, and x(t, w) satisfies the relation,

(1) M(S)z(t, w) = 9(t,w), all teT,

where (&, w) 1s a wide sense stationary stochastic process, then z(t, w) s a dis-
crete dynamic stochastic process.

Proor. That L, = L{n(t, w); te T} < X,, and that L, reduces S is easily
obtained from our assumptions. If S; is the restriction of S to L, , then using
Assumption (3) we see that S; is uniquely defined by the relation, Syn(¢, w) =
n(t + 1, w). Clearly S is a unitary operator with || S]] = ||St'|| = 1. It follows
from the general theory of linear operators® that if |a| % 1, then (a — 8;)™*
is a well defined bounded operator taking L. into L, . Finally by expanding
M(2) in partial fractions we see immediately that M '(.S;) is a well defined
bounded operator taking L, into itself.

From this we obtain that (1) has a uniquely defined solution in L, ,

y(t’ ’I,U) = Ml(sl)n(t) ’l.l)).
Obviously L{y(t,w);t ¢ T} C L., and the inverserelation followsfrom »(¢, w) =
> 2 oby(t — 4, w). Hence L{y(t, w); te T} = Ly . Let fo(¢, w) be defined by

2 That S is null preserving means that S takes sets of measure zero into sets of measure
zero.
3 See for instance Taylor [8], p. 164, Theorem 4.1-C.
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the equation, (¢, w) — y(¢, w) = fu(t, w). If (¢, w) = O a.e. forallte T, we
say that z(f, w) is a centered dynamic process. Suppose not. Then f.({, w)
satisfies the relation,

M(8S)f.(t,w) =0, all teT.

Hence making use of the general theory of difference equations we deduce that

a

M 10 = 28 autit),

=

n—j

where {z,}5; are distinct roots of the equation, Y s bjz"’ = 0, and n; is the
multiplicity of z;,
(2) the system of equations,
a nj—1 n
{fw(ta w) = Z 2 AJk(z; tk)} )
1 k=0 t

=
can be solved uniquely for each A j in terms of the f,(¢, w)’s.

From this it follows that the coefficients 4 j; are indeed random variables in
X, and that

24, 0) = Yt w) + 33 35 () ().

The process, f.(¢, w), is clearly deterministic since for all ¢t e T,

fult, w) = —Z (b3/b0)fult — 5, w).

It remains to be shown that X, = L, @ F. .

Suppose L, and F, are two linearly independent spaces and let Y, = L, @ F, .
Since L; is closed and F; is finite dimensional, we know* that Y3 is closed. Clearly
X C Y,. This gives the relation X» C Y, . Since F, C X, and L. C X, clearly
Y, C X,.Hence X; = L, @ F,if L, and F, are linearly independent.

That L, and F. are indeed linearly independent follows from the following
considerations. Let E = F, N L, . E is finite dimensional and clearly reduces S.
Let {Siu(w); t & T} be a wide sense stationary process in E. Then u(¢) has the
representation,

2
’M(t, ’ll)) = J; e”)\lbf(w)y

where the b;(w)’s are mutually orthogonal and the \;’s are real. On the other
side u(t) ¢ F2, and hence satisfies the equation,
M(S)u(t,w) =0, forall teT,

which is impossible since M (z) has no root of modulus equal to one. Q.E.D.
Lemwma 1. If (1) {x(2); te T} is a dynamic stochastic process, then there exists a

4 See for instance Zaanen [10], p. 97, Theorem 4.
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linear difference operator, M (S), with constant coefficients of lowest order such that
M(8)x(t, w) & Ly . M(S) is uniquely determined up to a multiplicative constant,
and M (z) has no roots of modulus equal to one.

Proor. Let S be the shift operator defined by the relation, Sz(f, w) =
z(t + 1, w), te T. S is clearly uniquely defined on X and can be extended to all
of X, . We note that it is easily deduced from the definition of dynamic processes
that L, reduces S. Furthermore, from the general representation, f.(¢, w) =
Da .y omict A aw(w) (25*), we see immediately that there exists at least one
finite difference operator with constant coefficients taking x(f, w) into L.
Hence there must be at least one of lowest order. Suppose there are two, M (S)
and N(S). It is clear that a-N(S), where a is an arbitrary constant, is a third
operator with the same properties, and that {M(S) — a-N(8)}z(t, w) & Ly .
If M(2) = D jobiz? and N(z) = D.",vz", we can choose a such that
bo = a-vo. It is now evident that {M(S) — a-N(8S)} is an operator of lower
order than both M (S) and N(S) unless M(8S) = a-N(S).

That M (z) has no root of modulus equal to one follows from the assumption
that |2;] # 1 for all j in the representation of f,(¢, w).

TaroreM II. If (1) {«(t); te T} is a discrete dynamic stochastic process, then
it has one and only one centering function.

Proor. The only thing left to prove is the uniqueness of y(¢, w). Suppose that
we have two operators, M (S) and N(S), neither of which has zeros of modulus
equal to one, such that (¢, w) satisfies the two relations,

M(8)z(t, w) = 9(¢, w), and
N(‘S)x(t, ’ll)) = E(t’ w)-

We have to prove that L{n(¢, w); te T} = L{£(t, w); te T}.

Clearly N(S)n(¢, w) = M(S)&(t, w), and if S7* and ST are the restrictions
of 8 to the two spaces respectively, then £(¢, w) = M (SI)N(SI)n(¢, w),
which gives

L{g(t, w); te T} < L{n(t, w); te T},
and
n(t, w) = N'(ST)M(ST)E(L, w),

which gives the converse relation.
This together with the proof of Lemma I establishes our result.

3. Continuous dynamic stochastic processes. The preceding results can be
extended to continuous processes in the following way.

DErintTION. Let {2(¢); ¢ ¢ T} bea stochastic processsuch that X, = L{z(t, w);
te T} is well defined, and such that lim., [|z(f, w) — z(s, w)|x, = 0. Let D
be a closed differential operator on X, such that D(D) = {y(¢); y(¢) € X, and
Dy(t) e X,, all teT}. We say that x(¢) is a continuous dynamic stochastic
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process if

(1) z(¢, w) can be represented by the relation, z(¢, w) = y(¢, w) + f.(¢, w),
where y(f, w) is a wide sense stationary stochastic process, and f.(¢, w) is a
deterministic non-stationary stochastic process of the form,

£ty ) = 3 3 Au(w) (),

(2) z(t, w) e D(D™*"), where n is the number of \;’s in the representation
of f.(¢, w) each \; counted as many times as its multiplicity, and

(8) Xy = Ly, ® Fy, where L, = L{y(t,w);te T}, and F, = L{f,(t, w); te T}.

We will assume throughout this paper that no one of the A;/’s in the representa-
tion of f,(¢, w) is purely imaginary.

Taeorem III. If

(1) {x(t); te T} is a stochastic process such that Xy = L{z(t, w); t e T} is well
defined and lim,.; ||z(s, w) — z(¢, w)|x, = O,

(2) the group of shift operators, {S%; te T}, is uniquely defined on X by the
relation, S'z(s, w) = x(s + ¢, w), and can be extended to all of X, ,

(3) D is the closure of the differential operator, D' defined by

Dly = limy.o {S"* — Lyy/h,

where I is the identity operator on X, , and the limit s taken in the strong operator
topology on T. D(D) = {y(t):y(t) e X, and Dy(¢) & X},

(4) the complex polynomial, M(z) = D .1obz"’, has no purely imaginary
roots, z(t, w) e D(D™), and x(t, w) satisfies the relation,

(a') M(D)il)(t, w) = n(t, w)7 te T,

where n(t, w) is a wide sense stationary stochastic process, then x(i, w) is a con-
tinuous dynamic stochastic process.

ProoF. Let Ly = L{n(¢, w);te T}. Clearly L, C X, . Since S* commutes with
D and hence with M (D) for any ¢t e T, we see using Assumption (4) that L,
reduces S°. Let Si be the reduction of S’ to Ls . Using Assumption (4) again we
find that {S7; t & T} is a group of unitary operators which is continuous in the
strong operator topology on T. Let D; be the corresponding infinitesimal gener-
ator. If \ is not purely imaginary, we know® that the resolvent, R(\, D1), is a
bounded operator taking L, into itself. D; clearly is the reduction of D to L,
and we see immediately when expanding M (z) in partial fractions that M *(D;)
is a bounded operator taking L, into 1tse1f Hence (a) has a uniquely defined
solution in L, ,

y(t, w) = M (Di)n(t, w).

Obviously L{y(¢, w); te T} C Ly, and since clearly y(¢, w) e D(DI™), the
inverse relation follows from 5(¢, w) = > i b;DT ™y (t, w). Hence L{y(t, w);
te T} = Lz .

& See for instance Hille and Phillips [4], p. 601.
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Let f.(¢, w) be defined by the relation, z(¢, w) — y(t, w) = f.(§, w).
If £.(t, w) = 0 a.e. for almost all ¢ ¢ T, we say that x(¢, w) is a centered dynamic
stochastic process. Suppose not. Then f,(¢, w) satisfies the relation,

M(D)fo(t, w) = 0.

Hence making use of the general theory of differential equations we deduce,
as in the discrete case, that

flw) = 3 35 Aa(w) (259,

and that

z(t, w) = y(t, w) + ; ”g Ajk(’ll))(e)\jttk).

If Fo = L{f,(t,w);te T}, and L, and F, are linearly independent, then X, =
Ly, @ F,. This fact is obtained using verbatim the reasoning used in the proof of
Theorem I. That L, and F, are indeed independent is seen from the following
considerations.

Let E = Fy N L, . E is finite dimensional and clearly reduces S°. Let {Siu(w);
t & T} be a wide sense stationary process in E. Then u(t) has the representation,

p
w(t, w) = j;e"x’bj(w),

where the A’s are real numbers and the b;(w)’s are mutually orthogonal. -On
the other side u(t) ¢ F» and hence satisfies the relation,

M(D)u(t,w) = 0,

which is impossible since M (z) has no roots on the imaginary axis. Q.E.D.

The following lemma is stated without proof. The proof is entirely similar
to that given for Lemma I and needs no repetition.

LemMa I1. If (1) {z(2); t e T} 4s a continuous dynamic stochastic process, then
there exists a linear differential operator, M (D), with constant coefficients of lowest
order such that M (D)x(t, w) € Ly . M (D) is uniquely determined up to a multi-
plicative constant, and M (z) has no purely imaginary roots.

Turorem IV. If (1) {x(t); te T} is a continuous dynamic stochastic process,
then it has one and only one centering function.

Proor. Suppose z(t, w) satisfies the relations,

(1) a(t, w) =yt w) + i 2 il Au(w)(@7'1),

(2) a(t, w) = y®(t, w) + 2ja 205" Ba(w) ().

Suppose that A; is the root in (1) which has the largest positive real component.
Clearly,

2(t, w)
eritgni—1

lim

t—>c0

- A.‘i,nj—l('w) = 0,

Xo
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implies that there is some Bi.(w) in (2) such that Bin(w) = Aju;1(w) with
probability one and such that A\; = \; and has the same multiplicity as A; .

Let (¢, w) = 2(f, w) — Donist Ap(w) ('), and suppose that A, is the
root with the largest positive real component remaining. Then

Ty
W
T — Arnma(w)

lim

t>c0

=0

Xg

implies that there is some Bjn(w) such that Bjm(w) = Arna,1(w) with proba-
bility one and such that A\, = ), and has the same multiplicity as A, .

Continuing this process of deduction taking the roots with positive real com-
ponents in decreasing order of magnitude first, and then, similarly, letting
t — — oo for the roots with negative real components we easily prove the theo-
rem. Q.E.D.

4. Vector-valued dynamic stochastic processes. To extend the preceding
results to multivariate processes we need several new concepts. The interested
reader is referred to Wiener and Masani [9] for details.

Let {z(2); t & T} be a p-variate column vector-valued stochastic process. Let
% be the linear space of all random vectors of the form, 3% Bx(t;, w), where
the Bys are p X p matrices with complex entries. The ordinary inner product
is not very important in the theory of multivariabe processes. Instead we intro-
duce the Gramian matrix,

(2(t), 2(s)) = {(wi(), zi(s))} = {Bz(t)7;(s)},
and define the norm on X by

le(@)]| = [r(xz(t), z(t)]},

where 7(z(t), z(t)) denotes the trace of the Gramian matrix, ((?), z(¢)).
When % can be completed in this norm, we denote its completion by . =
L{x(t, w); te T}.

DrerintTioN. Let {z(t); t € T} be a p-variate column vector-valued stochastic
process such that &; = £{z(¢, w); t & T} is well defined. We say that z(t) is a
discrete dynamic stochastic process if,

(1) z(t, w) can be represented by the relation, z(¢, w) = y(¢, w) + Fa(t, w),
where y(t, w) is a p-variate column vector-valued wide sense stationary sto-
chastic process, and f.(¢, w) is a p-variate column vector-valued deterministic
non-stationary stochastic process of the form,

folt, w) = 20y Doiiet Au(w) (251),

the A jx(w)’s being p-dimensional column vectors,
(2) %y = £ ® T, where £ = £{y(t, w); te T} and F = L{fa(, w); te T},
We assume again that if f,(f, w) has the representation given above, then
‘zj| # 17.7 =12-,a
We note that if the “matrix-polynomial”, M(z), is defined by M(z) =
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D 7-0 Bjz™%, where the Bys are p X p matrices with complex entries, then
M(z) = {M;;(2)}, where the M;;(2)’s are ordinary polynomials in z. The de-
terminant of M(z) is denoted by det M(z) = W(z). W(z) = 2. rowz ’,
where the w,’s are complex constants. Whenever W (z) # 0,

M7 (2) = V(2)/W(2) = {Vi(2)/W(2)},
is well defined.

If S, is a unitary operator on £;, and W(z) has no roots of modulus = 1,
then M (8;) has an inverse,

M7(&) = V(S)/W(S) = (WH(8)Vi(81)} = {Vai(S)W (S}

Tarorem V. If

(1) {z(t); te T} is a p-variate column vector-valued stochastic process such that
Xy, = Ll{x(t, w); te T} is well defined,

(2) the shift operator, S, is uniquely defined on X by the relation, Sz(t, w) =
z(¢ + 1, w), can be extended to all of Xz , and has a continuous inverse, S~ Y

(3) the matriz-polynomial, M(z) = D79 Bz, where the Bjs are p X p
matrices with complex entries, is such that det M(2) = W(z) = D> rowz ’ has
no roots of modulus = 1, and if x(t, w) satisfies the relation,

M(S)x(t, w) = n(t,w), all teT,

where {n(t); te T} is a p-variate column vector-valued wide sense stationary sto-
chastic process, then x(t, w) s a p-variate discrete dynamaic stochastic process.
Proor. That £ = £{n(¢, w); te T} C Xz, and that £, reduces S is easily
obtained from our assumptions. It is also straight forward to show that if S; is
the restriction of S to £; , then S, is uniquely defined by Sin(t, w) = (¢ + 1, w),
and is a unitary operator. Using the proof of Theorem I it is, therefore, clear that
the equation, M (8)z(¢, w) = (i, w), has a uniquely defined solution in £, ,

y(t,w) = M (S)n(t, w) = {W(S)Vii(S1)}n(t, w),

and that L{y(t, w); te T} = L.

Let f.(f, w) be defined by the relation, xz(f, w) — y({, w) = f.(, w).
If f.(t, w) = 0 a.e., we say that (¢, w) is a centered dynamic process. We note
that some of the components may be centered, but this is of no importance as
far as the rest of the proof goes.

It is clear that f. (¢, w) satisfies the difference relation,

M(8)f(t, w) = 0;
but then in particular it satisfies the difference equation,
W(8S)f.(¢, w) = 0.

Hence again as in the univariate case we can write

ICED Y WHEL)



282 BERNT P. STIGUM

where the 4 ;’s are now p-dimensional column vectors. Finally the system of
equations,

{fz(t’ w) = Zl "go Az t’“)};,

can be solved uniquely for the 4 ;’s in terms of the f,(¢, w)’s, which proves that
the A j’s are indeed random vectors in % . Hence

ot w) = Yt w) + 3 2 An(w) ().

It is clear from the representation of f.(f, w) that the proof of Theorem I
carries over to the multivariate case with only obvious modifications. We have,
therefore, proved that z(¢, w) is a p-variate dynamic stochastic process.

The order of the matrix-operator, M (S), is defined by the order of its deter-
minant-operator, W(S). Since the finite-dimensionality of ¥, implies that for
some sequence of complex matrices, {B;}, and some sequence {i;},

fz(t’ w) = Z Bj x(tf ) ’ll)), all te T’
=1

the existence of a finite ordered matrix-valued operator taking z(¢, w) into £ is
immediate. That we can find a matrix-valued operator such that the character-
istic polynomial of the corresponding determinant-operator has no zeros of
modulus equal to one follows from the representation of f,(f, w). Furthermore as
far as this determinant-operator goes, Lemma I carries over directly to the
multivariate case. Finally using the reasoning of the proof of Theorem II the
following theorem is easily obtained.

TrareorEM VI. If (1) {z(¢);te T} is a p-variate discrete dynamic stochastic
process, then it has one and only one centering function.

This ends the discussion of dynamic stochastic processes. The preceding
results are easily extended to continuous p-variate processes. The reasoning is
essentially the same as used in Sections 3 and 4 with only obvious modifications.
We only note that, while M(S:1) = {W(8)Vii(S1)} = {Vii(S)W(S1)}
in the discrete case, in the continuous case the corresponding inverse operator
is M(Dy) = {Vis(D1)W '(Dy)}.

REFERENCES

[1] CramEr, H. (1951). A Contribution to the Theory of Stochastic Processes. Proc.
Second Berkeley Symp. Mathematical Statistics and Probability.

[2] Doos, J. L. (1959). Stochastic Processes. Wiley, New York.

[3] Hipa, T. (1960). Canonical representations of Gaussian processes and their applica-
tions, Mem. Coll. Sci. Univ. Kyoto. Ser. A. XXXIII, Math. No. 1.

[4] Hivre, E. and Parnuies, R. (1957). Functional Analysts and Semi-Groups. Providence,
R. I. American Mathematical Society.



DYNAMIC STOCHASTIC PROCESSES 283

[5] Karaunen, K. (1947). Uber lineare Methoden in der Wahrscheinlichkeitsrechnung.
Ann. Acad. Sci. Fenn. 37.
[6] Love, M. Fonctions aleatoires de second ordre. C. R. Acad. Sci. 220 (1945), 222 (1946) ;
Rev. Sci. 83 (1945), 84 (1946).
[7] ParzeN, E. (1961). An Approach to Time Series Analysis. Ann. Math. Statist. 32
No. 4.
[8] Tavror, A. E. (1958). Introduction to Functional Analysis. Wiley, New York.
[9] WiENER, N. and Masant, P. (1957, 1958). The Prediction Theory of Multivariate
Stochastic Processes, I and I1. Acta Math. 98 and 99.
[10] ZaaneN, A. C. (1953). Linear Analysis. Interscience Publishers, Inc., New York.



