NON-EXISTENCE OF EVERYWHERE PROPER CONDITIONAL
DISTRIBUTIONS!

By D. BrackweLn AND C. RYLL-NARDZEWSKI
University of California, Berkeley

1. Introduction and summary. Let Q be a Borel subset of a complete separable
metric space, and denote by ® the class of Borel subsets of Q. For any probability
measure P on ® and any real-valued random variable f on @ a conditional
distribution given f is a real-valued function @ on @ X ® such that
(1) for each we®, Q(w, -) is a probability measure on ®,

(2) for each Be®, Q(-, B) is an @-measurable function on Q, where @ is the
Borel field of f-sets, i.e., sets of the form {w: f(w)eF}, where F is a linear
Borel set, and

(8) for every Ae®, Be®,

fAQ(w, B) dP(w) = P(A N B).

A conditional distribution @ will be called proper at wo if
Qwo, A) =1 for wedeq,

i.e., if, given that f has the value f(wo), we assign conditional probability 1 to
the set of w’s at which f has the specified value. It is known [2] that conditional
distributions always exist that are proper at almost all points of Q, i.e., except
at a set of points N with P(N) = 0. We shall show that, in general, the excep-
tional set N cannot be removed.

More precisely, we shall prove

TurOREM 1. Let Q, ®, f, @ be as above. A function Q with properties (1), (2) and

4) Q(w,A) =1 for wede@
exists if and only if there is an Q-measurable function g from Q into Q such that
(5) flg(w)) = f(w) for all w.

The existence of such a g tmplies that the range of f is a Borel set.

It follows from Theorem 1 that, whenever the range of f is not a Borel set,
everywhere proper conditional distributions given f cannot exist.

The only difficult part of Theorem 1 will be a consequence of

TuarorEM 2. Let X, Y be Borel subsets of complete separable metric spaces, let G
be a countably-generated subfield of the field of Borel subsets of X and let & be the
class of Borel subsets of Y. For any function p on X X ® such that (a) p(x, -) is
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for each x a probability measure on & and (b) for each Be®, p(-, B) is an G-
measurable function on X, and any set Se@ X ® such that

u(z, 8;) > 0 for all zeX,

where S, denotes the x-section of S, 1.e., S, = {y: (z, y) €S}, there is an G-measurable
function g from X into Y whose graph is a subset of S, i.e., (z, g(x))eS for all
xeX.

The weaker hypothesis that S is @ X ® measurable with every z-section S,
non-empty is not sufficient to guarantee that S contains the graph of an @-
measurable function, as an example of Novikoff [3] shows.

2. Proofs. We first note how Theorem 1 follows from Theorem 2. If @, &,
f, @ are as in Theorem 1, and @ has properties (1), (2), (4), we apply Theorem
2withX =Y = @, u = @, and S the set of all pairs (z, y) for which f(z) = f(y).
Then w(z, S;) = Q(x, A(x)) = 1, where A (z) = {w: f(w) = f(z)}, so that,
from Theorem 2 there is an @-measurable g from © into @ such that (w, g(w))eS
for all w, i.e.,

(5) fg@) = f(w) forall w.
Conversely, for any @-measurable g satisfying (5), we define

Q(w,B) =1 if g(w)eB

=0 if g(w)eh,

and verify easily that @ satisfies (1), (2), and (4).
Moreover, since g is G@-measurable, there is [1] a Borel measurable function h
from the real line into Q such that

(6) g(w) = h({f(w)) forall w.

(5) and (6) together imply that the range of f is {y: f(k(y)) = y}, which is
clearly a Borel set.

For the proof of Theorem 2, we need the

Lemma. If X, Y, @, ® are as in Theorem 2 and p is a function on X X ®& such
that (a) p(x, -) is for each x a nonnegative, finite measure on & and (b) p(-, B)
is @-measurable in x for each B & ®, then for every @ X ®-measurable subset S of
X X Y and every 6,0 < 0 < 1, there is an @ X ® set S C S such that S has
closed z-sections, and u(z, S;) = Ou(z, S,) for all x.

Proor. If S = A X B where A ¢ @ and B is closed, we may choose S = 8.
The class of sets S for which the lemma holds is clearly closed under finite union.
We must show that the class of S for which the lemma holds is closed under
monotone union and monotone intersection. If S, is increasing and the lemma
holds for each S, , choose 8, < 8, such that S, has closed z-sections and

u(®@, Suz) = 0u(®, Sus) for all x.
We may suppose, replacing S, by 8; U--- U S, , that 8, © 8,41 . Define T, =
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{z: u(z, Su) = Ou(z, S,)}, where S = US, . The T, are monotone increasing
and UT, = X, sothat theset § whose z-sectionis S, for z ¢ T,, — T,_; has the
required properties.

If S, is decreasing and the lemma, holds for each S, , let NS, = 8, and define
Aon X X ® by

ANz, B) = u(z, S; N B)/ulx, Sz) if w(x, S.) >0,
Az,B) =0 if u(z,S;) =0.

Choose S, C S,, with closed z-sections, such that A(z, Sp) = 6.\ (@, Sus)
for all #, n, where 6, = 1 — (1 — ) /2". We assert that S = (1,5, has the re-
quired properties. Its z-sections are clearly closed, and S < 8. If u(z, S,) > 0,
then A (z, S,;) = 1and A(z, Spz) = 6, . Then

A@, B) 21— 2 (1—6,) =96

ie., u(r, S2) = Ou(r, So). If u(z, S;) = 0, this inequality is trivially true, and
the lemma is proved.

We turn to the proof of Theorem 2. Applying the lemma with Y replaced by
its completion, we obtain a set S; € S with closed z-sections and u(z, Si;) > 0
for all z. For any ¢ > 0, we cover ¥ with a sequence F, , F., - - - of closed sets,
each of diameter < ¢, define n (z) as the smallest integer & for which  (z, Si, N F})
> 0, and denote by S, the set whose z-section is Sy, N Fi forn(z) = kand e = 1.
Applying the same construetion to S, with e = % yields S; € 8., etc. We obtain
a sequence of sets S D §; D Sp, - -+, with p(z, Su) > 0, and S,, closed of
diameter < 1/n — 1. The set 8* = N8, is then @ X ®-measurable, and each
S contains exactly one point, so that S* is the graph of a funection g. According
to a theorem of Sierpinski [4], any function whose graph is a Borel set is Borel
measurable, so that g is Borel measurable. Finally, @ X ®-measurability of S*
implies that, for any Borel measurable function % on @ such that @ is the field
of h-sets, the value of g is determined by that of A, and this, with Borel measur-
ability of g, implies @-measurability of g. This completes the proof.
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