NON-EXISTENCE OF EVERYWHERE PROPER CONDITIONAL DISTRIBUTIONS¹

BY D. BLACKWELL AND C. RYLL-NARDZEWSKI

University of California, Berkeley

- **1.** Introduction and summary. Let Ω be a Borel subset of a complete separable metric space, and denote by $\mathfrak B$ the class of Borel subsets of Ω . For any probability measure P on $\mathfrak B$ and any real-valued random variable f on Ω a conditional distribution given f is a real-valued function Q on $\Omega \times \mathfrak B$ such that
- (1) for each $\omega \in \Omega$, $Q(\omega, \cdot)$ is a probability measure on \mathfrak{B} ,
- (2) for each $B \in \mathfrak{B}$, $Q(\cdot, B)$ is an \mathfrak{A} -measurable function on Ω , where \mathfrak{A} is the Borel field of f-sets, i.e., sets of the form $\{\omega \colon f(\omega) \in F\}$, where F is a linear Borel set, and
- (3) for every $A \epsilon \alpha$, $B \epsilon \alpha$,

$$\int_A Q(\omega, B) \ dP(\omega) = P(A \cap B).$$

A conditional distribution Q will be called *proper* at ω_0 if

$$Q(\omega_0, A) = 1$$
 for $\omega_0 \varepsilon A \varepsilon \alpha$,

i.e., if, given that f has the value $f(\omega_0)$, we assign conditional probability 1 to the set of ω 's at which f has the specified value. It is known [2] that conditional distributions always exist that are proper at almost all points of Ω , i.e., except at a set of points N with P(N) = 0. We shall show that, in general, the exceptional set N cannot be removed.

More precisely, we shall prove

THEOREM 1. Let Ω , \mathcal{B} , f, \mathcal{C} be as above. A function Q with properties (1), (2) and

(4)
$$Q(\omega, A) = 1 \quad \text{for} \quad \omega \varepsilon A \varepsilon \alpha$$

exists if and only if there is an Ω -measurable function g from Ω into Ω such that

(5)
$$f(g(\omega)) = f(\omega)$$
 for all ω .

The existence of such a g implies that the range of f is a Borel set.

It follows from Theorem 1 that, whenever the range of f is not a Borel set, everywhere proper conditional distributions given f cannot exist.

The only difficult part of Theorem 1 will be a consequence of

THEOREM 2. Let X, Y be Borel subsets of complete separable metric spaces, let $\mathfrak A$ be a countably-generated subfield of the field of Borel subsets of X and let $\mathfrak A$ be the class of Borel subsets of Y. For any function μ on $X \times \mathfrak A$ such that (a) $\mu(x, \cdot)$ is

Received July 31, 1962.

¹ Prepared with the partial support of the National Science Foundation, Grants G-18792 and G-19673.

for each x a probability measure on $\mathfrak B$ and (b) for each $B \mathfrak e \mathfrak B$, $\mu(\cdot, B)$ is an $\mathfrak G$ -measurable function on X, and any set $S \mathfrak e \mathfrak C \times \mathfrak B$ such that

$$\mu(x, S_x) > 0$$
 for all $x \in X$,

where S_x denotes the x-section of S, i.e., $S_x = \{y : (x, y) \in S\}$, there is an α -measurable function g from X into Y whose graph is a subset of S, i.e., $(x, g(x)) \in S$ for all $x \in X$.

The weaker hypothesis that S is $\alpha \times \alpha$ measurable with every x-section S_x non-empty is not sufficient to guarantee that S contains the graph of an α -measurable function, as an example of Novikoff [3] shows.

2. Proofs. We first note how Theorem 1 follows from Theorem 2. If Ω , \mathfrak{B} , f, \mathfrak{A} are as in Theorem 1, and Q has properties (1), (2), (4), we apply Theorem 2 with $X = Y = \Omega$, $\mu = Q$, and S the set of all pairs (x, y) for which f(x) = f(y). Then $\mu(x, S_x) = Q(x, A(x)) = 1$, where $A(x) = \{\omega : f(\omega) = f(x)\}$, so that, from Theorem 2 there is an \mathfrak{A} -measurable g from Ω into Ω such that $(\omega, g(\omega)) \in S$ for all ω , i.e.,

(5)
$$f(g(\omega)) = f(\omega)$$
 for all ω .

Conversely, for any α -measurable g satisfying (5), we define

$$Q(\omega, B) = 1$$
 if $g(\omega) \varepsilon B$
= 0 if $g(\omega) \varepsilon B$,

and verify easily that Q satisfies (1), (2), and (4).

Moreover, since g is α -measurable, there is [1] a Borel measurable function h from the real line into Ω such that

(6)
$$g(\omega) = h(f(\omega))$$
 for all ω .

(5) and (6) together imply that the range of f is $\{y: f(h(y)) = y\}$, which is clearly a Borel set.

For the proof of Theorem 2, we need the

LEMMA. If $X, Y, \mathfrak{A}, \mathfrak{B}$ are as in Theorem 2 and μ is a function on $X \times \mathfrak{B}$ such that (a) $\mu(x, \cdot)$ is for each x a nonnegative, finite measure on \mathfrak{B} and (b) $\mu(\cdot, B)$ is \mathfrak{A} -measurable in x for each $B \in \mathfrak{B}$, then for every $\mathfrak{A} \times \mathfrak{B}$ -measurable subset S of $X \times Y$ and every $\mathfrak{B}, 0 \leq \mathfrak{B} < 1$, there is an $\mathfrak{A} \times \mathfrak{B}$ set $\widetilde{S} \subset S$ such that \widetilde{S} has closed x-sections, and $\mu(x, \widetilde{S}_x) \geq \theta \mu(x, S_x)$ for all x.

PROOF. If $S = A \times B$ where $A \in \mathfrak{A}$ and B is closed, we may choose $\widetilde{S} = S$. The class of sets S for which the lemma holds is clearly closed under finite union. We must show that the class of S for which the lemma holds is closed under monotone union and monotone intersection. If S_n is increasing and the lemma holds for each S_n , choose $\widetilde{S}_n \subset S_n$ such that \widetilde{S}_n has closed x-sections and

$$\mu(x, \widetilde{S}_{nx}) \geq \theta^{\frac{1}{2}}\mu(x, S_{nx})$$
 for all x .

We may suppose, replacing \tilde{S}_n by $\tilde{S}_1 \cup \cdots \cup \tilde{S}_n$, that $\tilde{S}_n \subset \tilde{S}_{n+1}$. Define $T_n =$

 $\{x\colon \mu(x,\,\widetilde{S}_{nx}) \ge \theta\mu(x,\,S_x)\}$, where $S=\mathsf{U}S_n$. The T_n are monotone increasing and $\mathsf{U}T_n=X$, so that the set \widetilde{S} whose x-section is \widetilde{S}_{nx} for $x\ \varepsilon\ T_n-T_{n-1}$ has the required properties.

If S_n is decreasing and the lemma holds for each S_n , let $\bigcap S_n = S_n$, and define λ on $X \times \mathcal{B}$ by

$$\lambda(x, B) = \mu(x, S_x \cap B) / \mu(x, S_x) \text{ if } \mu(x, S_x) > 0,$$

 $\lambda(x, B) = 0 \text{ if } \mu(x, S_x) = 0.$

Choose $\widetilde{S}_n \subset S_n$, with closed x-sections, such that $\lambda(x, \widetilde{S}_{nx}) \geq \theta_n \lambda(x, S_{nx})$ for all x, n, where $\theta_n = 1 - (1 - \theta)/2^n$. We assert that $\widetilde{S} = \bigcap_n \widetilde{S}_n$ has the required properties. Its x-sections are clearly closed, and $\widetilde{S} \subset S$. If $\mu(x, S_x) > 0$, then $\lambda(x, S_{nx}) = 1$ and $\lambda(x, \widetilde{S}_{nx}) \geq \theta_n$. Then

$$\lambda(x, \tilde{S}_x) \geq 1 - \sum_n (1 - \theta_n) = \theta$$

i.e., $\mu(x, \tilde{S}_x) \ge \theta \mu(x, S_x)$. If $\mu(x, S_x) = 0$, this inequality is trivially true, and the lemma is proved.

We turn to the proof of Theorem 2. Applying the lemma with Y replaced by its completion, we obtain a set $S_1 \subset S$ with closed x-sections and $\mu(x, S_{1x}) > 0$ for all x. For any $\epsilon > 0$, we cover Y with a sequence F_1 , F_2 , \cdots of closed sets, each of diameter $< \epsilon$, define n(x) as the smallest integer k for which $\mu(x, S_{1x} \cap F_k) > 0$, and denote by S_2 the set whose x-section is $S_{1x} \cap F_k$ for n(x) = k and $\epsilon = 1$. Applying the same construction to S_2 with $\epsilon = \frac{1}{2}$ yields $S_3 \subset S_2$, etc. We obtain a sequence of sets $S \supset S_1 \supset S_2$, \cdots , with $\mu(x, S_{nx}) > 0$, and S_{nx} closed of diameter < 1/n - 1. The set $S^* = \bigcap S_n$ is then $\alpha \times \alpha$ -measurable, and each S_x^* contains exactly one point, so that S^* is the graph of a function g. According to a theorem of Sierpinski [4], any function whose graph is a Borel set is Borel measurable, so that g is Borel measurable. Finally, $\alpha \times \alpha$ -measurability of S^* implies that, for any Borel measurable function h on Ω such that α is the field of h-sets, the value of g is determined by that of h, and this, with Borel measurability of g, implies α -measurability of g. This completes the proof.

REFERENCES

- [1] Blackwell D. (1955). On a class of probability spaces. Proc. Third Berkeley Symp. Math. Statist. Prob. II 1-6.
- [2] Loève M. (1960). Probability Theory. Van Nostrand.
- [3] Nivikoff P. (1931). Sur les fonctions implicites measurables B. Fund. Math. 17 8-25.
- [4] Sierpinski W. (1921). Sur les images des fonctions representables analytiquement. Fund. Math. 2 74-80.