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1. Summary. In this work, a close approximation to the positive normal
orthant is obtained for the special case in which all the correlation coefficients
are equal. From this expression, an approximation for the general case is sug-
gested. For special cases, even closer approximations are obtainable.

2. Statement of the problem. Consider n correlated random variables, dis-
tributed with zero means and unit variance according to a multivariate normal
distribution, whose density function we will write as ¢, (1, 2, + -+ @.). Then
the probability that all » random variables will be positive is

ff f ¢."(x1,x2,~--xn)dx1dx2"‘dx'n.
0 Jo 0

This probability will be denoted by P, (c11, ¢z, * ** Can), Where ¢y , etc., denote
the elements of the inverse of the covariance matrix. Let the correlation co-
efficients be denoted by p;; . Then, since the density function obeys the relation
I¢n _ ¢n
9pij ox; 0x 7 ’

we have, for example,
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There will be in(n — 1) such equations—one for each correlation coefficient.
Equation (1) is a special case of Equation (6) given by Plackett [5].

3. Equal correlation coefficients. Let the resultant probability in the special
case in which all the correlation coefficients are equal to be denoted by P, (p).
Then the in (n — 1) Equations (1) add up to

dP.(p) _ n(n — 1) p
dp  4r(1 — pz)?PH <1 + 2p>'

Therefore, since P,(0) = (%)™, we have

(2) P(p) = (%) polo D [ P <1 _:2>\> G EXV)%’

Equation (2) is the same as Equation (102) given by Ruben [6].
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Now, P;, P;, and P; can be found by direct integration; the results are

(3) Pl = %7
4) P; = 1 [1 + (2/x) arc sin p],
5) P; = §[1 4 (2/7) (arc sin p;2 + arc sin py; 4 arc sin py;)].
If we combine (2) with (4), we obtain
1 12 . 24 (7 .\ N
(6) P4(p)—T6|:1+7r—arcsmp—|—1r—Zfoarcsml_l_z)\(l_)\z)%:l,

and if we combine (2) with (5) (remembering that we are considering only
the case for which p;y = p13 = pss = p) we obtain

1 20 . 120 [° . A d\
(7)  Ps(p) —gﬁ[l+?arcsmp+—fo arc sin y Tad= )\2)%].

2

We can continue the process of combining (2) with the succeeding equations,
and obtain the general equation

Pato) = (3) [1 4+ "= D e sin

2
n(n — 1)(n —2)(n — 3) [° . A X
+ o ‘{arcsml_l_z)\(l_)\z)%
n
nin —1) -+« (n — 5) [P [T . A du
®  + e fofo AC S TN (1 = W) (1 — )
n = 1) - (n—7) [[FE R
+ o fofo fo e S TN

) d\ du dv 4. :|
(1= ML — ) (1 — )} '
Equation (8) is an exact expression for P,(p). The integrals included in this
expression cannot, as far as I am aware, be expressed in terms of elementary
functions, but they can be found by numerical integration, and a short table of
them is shown in Table I.

For brevity, let us denote these integrals by I.(p), I3(p), etc. [I1(p), in this
notation, is just simply arc sin p]; and let us denote our working approximations
to them by Is , I3, ete. Also, for brevity, let § = arc sin p/x. Now, I,(0) = 0;
I,(p) is nearly equal to (arc sin p)?/2 when p is very small;

I,(3) = »/120;
L) = */24.

If we now let
(9) I3 (p) = [(arc sin p)*/2(1 + 46)],



NORMAL ORTHANT PROBABILITIES 193

TABLE I
The Integrals Appearing in Equation (8)

P Ix(p) Is(o) Li(e)
.00 .000000 .000000 .000000
.05 .001172 .000017 .000002
.10 .004404 .000117 .000022
15 .009477 .000343 .000083
.20 .016067 .000712 .000203
.25 .024057 .001232 .000397
.30 .033375 .001907 .000673
.35 .043812 .002727 .001037
.40 .055459 .003706 .001495
.45 .068254 .004843 .002052
.50 .082247 .006152 .002714
.85 .097454 .007628 .003486
.60 .114012 .009291 .004379
.65 .132053 .011154 .005404
.70 .151813 .013243 .006580
75 .173640 .015607 .007934
.80 .198120 .018306 .009506
.85 .226180 .021464 .011370
.90 .259820 .025310 .013668
.95 .303950 .030429 .016770

1.00 .411234 .043064 .024159

we find that the expression is exact when p = 0, %, or 1. The error of the approxi-
mation is shown in Fig. 1.
Similarly, I3(0) = 0; Is(p) is nearly equal to (arc sin p)°/6 when p is very
small;
I;(3) = 7°/5040;
I;(1) = #°/720.
Therefore, the expression
(10) I = [(arc sin p)®/6 (1 + 46) (1 + 86)]

is exact when p = 0, %, or 1. A graph of the error of this approximation would
be similar in shape to the curve in Fig. 1.
In general, Ix(0) = 0; Ix(p) is nearly equal to (arc sin p) K/K! when p is
very small; )
Ix(}) = /K + 1}
Ix(1) = 75/ 2K)\,
and the expression

(arc sin p)*
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is exact when p = 0, 3, or 1, and provides a convenient approximation to Ix(p)
as p varies from 0 to 1.
Equation (8) is now replaced by the approximation

P.(p) = @) [1 + za(zw—_l)m Gin p 4 M= 1)(n7r—2 2)(n = 8) s
(12)

+n(n—1) (n—5)1:+ ]

s

4. The approximation suggested by (12) for the general case. An approxima-
tion for the general case is suggested by the coeflicients of the various terms in
in (12). For

n(n—1)/2

is the number of correlation coefficients; [n(n — 1) (n — 2) (n — 3)]/2° 2! is the
number of disjoint pairs of correlation coefficients—that is, the number of pairs
of the form ps p.s but excluding pairs of the form pa s ;

mn—1) --- (n— 5)]/2*3!
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is the number of disjoint triplets;
nm—1) - (n—7)]/2"4!

is the number of disjoint quartets; and so on.

Given a pair of correlation coefficients, ps and p.s, the number of distinct
additional correlation coefficients obtained by interchanging these four sub-
scripts is four: pue, pea, s, and pp ; the number of distinct additional co-
efficients obtained by interchanging the six subscripts in a given disjoint triplet
is 12; by interchanging the 8 subscripts in a given disjoint quartet is 24; and so
on. If we expand the denominators of the successive terms in (12), the coeffi-
cients of 6 in the resultant polynomials are 4, 12, 24, etc. It would therefore
appear that the following expression is a reasonable approximation for the
general case:

QT st
Oab 0.4 0.5
s HER 2N T O SR ITIES S e
13
oab ocd o ogh
+25 2 5> 0y £ 0, 55 0y
<1+K<K—1>><1+K<K'—'_1‘>')“’<1+ K >

.

where, in each case, Y 0;; means the sum obtained by interchanging the sub-
seripts in the numerator—that is, »_0;; does not contain the 6’s that are in the
numerator.

Equation (13) is a working approximation obtained by very non-rigorous
methods. In the next section we compare it with some exact results; and in the
following sections, we compare it with other approximations.

5. Comparison of (13) with some exact figures. It follows from the work of
Anis and Lloyd [1] that, when the inverse of the covariance matrix has 2’s on the
main diagonal, —1’s on the two adjacent diagonals, and zeros elsewhere, then
P, =1/(1 + n). The comparison between (13) and a few of these exact prob-
abilities follows:

P, P,
n exact Equation (13)
4 1/5 .199818
5 1/6 .166165
6 1/7 .142577

Thus, the approximation is, in this special case, good enough for many useful
purposes.
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TABLE II
Comparison of the Three Proposed Approxzimations with Some Exact Figures
Py
P12 P23 P34 P14 P13 P24 ,

Exact | Eq. (13) P}fljlljf(f;'s Eq. (14)
.926 |.135 .809 0 0 0 .181502 | .179507 .180672 .181943
.809 |[.309 |.809 0 0 0 .175417 | 170545 | .172500 .175000
(5/8)% 1/4 (5/8)% 0 0 0 .167675 | .164602 .166171 .168014
1/2)t|1/2 @2 | o 0 0 .166667 | .159226 | .161458 .164583
1/2 .309  |.926 0 0 0 .160997 | .157150 | .158575 .160318
1/2 1/2 .809 0 0 0 .158407 | .152381 .154167 .156667
1/2 1/2 (5/8)% 0 0 0 .156295.| .150808 152538 .154954
1/2 1/2 (1/2)% 0 0 0 .148438 | .144345 .145833 .147917
1/2 .309 .809 0 0 0 .146944 | .144697 .145833 147222
1/2 1/2)t |1/2 0 0 0 .146701 | .140792 .142361 .144676
.809 |1/2 .309 0 0 0 .143055 | .139762 .140833 .146333
1/2 .809 .309 0 0 0 .141944 | .136585 .137500 .139286
1/2 (5/8)% |1/4 0 0 0 .135973 | .132270 .133025 .134396
1/2 1/2 1/2 0 0 0 .133333 | .130952 .131944 .133333
.309 |.926 .135 0 0 0 .130808 | .128221 .128516 .129165
1/2 .809 135 0 0 0 .129733 | .127796 .128227 .128979
.309 |.809 .309 0 0 0 .129583 | .126923 .127500 128571
1/2 ° (1/2 .309 0 0 0 .121597 | .120238 .120833 .121667
1/2 1/2 1/2 1/2 |0 0 .166667 | .156250 | .166667 |not relevant
1/2 1/2 1/2 0 1/2 0 .150000 | .151041 .152777 |not relevant
(3/8)% |12/3 (3/8)% 1/4 |(1/6)% {(1/6)% | .200000 | .199818 .207653 |not relevant

.926 = (3 + 5%)/(4:2%) .809 = (5% + 1)/4
135 = (3 — 5%)/(4-2%) 309 = (5t — 1)/4

The exact values of P4 for a few discrete examples in which p3 = piy = pas = 0,
were found by Schlafli [7], and for a few others by Coxeter [3]. The decimal
equivalents of these exact fractions are listed, in order of decreasing Py, in the
first 18 lines of Table II; the next two lines are examples given by Plackett [5];
and the last line is the example that follows from the work of Anis and Lloyd [1].

The error of the approximation yielded by (13) never exceeds 0.06 P, .

6. Comparison of (9) with approximations given by McFadden and by Sondhi.
In 1956, McFadden [4] proposed the approximation

I* = (arc sin p)%(3 + 5 arc sin p)
? 7 B(1 + arc sin p)(1 + 2 arc sin p)

The error of this approximation, for correlation coefficients smaller than .9 is
shown in Fig. 1. When p = 1, the error is .00792. When p is smaller than 3, the
approximation is much closer than ours.

In 1961, Sondhi [8] proposed an approximation of considerable complexity
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yielding very great accuracy when the correlation coefficient is greater than 1.
It thus supplements McFadden’s approximation.

From the point of view of our work, however, the chief feature of these two
approximations is not their relative accuracy, nor complexity, but the fact that
they do not (as McFadden points out) lead to approximations for the more
general case.

7. Comparison of (13) with an approximation given by Plackett [5]. When n =
4, (1) becomes

oP, 1 [ 2 . e ]
— = |1+ Zarcsin —2_|.
dprz  8w(1 — pip)t + L (esacan)t

There are six such equations. Upon combining them we obtain

~ 1 Pab ) . Ced ANap
Py = Py(0) + &= 2 fo [1 T arcsin (cwcddy] (T =)

1 2 . 4 f"“ . ca dha
=16 [1 + 22 arcsinp + ;{ b O e ca)t (1 — NG

four similar integrals obtained
by interchanging a, b, ¢, and df |-

+

Pod . Cab d)\cd
arc sin <
+ ‘[ (caa cbb)’ (1 — )\zd)%

Plackett [5] has shown that, when the correlation coefficients are small, the sum
of these six integrals is approximated by the expression

(arc sin pg) (arc sin p.q)
+ (arc sin pg,) (arc sin ppq)
+ (arc sin pgq) (arc sin pp) .

This may be compared with the corresponding term in (13). For the particular
case in which p;3 = p1s = pas = 0, Plackett’s approximation is closer than the
approximation yielded by (13), even when pys , p2s , pse (any or all) are reasonably
large. This is shown in Table II.

TABLE II1

An Example Showing the Effect of Changing the Signs of the Correlation Coefficients
wn one of Schlifli’s Examples [7] (table originally given by Plackett [5])

p12 p23 p3e 2 >0 4r P,
1/2 1/2 1/2 1 2/15 2/15
1/2 —1/2 1/2 1/3 2/15 11/120
1/2 1/2 —1/2 1/3 —2/15 3/40

—1/2 1/2 —1/2 ~1/3 2/15 1/20
+1/2 —1/2 —1/2 —1/3 —2/15 1/30

—1/2 —1/2 —-1/2 -1 2/15 1/120
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It is interesting to note than when pp = py3 = ps = pu =%, p3 = pu = 0
(line 19 on Table II), Plackett’s approximation is exact. In light of the dis-
cussion to be given in Section 8, below, one might be led to conjecture that his
approximation is optimum for the cases typified by this example.

8. An approximation for the particular case in which p;3 = pu = p2u = 0.

Let Ps be written as Py = £5[1 + 2> .0 + 4F] and consider what happens
when the signs of any of the three non-vanishing correlation coefficients are
changed. The example in Table ITI will suffice to illustrate.

Now, in (13) we have approximated F as [0;20:4/ (1 + 6e3)], but the magnitude
of F does not change with the sign of 6;; . Furthermore, if we let

(14) F = [01202/ (1 — |03])],

the approximation becomes exact for this particular case, (|pw| = |pn| =
|psa] = %). The effect for the other examples is shown in the last column of Table
II.

9. Conclusion. Equation (13) yields a satisfactory approximation for the
normal multivariate integral. However, for special cases (such as for P, when
o1z = pua = paa = 0, it is possible to obtain better approximations.
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