TESTS AUXILIARY TO x2 TESTS IN A MARKOV CHAIN!
By Rura Z. Gowp

Columbia University

0. Summary. In testing certain hypotheses about finite Markov chains,
asymptotic x° tests have been derived which simulate x* tests in contingency
tables. This paper considers two methods of augmenting such tests. In Section
3 a x* statistic proposed by Anderson and Goodman [2] for testing the hy-
pothesis that the transition probabilities are homogeneous over time is de-
composed into asymptotically independent single degree components by an
extension of the decomposition given by Lancaster [11] for contingency tables.
An interesting corollary of the proof given here is a nested hypothesis theorem.

In Section 4, an asymptotic method of judging simultaneously all linear
combinations of multinomial probabilities in independent sequences of trials
is derived. The extension to transition probabilities in a Markov chain is given
in Section 5.

1. Introduction. The large sample theory of inference about Markov chains
based on a single observation on a long chain or on repeated observations from
a chain has provided tests about the order of the chain and about the homo-
geneity of the transition probabilities based on chi-square methods. Billingsley
[4] has presented a survey of some of these results and the reader is referred to
his paper for an extensive bibliography. Of particular interest here are the re-
sults of Anderson and Goodman [2], among which is an asymptotic x* test of
homogeneity of the transition probabilities over time. The interest in the present
paper is in methods which may help to pinpoint where (in time and/or over
which states) the departures from homogeneity take place if heterogeneity is
indicated.

The problem of detecting points of departure from homogeneity in Markov
chains has been considered by Anderson [1] and by Goodman [7]. Both have
proposed a sequence of x tests which are not independent, Anderson’s based
on likelihood ratio statistics and Goodman’s on the usual x* statistics in con-
tingency tables. The two methods are asymptotically equivalent and Goodman
7] shows that for a particular example the numerical results are quite close.
The decomposition of the x* statistic given in this paper provides a sequence of
tests which are asymptotically independent. While this property does not in
any way imply the superiority of this method, it does provide certain obvious
conveniences based on the properties of independent x* statistics.

The test statistic proposed by Anderson and Goodman [2] for the hypothesis
of homogeneity of the transition probabilities is computationally the same as
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the usual x” statistic in contingency tables and is computed from arrays which
formally resemble contingency tables. The crucial difference is that the number
which plays the role of the number of observations in the arrays arising from
Markov chain sampling is a random variable rather than a fixed number as in
the multinomial case. In the » X ¢ contingency table, the decomposition of the
x” statistic into (r — 1) (¢ — 1) single components has been studied by Lancaster
[11] and Irwin [10] and their results were further elucidated by Spencer [13].
They obtained two decompositions or partitions; the first being exact in the
sense that the sum of the components is exactly the value of the x* statistic for
the entire » X ¢ array, while the second, which is the relevant one here, leads
to an asymptotic equivalence. One may then test the individual components in
order to detect departures from independence.

Lancaster’s partition [11] is based on the x* statistics derived from
(r — 1)(¢ — 1) four-fold tables which are derived from the r X ¢ contingency
table. The decomposition given here is derived from the analogous four-fold
tables in the Markov chain array. The proofs for contingency tables [11], [10]
and [13] depend on the number of observations being fixed and the equivalence
shown is between the sum of all the individual components and the usual x*
statistic for the entire » X ¢ array. In Section 3, it is shown that an asymptotic:
equivalence exists between the usual x” statistic for any »’ X ¢’ (' < r, ¢ < ey
subset of the r X ¢ Markov chain array and the sum of appropriate individual
components. The asymptotic decomposition of the entire r X ¢ array is thus a
special case of the theorem proved. While this proof is given in terms of the x*
statistic appropriate for testing the homogeneity of the transition probabilities,
it is readily seen to apply to x” tests of other hypotheses about the chain which
resemble tests of homogeneity in independent sequences of multinomial trials.
(see, for example, the test proposed in [2] p. 99 for the hypothesis that the
chain is of a given order), as well as to x” tests of homogeneity in independent.
sequences of multinomial trials.

Goodman [8] and [9], in considering tests about the order of a chain, decom-
poses the likelihood ratio for certain contingency tables into asymptotically
independent likelihood ratio statistics, implying an analogous decomposition for
the corresponding asymptotically equivalent goodness of fit statistics. The proof
given here is based directly on the usual x* statistics themselves.

An alternative method of augmenting x* tests of homogeneity in Markov
chains is also presented here. The procedure derived enables one to construct
simultaneous confidence intervals for all linear combinations of the transition
probabilities in a finite Markov chain. The proof is based on Schwarz’s in-
equality. The idea of using this inequality to prove Theorems 3 and 4 came from
an analogous application of it extending the theorem of Scheffé [12] on simul-
taneous confidence intervals for all contrasts in the analysis of variance to all
linear combinations of the unknown parameters. Unfortunately, the originator
of this trick is unknown to this writer so that proper acknowledgment cannot
be made.

In the analysis of variance, the remarkable procedures of both Scheffé [12]
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and Tukey [14] for simultaneously judging all contrasts among the parameters
have the very desirable property that rejection of the homogeneity hypothesis
by the appropriate F or Studentized range test implies the existence of at least
one relevant confidence interval which does not cover zero. An analogous result
has not yet been obtained for the procedures derived in Sections 4 and 5. The
difficulty seems to be that if the homogeneity test in the case of multinomial
trials and of Markov chains is based on a x” statistic with say » degrees of free-
dom, the relevant confidence intervals are proportional to square root of a cut-
off point of the x* distribution with » 4 1 degrees of freedom.

2. The model. Let the states bez = 1,2, - - - , m and the times of observation
t=20,1,---, T. Denote by p:;(¢) the probability of state j at time ¢, given
state 7 at time ¢ — 1. It is assumed for convenience that p;;(£) > 0 (4,5 = 1, -+ -,
m;t=1,---,T).Arandom sample of N individuals is observed from the chain,
an observation on an individual consisting of the sequence of states occupied
by the individual at ¢ = 0, 1, ---, T. Let n;(t) represent the number of in-
dividuals in state ¢ at time ¢. It is assumed that the sampling is such that, as
N — «,n;(0)/N =, 9:({=1,---,m), where 0 < 5; < 1, D74 n; = 1. De-
note by 7;(¢) the number of individuals in state 7 at time ¢ who were in state 7
at time ¢ — 1. Let p:;(¢) = n.;(t)/n:(¢ — 1). Thus [2] the p;;(t) are the maximum
likelihood estimators of the p.;(t).

3. Decomposing the x? statistic in a finite Markov chain. It has been shown
[2] that an appropriate statistic for testing the hypothesis that the transition

probabilities are homogeneous, i.e., Ho: pi;j(t) = psj, 5,5 = 1,---, m; t =
1, -+, T,is

m T m
(3.1) X = ; t_E“_Zl ni(t — )[(Pii(t) — D)/ i,

where i; = D i1ni(t)/ D iz ni(t). Anderson and Goodman proved [2]
that under H, , the statistic

(3.2) Xi = ;jni(t — DI(Bis(t) — D) /Dail

is distributed in the limit as x* with (m — 1)(T — 1) degrees of freedom and
that, since the p;;(t) and the p;; for different 7 and ¢ are asymptotically inde-
pendent, x* = D_:xi has a limiting x* distribution with m(m — 1)(T — 1)
degrees of freedom.

Consider for 7 fixed the T X m array

N\J 1 2 .- m Total

1 na (1) naa(1) Nim(1) n:(0)

2 n:1(2) Ni2(2) Nim(2) n;(1)
(3.3)

T na(T) na(T) Nim(T) n(T — 1)

Total é na(t) t—il N (t) é Nim (1) ;;1 n;(t — 1).
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The statistic given by (3.2) is the one that would be used if one were performing
the usual test for homogeneity on the data of the array (3.3) in spite of the
fact that not only the marginal totals, the n;(¢ — 1), but also the number
> f_ini(t — 1), analogous to the total number of observations in a contingency
table, is a random variable.

Consider now the (m — 1)(T — 1) four-fold tables derived from (3.3) as

follows:

na(l) mna(l) na(l) + na(l) ns(l) v;nia(l) man{1)
na(2) na@| na(2) + na(2) na(2) S () nin(2)

|
na(1) + na(2) ne(l) + na(2)

7:1(3) Nia(3)
|
7—1 7—1 T—1 m—1 T—1
D na(B) 2 ne(B) 2 2 Mia(B) 2 nim(B)
=1 B=1 =1 a=1 p=1
m—1
na(T) na(T) zﬁAE Nim(T)
o 7
The general four-fold table is
t
Ni(t) ﬁ; ns,541(8) Nijn(t)
i J+1
2 nia(t + 1) nasa(t 4 1) 20 na(t + 1)
(3.4) a=1 T a=1
Total  Ng(t+ 1) ; Ns,i41(B8) | Niyja(t + 1)
j = 17 PN (]

t=1,---,T —1,

where Na(7) = Dpes D we1 Nia(8). These are analogous to the tables con-
sidered by Lancaster [11] for contingency tables.

Let
Vijn(t + 1)/NI'N [:Nij(t)ni,jﬂ(t + 1)/N* — ;ni,ﬂd(ﬁ)
(3.5) 3 nalt+ 1)/N2:|
Xt = 1 IS 3 )
I:Nij(t +1) ; ni,741(B)N i j4a(t) aZ=1 Nia(t + 1)/N4:|

j=1+,m—1;t=1---,T — 1.
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In Theorem 1 it is shown that under H, , the statistics x..;: associated with the
(m — 1)(T — 1) four-fold tables (3.4) are asymptotically distributed as inde-
pendent standard normal variates. The asymptotic equivalence between the
“usual” x* for any subset of the array (3.3) and the sum of an appropriate sub-
set of squares of the variates x;.;; is proved in the second theorem.

TarorEM 1. Under the hypothesis Ho :pi;(t) = pis (4,5 = 1, -+ ,m; ¢ = 1,

s T), the statistics xi:j: (¢, = 1, -+ ,m;t = 1, -+ , T) defined by (3.5) are

asymptotically distributed as independent normal variables each with zero mean
and unit variance.

Proor. Under H,, we have from [2] the asymptotic joint normality of the
n:;(t) and that

(3.6) &nii(t)/N = mi(t — 1)ps;,
where
(3.7) my(t — 1) = &n;(t — 1)/N = Z mcp[t H

pi ™ denoting the (ki)th element of the matrix lpisll (4,5 =1,---, m) of
tra,nsmon probabilities raised to the power ¢ — 1. Also, from [1] we have that
under H,,

(3.8) Var (n,5(t)/N) = pi(1 — pij)mi(t — 1)/N,
and

(3.9) Cov {n:;(¢)/N, na(t)/N} = —pipam:(t — 1)/N.
Let

Nt [Nij(t)ni (t+1)/N* — Z ns,5+1(8) }JZ Nia(t + 1)/N2]
] J+1
I:Z Dia Z PiaPi,j+1 Z mi(B) Z mz(ﬁ)"’h(t)]

j=1,--~,m—1,t=1,~~~,T—1,

(3.10)  yije =

and let

Tijs = (Ci:ftN)%{pi,fﬂ[Nﬁ(t)/Nﬂ; mi(B) — ai:l nia(t+ 1)/N mi(t):l

(3.11) ; , s
+ Z=1 Dia [ni,j-l-'l(t + 1)/N mi(t) — ’; ni,j+1(ﬁ)/NﬁZ=:0 mi(B)]} ,
j=1L-- m—=1;¢=1.---, T —1,
where

J+1

(3.12) Cizjt = mi(t) Z mq(B)/ Z mq(B) Z Dia Z PiaPi,j41 -
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We shall show that the z;.;, are asymptotically independently normally dis-
tributed with 0 means and unit variances, that the y;.; are asymptotically
equivalent to the x;.;; and that the x;.;; are in turn asymptotically equivalent
to the yi.;: . It will then follow that the limiting distribution of the xs.;; is that
of independent standard normal variates and that their squares are asymptoti-
cally independently distributed as single degree x*s.

Since the ;.;; are linear functions of asymptotically jointly normal variables,
the n:;(t), the limiting joint distribution of the z;.;; is normal. To calculate the
moments of the limiting distribution, we have from (3.6)

(3.13) &@sjr) =0 j=1,---,m—1;¢=1,--. T — 1.
Because of the asymptotic independence for different 8 of the n;q(8)/N[1],

o*(i:4e) = €injs/ N {02 [Z’m‘ﬂ Ny(t) i mi(B)
=

(314:) - az=:1 Dia ﬁz; ni,j-l-l(B) ﬁg} mi('B)]

+ [ai=1 Pia Wi j11(t + 1)/mi(t) — pijn 21 nia(t + 1)/m,~(t)]} ,

j=1L-- m—=1;t=1---,T —1,

where the symbol ¢°(z) denotes the variance of the limiting distribution of .
Utilizing (3.8) and (3.9), we find o*(zs:5e) = 1 (j =1, -+ ,m — L3¢ =1, -+,
T — 1).

We next calculate Cov (#:jr, @sm). Considering separately the cases
1= <ht=k2—-j=ht<k3 —j<ht<kandd —j<ht>k
and utilizing (3.8) and (3.9) along with the asymptotic independence for
different 8 of the n:.(8), it can be shown that in all cases Cov (2.j;, Tsm) =
0(j # h, and/or ¢ 5 k). The variables z;.j: (j = 1,-+-,m — 13t =1,---,
T — 1) are thus asymptotically distributed as independent standard normal
variables.

We show now that

(3.15) p lim (yi5¢ — %i:0) = O.
Let

N Nii(8nigaat + 1)/N* = X n1,51(8) 2 naalt + 1)/N2:l
(3.16) yiyy =—L = =1

)

ma() g m(8)

Jj=1L--m—-1;¢=1---,T—1,
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and let

e = N {pus | NalO)/N Zmi8) = 3, s+ 1/ mid |
(3.17) ; = ¢a=1 -1

+ aZ=1 Dia [ni,j+1(t +1)/N mi(t) — ﬁz=:1 ni,41(8) /N ﬂ;o mi(ﬁ)]}-

Then
(3.18) Yiiie = (Ci:je) yieie,
and
(3.19) Tivje = (Cirje) @i -0 -

Since ¢;.;; is a constant,
(3.20) p lim (ysj0 — 2ije) = (Ci:jt)%p lim (yt{:jt - xg:it)~

Both y.;; and z;.;, are continuous functions of the N:(B8)/N and have continu-
ous partial derivatives with respect to these variables so that a Taylor’s expan-
sion in terms of differences 7:a(8)/N — mi(B — Dpia(a = 1, -+, 75 + 1;
B =1,---,t+ 1) may be obtained. It is easily verified that both y;.;; and
i.j; vanish at the point n:(8)/N = mi(f — Dpia(a = 1, - ,j + 1;8 =
1, - -+, ¢4 1) and that all corresponding first-order partial derivatives evaluated
at this point coincide.

All second-order partial derivatives of z;.;; vanish while the order of magni-
tude of the second-order terms of the expansion of y;.;; is that of

N'[n:a(B)/N — mi(B — 1)piallniy(8)/N — mi(s — 1)pal,
a, Y = 17 ,.7+ 1:676 = 17 7t+ 1.

Because of the asymptotic joint normality [2] of terms such as N*[n:.(8)/N —
m;(B — 1)psa], these terms are bounded in probability while p lim [n:y(8)/N —
mi(8 — 1)psy] = 0. Thus the second-order terms of y;.;r (of which there are a
finite number) tend to zero in probability. It follows that

(3.22) Y4 lim (y;:jt - x'l{':jt) = 0)

and because of (3.20) this establishes (3.15). It follows, ([6], p. 254), that the
limiting distribution of the y;.;; is that of the z;.;; . Thus, ([5], Theorem 2) the
limiting distribution of y3.;¢ is that of x* with one degree of freedom and because
of the asymptotic independence of the y;.;;, the limiting distribution of
Tt Do yh e ds that of x* with (m — 1)(T — 1) degrees of freedom.
We shall show now that

(323) 4 lim (Xi:jt - yi:jt) = 0.
Write

(3.21)

(3.24) Xirit = Yi:jtlizjt
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where
I' Nt + 1)/sz‘(ﬁ)z pwpwﬂzmt(ﬁ)
Zi:jt J+1 I
ﬁz_% mi(B) > pi Ni(t+1)/N an,m(ﬁ)/N
(3.25) = a=1

Jj+1 J+1

Z mi(B8) Z Pia mi(t) aZ=1 Dia

1,J+l(t)/N ‘g:ll nia(t -|— 1)/N

a=

o

From the fact that p lim [n:;(¢{)/N — m(¢t — 1)p:;] = 0 and ([6], p. 255), it
follows that

(3.26) p lim [2;.;; — 1] = 0.

Therefore, the limiting distribution of the x.;: is that of the y..;;, namely, that
of independent standard normal variables from which it follows that x3.;, is
asymptotically distributed as x* with one degree of freedom and that
ot D 7o 3. is distributed in the limit as x* with (m — 1)(T' — 1) degrees
of freedom.
Consider now the following subset of (3.3):

na(l) na(1) s g (1)
na(2) n2(2) s mgga(2)

(3.27) WJEm—1;6 =T — 1.
na(t 4+ 1) mp(t+1) -+ nm(t4+1)

Compute the usual x* associated with such an array, i.e.,

erved — expected )’
expected

(3.28) X+ Lt +11=2 (obs

bl

where the ‘“‘expected” corresponding to n:,(p) is

g) 2 ™e(P) 35 al8)/Nasiali+ 1)
' p=1,,t4+1g=1-,j+1
TaeorEM 2. Under Ho:pij(t) = pij (4, 7 = 1,---, m; t = 1, , 1),
plim ([ :5 + 1, ¢+ 1] — D ke Zh—lyzhk) = 0, where X'[¢ : ]—I—l ¢ +1]

1s defined by (3.28) and (3.29) and y.u, by (3.10).
Proor: By induction. For j = ¢ = 1,

(330) X2[7: :2) 2] = X%:l,l
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where X7 .1, is defined by (3.5). But by (3.24) and (3.25)

(3.31) Xiaa = ygzl,lzgzl,l ,
and since p lim (2f.;,; — 1) = 0 by (3.26) and ([6], p. 255), the theorem is true
forj=t=1.
Now assume that
t—1 j—1

(3.32) pim (65,0 — 3 2 i) = 0.
We show next that then

t—1 g
(3.33) p lim (,8 [i:5 + 1,14 ,; hz_jly hk)
and that

t j—1
(3.34) p lim (;8 gt 1 =2 > y%) = 0.

k=1 h=1
To prove (3.33), we write
(3.35) X7+, =a+b+c+d,
where

¢ I:nm(ﬁ) — > ni(p) Xj:niq(ﬁ)/Nﬁ(t)]
(336) @ =Nigm() 3 = ke ,
o 3 nia(p) 32 mial8)

EECEDEND> mqw)/zvi,-(t)]
t g [Z nzq(ﬁ)/Nu(t) - anq(ﬁ)/Nz J+1(t>]

(337) b =2N; (1) z; Zl o=t —
” ; nw(ﬁ)
(8.38) ¢ =N a(t) ﬁgl Z;:l
d ¢ J+1 2
[ﬂ;nw(p) 2 nia(B)/N () Z io(P) Zniq(ﬁ) /Ni,,.ﬂ(t):l

¢

Zl Nia(P) Z Nig(B)

Jj+1

[ni,i+l(ﬁ) Z nw(ﬁ) Z U2 ;+1(p)/N¢ j+1(t):'

(3.39) d=73 e .
Z nm(B) Z ni ;+1(I7)/Nz J+1(t)

a=1
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We shall show that

(3.40) plim (a — ¥[¢:4,8) = 0,

(3.41) b=0

and

(3.42) pMnG+d—§¥%»=&

We may write

. I:ma(ﬁ) — 3 nalp) 3 mqw)/Nﬁ(t)]

(343) a = Ny(t) ;32—:1 Zl tzz=1 §=1 €,
- pZ=1 nia(p) q;naq(ﬁ)

where

Ni(t)/N ’Zl nig(8)/N

(344) g = ya) .=
> neyn NN
g=1
It is easily verified that
(3.45) plim (¢ — 1) =0 =1, ---,¢
We may therefore write
(3.46) a = x'li 1, 8] + R,

where

. [ma(ﬁ) Z n(p) quw)/Nw(t)]
(347)  Riyi = Nu(t) ﬂZ > = 3,

1 el ﬁ\; Nia(D) Z ni(B)
and
(3.48) 8 = e — L.
Because of (3.45), |
(3.49) p lim & =.0.

Since each term in ’[¢ : , #] is non-negative and their sum is bounded in proba-
bility by virtue of (3.32) and the fact that Y _s—1 > i—1 %5 tends to a limiting
distribution, each of the terms must be bounded in probability. Thus

(3.50) Rije = Z Z 0,(1)oy(1) = Z Z 0p(1) = op(1).

f=1 a=1

From (3.50) and (3.46), we have (3.40).
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Now, since
%, [16(8) = X, natp) Zmal)/N 0|
(351) " ”

=§MW—MM§MWWWFQ

it follows that b = 0.
Adding ¢ to d and simplifying, we have

t
(3.52) ¢c+d= ﬂZ; Govs »

where

I:Nii(t)ni.jﬂ(ﬁ) - ; n4,54+1(k) qX; ’niq(ﬁ):l

(3.53) Gy =Lt I ,
N? Zo mi(r) azl Dia aZl Pia Pij+1mi(B — 1)
and
J t—1 t—1 J+1
2 Pie 2, mi(r) 2 mi(r)paj md(B — 1) D Pia
(3.54) v = a=1 =0 =0 a=1 .

.. ! &
Ni(t)/N :é:l nii(p)/N ;niq(ﬁ)/N

It is easily verified that

(3.55) plim (ys — 1) = 0.
Setting

(3.56) wg = vg — 1,

we may write

(3.57) c+d= 62;:1 Gs(1 + wg).

It will be shown below that Y 4., G tends to a limiting distribution, from which
it will follow that

13
(3.58) plim > Gews = 0.
p=1
We shall then have that
13
(3.59) p lim (c +d -3 Gﬂ> = 0.
p=1

We have only to show that

t t—1
(3.60) p lim (; Gs — kZl y%:jk> =0,
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and (3.42) will be established.

Write
t—1
(3.61) kZ Vi = F'C,
=1
where
i i+l
(3.62) C = 1/0221 Dia ; DiaDij+t 5
and
t—1
F'=NY
k=1
k i 2
(363> I:quj(k)nqj,j-(-]_(k -+ ].)/]\72 - BZ—; ’ﬂi,j+l(6> Zl ’I’Lia(k + 1)/N2]
T k—1 — T = :
mi(k) ZO mi(r) Z:O mi(T)
‘Write also
t
(3.64) ﬂZ Gs = GC,
=1

where C is defined by (3.62) and
N 13

¢ = a2
l: - mi('f)] =
(3.65) - ) i :
[ FaDnesm 8N = 3 masu®) 3 mt0)/' |
. mi(B — 1) ’
Then . t-l
(3.66) p lim (ﬂ;l Gs — :‘;1 y%:jk> = Cplim (G’ — F").

Writing the Taylor’s expansions of @' and of F' in terms of differences
Nia(B)/N — mi(B — 1)psa, it is easily verified that up to first-order terms, all
terms vanish and that the second-order terms of G’ are identical with the corre-
sponding terms of F’. Thus, F’ and @ can differ at most by third-order terms
which can be shown to tend to zero in probability. It follows that

(3.67) plim (@ —F') =0,

and because of (3.66), we have (3.60). Thus, by (3.60), (3.59), (3.51), (3.40)
and (3.35), we may write

p lim <x2[i=j 1,8 —

t—1 j—1 j
2 2
4 Yimk — E yi:jk>

h=1 k=1

t—1 j
= p lim (xz[i:j + 1,4 — 1; y?i:hk> = 0.

=

(3.68)
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The induction on ¢ is completely analogous with the roles of the subscripts
and of the m;(B3) and p,, interchanged. Thus, given (3.32), (3.34) as well as
(3.33) follows, completing the induction and the proof. Therefore, the usual
x” defined by x’[¢ :5 + 1, ¢ + 1] associated with the array (3.27) is asymptoti-
cally distributed as x* with jt degrees of freedom. It also follows from (3.24) and
(3.26) that

t g
(3.69) p lim (x2[i:j +Lt4+1 -3 3, xf,hk> =0,
where 3 is the usual asymptotic single degree x” variable associated with the
appropriate four-fold table defined by (3.4).

Some corollaries, the first of which has been proved alternatively by Anderson
and Goodman [2] follow immediately:

CoroLLARY 1. x’[¢ :m, T associated with the entire matriz of observations
(3.3) for i fixed is asymptotically distributed as x* with (m — 1)(T — 1) degrees
of freedom. Each of the (m — 1)(T — 1) components may be identified with
one of the four-fold tables of the partition given by (3.4).

COROLLARY 2. (¢ : 7, t + g1 — x[¢ : 7, 8](g > 0) s distributed in the limit as
x" with g(§ — 1) degrees of freedom. This difference is asymptotically independent
of ¥°[¢ : 4, t] and its g(j — 1) components can be identified with the appropriate
four-fold tables of (3.4).

CoROLLARY 3. x°[¢ :5 + 7, 8] — x’[¢ : 4, t](r > 0) s distributed in the limit as
x> with r(t — 1) degrees of freedom and is asymptotically independent of X'[¢ : 7, 1].

CoROLLARY 4. On nested hypotheses. Let {H,}, s = 1, -+, ¢, be a sequence of
hypotheses as follows:

Hl:pii(t) = Pij 1= 1’ e ;ml;j = 17 e ’mél);t = 17 ) 'El)
wherel < my < m, 1 < m® < mfori <my,m® =0fori>m,1 <t =T
fori £ my, t&¥ = 0fori> myand

Hs:pij(t)=pif i=17"')m8;.7‘=1)"')m1§8);
t=1,-- ,tﬁs);s =2 -,c

where Moy < M = mymE M S mfori £ mey, 1 £ m® < m for mey <
P me,m® =0fori>me, t 2t < Tfori £ meq,l St £ T for

Moy < 1 < me and £ = 0 for 1 > m,.

Let '
2 < 2 1 1
X1=Zl:x[’i:m§),t§)]
<
and
2 _ SN e ® ® &, D (D)
. s s . — s—
x":ZlX[Z:mi b — Zx[itmi y b ] s=2,---,c
1= 1=
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Let

m(8)—1 ¢(8)—1

i i
> I, s=1,---,¢
1 t=1

do = D

8
7=1 j=

where

() =
I3 =

lfr1 £ i=me, 1 Sj=m® — 1,1 =t =t —1
0 otherwise.

Then if Hy (s = 1, - -+, ¢) s true, the statistics xi , x5 , - ** , Xs are independently
distributed in the limit as X with degrees of freedom dy , dy — dy, +++ , ds — oy
respectively.

4. Simultaneous confidence intervals for all linear functions of multinomial
probabilities. Let us assume that we are sampling from k independent multi-
nomial populations. Let p;; (¢ = 1, --- , k;j = 1, - -+, ¢) be the probability of
the jth class in the 7th sequence. The assumption that each multinomial sequence
has the same number, ¢, of categories is made for convenience and is in no way
necessary for what follows. We also assume that p;; > 0(¢ =1, -, k; j =
1, -+ -, ¢). Let n; be the number of observations from the 7th multinomial popu-
lation. Denote by z;; (¢ = 1, --- , k;5 = 1, - - - , ¢) the number of observations
in the jth class of the 7th sequence. We shall find asymptotic simultaneous con-
fidence intervals for all linear functions

k c
(4.1) 0 = ; ,; biipii »
where the b;; may be any real numbers.
Let
. k c
(4.2) b =2 2 bipis,
=1 j=1
where
(4.3) Dij = Tii/Ni .

Then the variance of 4 is readily seen to be

@) A0 =R am) [ Sma - (Sbam) |-

Denote by S%(8) the estimate of ¢°(§) given by

W S0 =5 S ehss - (Sbars) |.
Since Y iy pij =1 (i =1,--+,k), we may write

k
(4.6) =6 + Zi bic
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where

, k c—1
(4.7) 6 = ; 2 (b = ba)pis
and putting
(48) aij=bij_bz'c j=17"'7c—1;/£=17”'7k7
we write

, k c—1

(4.9) b = ; 32 GigPij

We shall derive asymptotic simultaneous confidence intervals for all 6 and by
adding D %_; bs to each of the endpoints, we shall then have the desired intervals
for all 6.

THEOREM 3. Asn; — «© (¢ = 1, -+, k) the lower limit of the probability that
the values of all functions  simultaneously satisfy 6 — S(O)L < 6 < 6 + S(0)L,
1s at least 1 — a. Here L is the positive square root of the upper (1 — «)th
percentage point of the x* distribution with k(¢ — 1) degrees of freedom.

Proor. Consider for each 7,

(4.10)

c—1 2
Q'i — Z (mu nzp—u)_ — Z (x” nq, pw) + j=1

i=1 N Pij j=1 N Pij N Pic

It is well known that Q; is asymptotically distributed as x* with ¢ — 1 degrees
of freedom, and because of the independence of the & multinomial sequences,
the limiting distribution of

(4.11) Q=2

is a x” distribution with k(¢ — 1) degrees of freedom.
For each 7, let

= Pat+ - 4 Pyt pa :rl: o
bi I:n'b pij(pil + e + Pi,j—1 + pw) (x“ 2 pu)

(4.12)

Dij .
> (@ — nips =1, -,c—1
F oo s T 7”’)] TEh
It is easily verified that the y,;’s are uncorrelated, asymptotically normally
distributed variables each with O mean and unit variance. Also, since
is1yii = Qi
1

yfj = Q.

C

(4.13)

k
=1 j

]
-
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Now let

= xil+‘..+xﬁ+mic ' — .My
Zij l:xij(xil + .-+ Tij1 + xw):l I:(xu Uz p”)

(4.14) - | | ]
+xil+ -I-xﬁ-i-x,-c,; (za — nipa)
Jj=1 -,c—=1;i=1,---,k.

Since (n:)*(x:;/n; — pi;) tends to a limiting distribution and because of the
consistency of the x,;/n; , it can be shown that

(4.15) p lim (y:;; — 25) = 0.
Since the y;; tend to a limiting distribution, it follows from (4.15) that
(4.16) plim (y3; — ;) =0,

and from this that
c—1
(4.17) p lim I:Z Z Yij — Z Z zu:l =0.
i=1 j=1 i=1 j=1
Thus the limiting distribution of D %_; Dt z;j is the same as that of Q, i.e., a
x” distribution with k(¢ — 1) degrees of freedom. It follows that
c—1
(4.18) Prob {Z > < } =1 —aq
=1 j=1
where the symbol = indicates equality in the limit. Alternatively, we may
write
(4.19) Prob {

(55

7=1 j=1

<L}él—a.

Now let asy, ez, -+, @ieq (4 = 1, -+ | k) be any sets of real numbers such
that a;; £ 0 for at least one pair (7, j) of indices. We have from Schwarz’s
inequality that

(4.20) ; :Xj aij 2ij| S <:Zl :i; af;) <; :_i z,,)

from which we may write
c—1

Z Z Q5 %ij kE c—1 1
—( Hgs(E54)] for all o
>3 ) ==
7=1 j=1

such that > > af; > 0. Therefore,

l; ZJ: e 271 Zijl R
(492) Prob ml < L, forall assuch that >, >, af; > 0
i

= Prob {I(; Jsz,)%l SL}=1-—a
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More conveniently, we write
fm Prob ([ % as ol 5 (5 3 o) 1
T K2 J
for all a;j such that Y. > af; > 0} =1 — a.

It should be pointed out that the above use of Schwarz’s inequality is analogous
to that in the derivation of joint confidence intervals for linear functions of the
population means in the analysis of variance.

Consider for each ¢,

c—1 c—1 5
x.l + R + x-~ + x~
D i = ) aii[ : =

(4.23)

(4.24) =1 =1 Ti(@a + 00 4 2o+ Zao)
Tij
¢ Xij — Ni Dij Lip — N Pil
[( ! pJ)+x7fl++x‘tJ+xwf§J( " ph):l
Setting
j—1 Tin
A5 = Ni oy .
(425) ! ;.Z; o I:(wn 4+ ot Topa F i) @+ o 2 x@c)]
. Tiy + o0+ Tij + T . .
Ni osj z:]_...,k; =1,"‘,C—'1,
+mie "xii@a + o F Tiga t+ T ’ I
gives
ko=l =1 . ,
(4.26) _ZIJ_ QijRij = ;,_Z aii(Pi; — pis) = 0 — 0,
where 6’ = D> %, Z?Z} a:70:; . The determinants of coefficients of the systems

(4.25) are triangular with diagonal elements
Za+ -+ Zij + e :r .
N4 =1,:-,¢c—1.
[xij(wu + e @i+ xe) J ’

These systems, for each 7, will have a solution provided all the z;; > 0. Because
of the assumption that all the p;; > 0 and the consistency of the 7; , this condi-
tion will be met with probability tending to 1 as the sample sizes increase in-
definitely. The solution is

i1
(427) nso; = |:a~- - ;;1 i i :l[mj(xa 2 e SN xic):r
’ . Yoomat e+ i1 + s T+ o+ T+ Tie

i=1,c—Li=1-,k

Direct calculation gives

(128) R F =R Eaisa- (T a ) | = ),

i—1 j=1

where S%(6') is the estimate of the variance of §’ analogous to S*(§). We then
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have from (4.23), (4. 26) and (4.28) that the lower limit of the probability is at
least 1 — a, that all 6" simultaneously satisfy

(4.29) 10" — ¢'|= S(8")L,
and by (4.6)
(4.30) |6 — 0] = S(6)L.
Finally, substituting (4.8) into (4.28), we have that
(4.31) S8’y = 8%b),
which establishes the theorem.
It is clear that if only categories j = 1,2, ---, 7, where r < ¢ — 1, are of

interest, it would be advantageous to group the remaining ¢ — r classes into
one category, thereby decreasing the number of degrees of freedom in the rele-
vant x° to k-r which would in turn shorten the lengths of the intervals. T am
grateful to the referee for pointing out that if not all sequences are of interest,
a similar reduction in the degrees of freedom with a corresponding reduction in
the lengths of the intervals can be effected by applying the procedure only to
those sequences which are of interest.

6. Simultaneous confidence intervals for all linear functions of the transition
probabilities in a finite Markov chain. Suppose now that we take N(large)
observations from a Markov chain as described in Section 2. It follows from
the results of Anderson and Goodman [2] that

(5.1) Q = Z ni(t — 1>; (Bii(t) — pai())*/pas(t)

is distributed in the limit as x° with mT(m — 1) degrees of freedom. Because of
the asymptotic independence of the 5;;(¢) for different 7 and ¢, their asymptotic
joint normality and consistency [2], we have here an analogue to the case of
k independent multinomial sequences, with & replaced by mT and the n;(t — 1)
assuming the role of the n; . Proceeding in the same manner as in Section 4, we
obtain Theorem 4. For an extension of the procedure to the case of simultaneous
confidence intervals for a finite number of certain non-linear functions of the
transition probabilities, see [3].

THEOREM 4. Let ¢ = D iy Doy Dy b,,(t)p”(t), where the b;;(t) are any
real numbers. Let § = D .45 “(t)p,,(t) and let 6°(J) be the estimate of the vari-
ance of the asymptotic distribution of N*(d — ¢) given by

FD) = B s [ 080 — (5 bi)pa(0)"]

Let S*(y) = &*($)/N and denote by M the positive square root of the upper
(1 — a)th percentage point of the x* distribution with mT(m — 1)degrees of
freedom. Then as N — w, the lower limit of the probability that the values of all
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functions ¢ simultaneously satisfy ¥ — S(P)M = v £ ¢ + SW)M is at least

1—a.
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