SAMPLING VARIANCES OF THE ESTIMATES OF VARIANCE
COMPONENTS IN THE UNBALANCED 3-WAY NESTED
CLASSIFICATION

By D. M. MasamMuNULU!
Sri Venkateswara University

1. Introduction. Sampling variances of estimates of components of variance
obtained from data, that are unbalanced, are difficult to obtain compared with
similar derivation when the data is balanced. Matrix methods of deriving ex-
pressions for the sampling variances of the variance component estimates for
the unbalanced case are developed in [3] and they are applied to some special
cases in [3], [4] and [5]. Here we extend those results to the case of 3-way hier-
archial (nested) classification.

2. Model and analysis of variance. In the earlier work [5] the sampling vari-
ances of variance component estimates are obtained by Henderson’s Method 1
[2] from data having unequal subclass numbers, assuming the completely random
model, namely Eisenhart’s Model II, [1]. Here we consider the same situation
for the 3-way nested classification.

The linear model for an observation ;i is

Zijim = B+ @i +bij + ciji + €ijim

where p is the general mean, a; is the effect due to the ¢th first stage class 4;,
b;; is the effect due to the jth second stage class B;; within 4, c,;; is the effect of
Ith third stage class C;, within B;; , and €;;i. is the residual error of the observa-
tion Z;jim . We assume the number of first stage classes A;isasothati =1, -,
Within each A-class 4; there are 8; B-classes so that j = 1, ---, 8;. Further
within each B;; class there are vi; C-classes so that [ = 1, - - -, ¥;; . The number
of observations in the third stage class C;j; is n.;; . All terms of the model (except
r) are assumed to be independent and normally distributed random variables
with zero means and variances o, o5, o5 and o5 respectively. These are the
variance components which are to be estimated. The sampling variances of these
estimates are to be found.

The usual analysis of variance is given in Table I where 8 = 2B,y =
> i > ivii, N = 25> 2 imii and with usual notation for totals and
means.

The components of variance are estimated by equating each sum of squares
of the ANOVA (except for “total”) to its expected value. Denoting the resulting
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TABLE 1
Analysis of Variance (ANOVA)
Source of Variation d.f. Bums of squares
Between A-classes a—1 Ciniz.) —N&2....=T, - Ty

Between B-classes within A-classes B—a (OCiinigd) — Ta= Taw — Ta

Between C-classes within B-classes vy—=8 (CiingEia) — Ta

= Tabc - Tab
Within C-classes N —»~ (i m 2tim) — Tave
= TO - Tabc
Total N -1 Ty — Ty

estimates as ¢~ , 65 , &5 , and & , the equations giving them are
To'— Ty = ni6a + 265 + 038" + va6%
Ta — Ta = vs65 + vs6% + 0165
Tae — Tap = vsé?y + s

I

I

To — Tape = V1062
where -
vn=N-—F vy = ks — ks vy = ks — ks vy =a—1
vs = N — k4 vg = ke — ks n=Bf—a vs =N — ke
=y —B vo =N — 7.
The k’s that appear in the above relations are functions of n:;;’s namely
k= D.ini./N ke = 2: > ;ni /N
ks = 20 20 2amnin/N ko = D D inij/n.
ks = 200 205 2amin/mi. ke = 2: 20 Dihin/n. .
3. The required variances and covariances. The within C-classes sum of

squares (Ty — Ta)/os has a chi-square distribution with (N — y) degrees of
freedom. Hence the variance of ¢2 is

(3.1) var (63) = 205/ (N — v) = 204/v10 .

Further Ty — Ta. is distributed independently of T, Tw , Ta and T’y so that
covariances of ¢ , 65 and ¢ with 42 are obtained directly as

(3.2) cov (65, 62) = — (vs/vs) var (82)
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(3.3) cov (63, 6%) = (veve/vs — vr) var (6%)/vs
(3.4) cov (6%, 62) = [vavsvs + v2(viws — veve) — vavsVs] var ( 62 / (vysvs) .

This property of independence can also be used to derive the variances of 6,
5 and 4% and the covariances between them in terms of var ( ¢%) and the vari-
ances and covariances of T , Tap , T and T; . Now

(3.5) vt var (62) = var (Twe — Tas) + v3var (83
(3.6) vevs var (63) = var [vsTs — (vs + v6) Tas + 6T abe)
+ [os — (vs + v6)8 + vey]’ var (47)
(3.7 vivevs var (6%) = var [vs(vy + vs) Ta — (vavs + vavs — vsv5) T
+ (vavs — vsvs) Tane — vs0sTy] + [vs(ve + vs)
— (vavs + vavs — v305) B + (vavs — VsV5)y — vsVg]” var (6%)
Further we have
(3.8) vvs cov (83, 6%) = cov (Tao — Ta, Tave — Tas) + vivy var (83
— Vgvg Var (&3,')
(3.9) vwss cOV (8%, &%) = scov (Ta — Ty, Tare — Ta)
— 03¢0V (Tap — Tay Tare — Tap)]
+ vs(vavs — vavr) var (62) — vs(vss — vabs) Var (8%)
(3.10) vuwsws cov (6%, 65) = scov (Ta — Ty, Tap — Ta)
—vgcov (Ta — Ty, Tape — Tar)
— 0300V (Tap — Ty Tare — Tap))
+ [vavrvs — va(v0s + vavr)] var (67)

— vawgvs var (63) + vsvevs var (6%).

Il

The second term in each of these expressions can be obtained from Equation
(3.1). The first terms on the right side of Equations (3.5) to (3.10) can be ex-
pressed as linear functions of variances and covariances of Tu , Tas , Tabe and T; .

4. Variances and covariances of T., T, Ta. and T;. By adopting exactly
the same methods as in Searle [5] we can get the variances and covariances of
T., Tas, T and Ty . [Details are omitted.] The results are given below. The
constants “k;’ that appear in Equations (4.1) through (4.10) are defined in
(4.11).

(4.1) var (T.) = 2(Nkwoh + knop + knoy + acs + 2Nkwaos
+ 2Nksonoy + 2N otat + 2hknoies + 2kschor

+ k5o’ 02)
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(4.2) var (Ta) = var Ty + 2[(Nky — ka)os + (ke — k) oy

+ (B — a)os + 2(Nks — kao) ooy + 2(N — ki) ojos
+ 2(ks — ks) a?ycrﬁ]

(4.3) var (Tuo) = var (Tw) + 2[(Nks — k) oy + (v — B)os
+ 2(N — ks)a?,af]
(4.4) var (Ty) = 2(kio’ + keop + ksoy + o3)°

4.5)  cov (Ta, Tw) = var (Ta) + 2[(ki — ke)os + (ks — kn)oy

+ 2(kis — kzo)”é”i]
(4.6)  cov (Ta, Tar) = var (Ta) + 2[(ke — kn)os + (ko — ku)oy

+ 2(kis — ko) ooy

= cov (Ta; Tw) + 2(ks — kis) oy

2(kroy + Kisop + oy + Nos + 2koosos + koo
+ 2Nkyoka? + 2knohe’ + 2Nksojos + 2Nksoyol) /N
(4.8) cov (Ta, Tawe) = var (Tas) + 2(ku — kw) oy
(4.9) cov (Tas, Ty) = cov (Ta, Ty) + 2[(ks — kw)op + (ks — ku) oy

+ 2(kss — ki) opoy /N
(4.10)  cov (Tase, Ty) = cov (Tw, Ts) + 2(ke — kis)o/N.

The s that appeared in the relations (4.1)—(4.10) are functions of n:;;’s and
are defined as follows

kr = > inl.. ks = D¢ D ini

ko = 20 D05 Doumii ko = 26 (205 22umiqn) /..

bu = 2o 2o (andn) /nige ke = 2 (2oyni)/ni.

ks = 2 (2o5mi5) % ma. e = D (205 2amip)?/me..

bs = Doi 20 (2oamia) ¥/ mi. e = 2o { 2imei(2amin)}/na..
(411) = Do (2oinii) (205 2imiq) /na.

Fis = 2oi {205 (2oumin)*/mii} /..

T = i 25 (2amii)¥/mis ke = 2i (2oimis) (205 2oimiq) /ni..

b = 2o (205 2oumin)’/ni.. Jow = (o inis)Ymk.

ks = 2oimi (205mi5) fos = Doima. (205201 min)

ks = 205 25 (2umiq)

(4.7) cov (T., Ty)

Il
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5. Results. Using the expressions for variances and covariances of T,, Ta,
Tw. and T, from (3.7) we get
vivgvs var (6%) = 2[gios + 9208 + gsoy + guot + 2950505 + 2ge0oy
+ 2gro%os + 295080y + 2ga080 + 2g1007 02
where
g1 = vvslks(N + k1) — 2ky/N]
g = v5v(ka + k3 — 2kia/N) + 030i(Nky + ks — 2k10)
— 200905 (k1s — kze) — (ks — kss) /N}
vsvs (ks + k3 — 2k1a/N) + 0303 (as + kar — 2hss)

Il

gs =
+ (o6 — v508) (Nks + ko — 2ku) — 2000908 (Fis — k) — (hus — kue) /N
+ 2008(vavs — v3v5) [(kro — kis) — (ks — kys) /N
— 2008[(ky1 — ko) — (ko — kis)]
ge = vsvg(a + 1 — 2N) + v3i(8 — @) + (o5 — vs) (v — B)
+ [ows(a — 1) + vavs(a — B8) + (vas — vas) (v — B)1*/v10
gs = vsvslkea(N + k1) — 2kas/N], g6 = 02dlks(N + k1) — 2z /N],
gr = vsvs(N — ky)
gs = vavs (kao + kaks — 2kur/N) + 0303 (Nks — kyg)

— 200503[(kis — ko) — (oas — ki) /N]
go = vivi(ks — ko) + v3R(N — k)
gro = v3vs(ks — ks) + v30a(ks — ks) + (vas — v505) (N — k).
Similarly (3.6) reduces to

vsvs var (65) = 2(dios + daoy + daos + 2dicie’ + 2dsoie’ + 2dgo’o?)
where
di = vs(Nky + ks — 2ks)
dy = v3 (ko + kor — 2k1s) + v5(Nhy + kg — 2ku) + 2v08(k1o — ks + ku — ki)
dy = 03(8 — @) + vs(y — B) + [s(a — B) + vs(v — B) /o0
ds = v3(Nks + ks — 2kss), ds = (N — ko) (N — k)
ds = (N — ke) (N — ks) (ks — ks).
The relation (3.5) reduces to
Ug var (&?r) = 2(Nks + ki — 2’011)0‘31 + 4(N — ks)a?yaz
+2(x — B)(N — B)o:/(N — v)
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and (3.8) simplifies to
vsvs cov (65, 6%) = 2(Fus — ki + kis — ki) oy + 2(vwe/vi0) oo — vevs var (6%).
Further from (3.9) we get
vss cov (6% , %) = 2[vsf (ko — ki) — (ko — kus) /N}
— vof (ks — Fas) — (kao — Kus)}oy + 2(vo/v10) (vas — vav7) o
— vs(vgws — vevs) var (6%)
Finally from (3.10) we have
visvs cov (6% , 63) = 2[(kss — Kaz) — (ks — ks) /Nlos
+ 2[(kis — ko) — (ks — Ka) /N — vef (ko — ks) — (ko — kis) /N}
— v3(ku — ks + k, — ko) loy + 2[(kas — kao) — (kas — kur) /Nlogoy
+ (2/v10) [vavws — vo(vavs + vsvr)los — vevsvs var (65) + vsvevs var (65).

The expressions for variances and covariances of the variance components’
estimates involve products of the unknown variance components o, o5, o and
os . If one is interested in estimating these variances and covariances, one sub-
stitutes the estimates 6% , 63, % and &> for the parameters o%, o3, o> and o- re-
spectively. The estimates thus obtained will in general be biased. In order to
obtain unbiased estimates one has to proceed as follows.

In the formulae for variances and covariances of ¢%, ¢35, ¢> and 2, every
product of the type ofop is to be replaced by ¢562 — cov (4% , 42) whenever 8 and
o are different. The terms of the type o4 are to be replaced by (45)* — var (6).
Then one can rewrite those formulae as 10 simultaneous equations for the esti-
mates of variances and covariances of variance components’ estimates. Solving
these equations one can get the required estimates, which are unbiased.

6. Balanced data. The formulae derived in the previous section reduce to the
already known results for balanced data when all the n;; are put equal to 7,
say. Suppose that every first stage class contains b second stage classes which
in turn each contains ¢ third stage classes. Then we can replace 8 and v in the
earlier formulae by ab and abc respectively, where a is the number of first stage
classes.

For example, we have, then

var (6%)

_ 2(aben’ + abn® — 2abn®)ay + 4abn(c — 1)o% o7 4 2ab(c — 1)(en — 1)as/c(n — 1)
- a2 b2 n¥c — 1) ’

This reduces to

g 2o, e ]
var(éy) = ,ﬁ[ ab(c — 1) + abe(n — 1) "
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The same result we get directly for the balanced case using the fact that
(Tabc - Tab)/(na?y‘ + 0'3) alnd (TO - abc) /0'425

are then distributed independently as x* with ab(¢ — 1) and abe(n — 1) de-
grees of freedom respectively. So we have E(Tue — Tw) = ab(c — 1) (nos + o)
and E(To — Tae) = abc(n — 1)o. and their variances are equal to twice the
square of their expectations divided by their degrees of freedom. Thus the
variance of the estimate of o> , namely

2 _ l[Tm— Taw  To— Tabc:l
" nlabc—1) abe(n — 1)

is same as the expression obtained above. The other results can also be verified.
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