RANK TESTS OF DISPERSION!

By Lincoun E. Mosgs
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Introduction and summary. In a recent paper [1] Ansari and Bradley have
shown the equivalence of two rank tests for comparing dispersion, one test due
to Barton and David [2], the other to Ansari and Freund, and have provided
tables of the exact distribution. They observe that Siegel and Tukey have pro-
posed [11] a similar test which permits use of existing tables. They also exhibit
the mean of the limiting normal distribution under the alternative hypothesis.
Later Klotz [7] established the equivalence of all these tests. In the present
paper it is shown that

(1) Any of these tests is consistent against differences in dispersion if the two
distributions have a common median and differ in a scale parameter, and under
some less restrictive circumstances. But without such restrictions bizarre asymp-
totic behavior can arise—including good sensitivity against translation for some
non-symmetric densities. One (not very natural) example is offered in which the
test constructed for rejection if one of two scale parameters is the larger, actually
turns out to be consistent against that parameter’s being the smaller of the two.

(2) No rank test (i.e., a test invariant under strictly increasing transformation
of the scale) can hope to be a satisfactory test against dispersion alternatives
without some sort of strong restrictions (e.g., equal or known medians) being
placed on the class of admissible distribution pairs.

(3) Box [3] has proposed testing equality of variances by applying the ¢ test
to the logarithms of variances computed within small subgroups. He indicates
how such tests should be robust (though not of exact size). Distribution free
tests of exact size can be constructed by applying a rank test in place of the ¢
test. Wilcoxon’s test applied to variances-within-triads has asymptotic efficiency
.5 against normal alternatives. If the two samples each have 9 observations then
the exact power is readily calculated and ‘‘efficiency” is again about .5.

1. Definitions. Let z;, - - - , & be independent observations on a variate with
absolutely continuous distribution function F(¢) and density f(¢). Let the sample
c.d.f. of these m observations be denoted by F.(t). Let 41, -+, y» be inde-
pendent observations on a variate with absolutely continuous distribution
function G(¢) and density g(t). Let the sample c.d.f. of these n observations be
denoted by G.(t).

For testing the hypothesis F = & against alternatives that the distributions
differ in “dispersion,’”’ Ansari, Bradley [1] and Freund have proposed a test
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which is described as follows. The combined sample is arranged in order from
least to greatest. Rank 1 is assigned to each of the two outermost observations,
Rank 2 to the next ones toward the center from them, etc. If the sum of the
sample sizes is an even number, say 2p, then the ranking ends with the two ob-
servations in the middle each receiving rank p. The test statistic, W, is the sum
of the ranks belonging to y1, - - - , y» . If W is small the hypothesis that F = @
is rejected in favor of the alternative that G has greater dispersion than F. (The
alternative that F has greater dispersion than G would be favored by a large
value of W. A two-sided form of the test rejects for W too large or too small.)

Ansari and Bradley show that the W test is equivalent to one independently
proposed by Barton and David [2]. Klotz [7] shows that the W test is equivalent
to one proposed by Siegel and Tukey [11]. The discussion of all these tests will
be done here in terms of the W test.

2. Asymptotic behavior of the tests. In [1] it is shown that W may be repre-
sented as

(1) W=nN{%— -‘jz:;

where we write 6 to denote a generic quantity of magnitude not exceeding one,
and where Hm,(t) = [m/(m + n)IFn.(t) + [n/(m + n)]G.(t) is the sample
c.d.f. of the combined sample. Now define Ay = m/(m + n) and impose the
condition that Ay = N 4+ 6(N ") for some fixed 0 < X < 1. Then we can re-

write (1) as

Hoalas) = 5|+ 007},

W/N) = § =175 WFays) + (1= NGulys) — 3+ 06N |
+ o(NY).

From the theory of the Kolmogorov-Smirnov test we have sup |[F.(t) — F(1) |
= 0,(N?) and sup |G.(¢) — Q(t)| = 0,(N?). Thus we may write (1) as

1"

(1”) W/(nN) = 3 — n"lg:l AF(y) + (1= NG (y;) — 3| + 0,(N 7).

In (1”7) we see W/(nN) exhibited as the sum of two random quantities. The
second coverages to zero in probability; the first is the average of » identically
distributed bounded random variables. The sum of the two components therefore
converges in probability to the expectation of the first, which we may call u*,

(2) W= 1= [P + (1= N6 — 3 d6 ).

It is also shown in [1] that, under our conditions on Ay, if F = @, then,
(3) Var (W/nN) = AN(1 — N\)](48N) (1 + O(n™Y)).
From (2) and (3) follows the consistency of the two-sided W test against
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alternatives giving non-zero values of

“IEe) + (1= N6 — .

(1) wozTi L,
It also follows from results in [1] that the W test is not consmtent agamst pairs
(F, @) for which u* = }. That is, for any (F, @) for which u* = 1, and given any
€ > 0 there is a level of significance a(e) such that the probability of rejecting
H, at level a(¢) does not tend to one (and indeed, remains less than ¢) as N — o
with m/(m + n) — A.

The asymptotlc behavior of the test can now be explored by studying the
quantity u* — % in certain examples. The examples presented have been chosen,
not because they are likely to arise in practice, but rather because they display
possibilities which inhere in the test under discussion.

ExaumpLE 1. Densities on disjoint ranges. Let the distributions of z and y be
completely disjoint in the sense that there exists a number A for whlch F4) =1
and G(A4) = 0. Then the value of x* is different from % unless A = 3, for

1 1
P f |)\F(t)+(1—)\)G(t)—%|dG(t)
= i I (=06 — 3] de()
1—2)\ A . 1
T - A<
B _2)\’ ifA> 3,

and it is easily seen that the first expression is positive for A < % and the second
is negative for § < A < 1. Thus in very large samples the hypothesis of equal
dispersion will be rejected (with high probability) or not, solely as the two sam-
ples are of different or equal size, and without any regard to the dispersion in
the populations at all, if the distributions are “disjoint’’ as defined here.

ExampLE 2. Translation parameter. Let G(t) = F(t — a). Then from (4)
we have

== [ VPO + (= PG — @) — H P = 0)

= [ 1@+ a) + (1 = NP — 3 dF ).

If we now assume that the density f(¢) is bounded, positive at the median, »,
and possesses almost everywhere a derivative f’ (¢) which is bounded, we may
expand the integral in a Taylor’s series in @, and obtain

) == [ @ — [ 1w d] + o,
From (5) we may infer that
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(a) If f(¢) is symmetric then the two integrals are equal, x* — % differs from
0 by an amount of smaller order than a, and the efficiency of the test as defined
by Pitman [4], [6] is then zero against translation.

(b) If the two integrals are unequal, then the two-sided test is consistent
against small translation of one distribution with respect to the other, and the
efficiency of the test is positive for these alternatives. This efficiency can even be
large as the following example shows. Let

) =3 0=t=1
=1/2(4 - 1) 1<t=s4
=0 otherwise.

Then corresponding to a translation aN*we have, in accordance with (5)

* 1_)\a[1_ 1 :I_AaA—2

Bmg™"Ma  1d =) aMmda-1’
and this divided by oo the (null) standard error of W/(nN) is

+_ 1 lad-2
P71 iniad -1

% ( A1 )
1 — MN48N
If instead we used the Wilcoxon test to detect this translation, then the com-
parable non-centrality parameter (corresponding to the Mann and Whitney U
statistic divided by nN) is
a 0
i L fA(t) dt
{1 = N)(1/12N)}

_ a4 2.
;—D\(l >\)] ——A_13a

= (1 = A)a12? [i + 4(—Al:-1—)]

A—2 A
= M1 = NP 5= 13’a(2(A_2)).

The square of the term in parentheses is the Pitman relative efficiency of the
Wilcoxon test to the dispersion test, and we see that, for A very large, the dis-
persion test is approximately four times as sensitive against small translations

as is the Wilcoxon test.
ExampLE 3. Scale parameter. Let G(t) = F(t/b). Then from (4) we have

3= ®) = [ () + (1 = NFG/b) — 3| aF(e/p)

- [: NF(bu) + (1 — MF(u) — 3F(u) du.

Now writing & = 1 + B(8 > 0) and imposing upon f the requirements that
f'(u) exists almost everywhere bounded, that uf’ (u) and u*’(u) arealsobounded,
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and that f(») > 0, we may expand the integral in a Taylor’s series in 8 and
arrive at

©  w == [ dn = [ au] + 06,

The parameter in (6), if negative, implies consistency against 8 > 0 of the one-
sided test which rejects for small W. Small W results from the observations y
being far from the median of the joint sample, i.e., “more spread out,” and
B > 0 implies y has a greater dispersion than z. Then the consistency of the
one-sided test against 8 > 0 is satisfactory, or unsatisfactory as u* — 1 is negative
or positive. If f is symmetric around zero then » is zero and both of the integrals
make a negative contribution to the coefficient of 8; in this case the consistency
of the one-sided test is “satisfactory.” But unsatisfactory consistency can occur
as in the following case:

@) = (1/0)(2/x) exp {—3(z/c — A)} iz 2= Ac > 0

7
@) =0 if z < Ao.

Then o is a scale parameter for this distribution (although 4 is not a location
parameter). Tables of the normal distribution show that v = Ae + .675s, whence

* 1 2 Ac+.6750 .
—1_ ol —(y —
B 1 )‘ﬂ[a?‘;r./;, uexp [—(u — Aes)*/o?] du
_2r
a1 J a0t .0150

2 675 2 00 . 675 . 1% .
=)\ﬁ—[f 26 ” dz—f ze ” dz—l—Af‘ e de— A e’ dz],
w L 675 o 675 '

and this expression is negative for small A and positive for large A. Thus for
distributions of the family (7) whether the test is consistent satisfactorily or
unsatisfactorily with regard to the scale parameter: ¢ depends upon the value
of the parameter A.

This result is not unnatural, in the light of what we have already found about
translation of non-symmetric densities, for if 4 is large then a small increase in
o, say Ag, not only increases the dispersion, but also shifts the distribution to
the right by 4Ac.

ExampLE 4. F and @ are two distributions with the same median ».

In this case we write

1 = [ [3 — NF(2) — (1 — NG(£)] dG(2)

uexp [—(u — Ac)’/o? du]

+4[y°° INF(E) + (1 — N)G(E) — 3] d6()
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a=wata{t- [ Fwaen - [ a-r o + 34

=14+ NE—-Plr<y<v) —Phr<y<ua)).

Now observing that if F = G the two indicated probabilities are each
%, we may write u* — 1 = A(A; + Ag), where P(z <y < ») = & + A, and
P(v» < y < z) = 5§+ Ag. We see that in case the medians of z and y are equal,
the consistency of the test depends upon P(y lies between z and the median)
which is a very natural dispersion parameter.

In this example, and some of those preceding it, the non-centrality parameter
contains \ as a coefficient. This results from having chosen to study the statistic
W with the normalization W/(nN) which is not symmetric in 7 and n. Reference
to the expression for the variance in (3) above shows that the non-centrality
parameter for W/(nN) expressed as a multiple of its standard deviation (under
the null hypothesis) involves A through the expression [(A)(1 — A)]* which has
the symmetry which is usual in two-sample problems.

3. General remarks about rank tests for dispersion. By a two-sample rank
test is usually meant a test based upon the ranks of the observations when ar-
ranged from least to greatest in one ranking. Such tests have properties ad-
vantageous in various circumstances. One property is that the value of such a
statistic is left unchanged by any strictly increasing transformation of the scale
of measurement, and thus the distribution of the test statistic and the properties
of the test are unaltered by such transformations.

The burden of this section is to show that this feature of rank tests makes it
hopeless to try to devise a satisfactory rank test of dispersion without greatly
restricting the class of distributions to which it is to be applied, at least if one
adopts either of two rather general concepts of what is meant by “dispersion.”

Dispersion in the first sense relates to closeness—on the average, and in some
specified sense—of independent observations within pairs (or larger clusters).
Some parameters of this first type, which contrast the dispersions of two popu-
lations are

Pr(lyn — 5ol > lt1 — 2]),  Elyr — 9| — Elzs — m,
Elrange (1, y2, -, yo)] — Elrange (1, 22, -+, m)),
E(y — 1)’ — E(z1 — 22)° = 2(0y — 03).
Dispersion in the second sense relates to closeness—on the average, and in some
specified sense—of a typical observation to some central number associated

with the distribution. Some parameters of this second type which contrast the
dispersions of two populations are:

Pr(ly — wl > |z — wl), Ely — »| — Elz — v,
E(y — Nu)2 — E(x — I‘x)2 = 0': - 0':-
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Both of these notions of dispersion depend upon distance. Though strict mono-
tonic transformations leave order unchanged, they do distort distance. Accord-
ingly we might suspect that, except possibly under restrictive circumstances, a
rank test could hardly serve well against dispersion alternatives.

It is easy to see that if two absolutely continuous distribution functions F, G
are disjoint in the sense of Example 1, then no rank test can satisfactorily con-
trast their dispersion. The reason is that the distribution of ranks is the same for
the pair (F(z), G(x)) as for the pair (F(Ty), G(Tz)) where T is any strictly
increasing transformation of the real axis. In particular, T may be chosen to
“stretch out” (in any of the above senses) the range of one of the random vari-
ables and to leave the other unaffected. Then the behavior of any rank test at all
would be entirely unrelated to the relative dispersions of the populations. Some-
what similar conclusions can be obtained by essentially the same argument if
one of the distributions has any mass lying entirely to the right, or entirely to
the left of the other. ‘

We offer an example of the same phenomenon for a pair of distributions ab-
solutely continuous with respect to one another. They have exactly equal dis-
persions in any of the above senses—or indeed in any usual sense at all. We then
show two transformations which leave the distribution of ranks unaltered; the
first one provides the one distribution with greater dispersion in all the above
senses while the second provides the other with the greater. For 0 < ¢ < 1 let
fo(t) = 2(1 — t) and g,(t) = 2t and let both densities be zero for ¢ outside the
unit interval. These densities are oppositely-facing right triangles on the same
base.

The first transformation replaces ¢ by ¢ . This amounts to replacing z by

2’ = —logzrand y by y' = —logy. _
Under this transformation the two densities become fz,)(u) = 2(e"‘ — ™)
and ¢g” (u) = 2¢7*. These densities have variances af,' =4 o5 = tand
P(lzy — @ > |yt — wsl) =
If instead we transform ¢ into 1 — ¢~ * the new densities, of 2” = —log (1 — z)
and y” = —log (1 — y) are f2(w) = 2™ and g3» (w) = w(e ™ — ¢ ) and

the relations above are now reversed. But under each of three pairs of densities
¢, )P, ¢®) and (f®, ¢®) the distribution of any rank statistic whatever is
exactly the same.

The author is indebted to Wassily Hoeffding for the following observatlons
with regard to this example. The random variable z s dlstrlbuted asy -I- z
where z has density exp (— u), u > 0, and is independent of y'. Hence, =’ will
have greater dispersion than y’ for any definition of dispersion such that (1)
the- dispersion of any random variable not certainly a constant is positive, (2)
the dispersion of the sum of two independent random variables with positive
dispersions is greater than the dispersion of either summand.

4. Some rank-like tests for dispersion. If one abandons the effort to construct
a two-sample rank test of dispersion which will behave well in spite of transla-
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tion, etc., he may still seek for a test having the convenience and robustness
often enjoyed by rank tests. Two lines of approach are natural—they correspond
to the two characterizations of dispersion we have already used.

First, one might apply a rank test to pseudo-observations constructed by
replacing each observation by its value minus the median of its sample. This
has been proposed as being suitable, at least in large samples, by Mood [9] and
Ansari and Bradley [1]. Justifying such a modified test for large samples would
require showing that so long as F = G (that is, provided the null hypothesis
held) there was a limiting distribution for the test statistic, independent of F;
the test would then be called “asymptotically distribution-free.” Sukhatme [12]
has shown that in fact Mood’s test so modified is not asymptotically distribution-
free. Ansari and Bradley [1] show that their modified test is not distribution-free
in small samples, and leave as an open question whether it is asymptotically
distribution-free.

Second, imitating a proposal of Box [3], we might break the samples up into
small, equal, exclusive, and exhaustive random subsets, compute for each such
subset the value of a dispersion statistic (e.g., range or sample variance) and
apply such a rank test as Wilcoxon’s to these statistics. This kind of approach
seems to be wasteful of data since only the variation within subsets is utilized,
that between subsets being ignored. However, Lehmann’s attempt [8] to use all
the information on dispersion resulted in a test statistic which is not only very
ponderous to compute but is not distribution-free. In view of the shortcomings
of rank tests and of median-adjusted rank tests for this problem, it seems worth-
while to explore the rank-like dispersion tests of the Box sort. (The term “rank-
like” is used because the tests are not invariant under distortion of the scale of
measurement, but do employ rank scores.)

The most readily interpreted test of this form would apply the Wilcoxon test
to the intra-pair differences

w = |t — 2|, Uy = |rs — x4 ete.
and
U =, lya — vel, v = |ys — y4| ete.

In this case the test statistic is essentially an estimate of P(|x; — x| > [y: — yl)
and this is a very natural dispersion parameter.

The rank-like test most easily investigated for small sample behavior under
normal alternatives is one based on triads of observations. Turning now to that

investigation, let

[

s=%}1:(x—f)2 7= ;(y—y)?

Let the original samples be z;, -+, Zsm and y;, - -, ¥s. . Let the observed
values of £ and 7 be w1, Ug, - -+, Unm and v;, v2, - -+, v, . The test rejects the
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hypothesis that 2 and y have equal dispersion if the sum of the ranks of the
v’s in the common ranking of the «’s and v’s is too far from its expectation.

The test is consistent against alternatives of the form P(¢ > ) # 1. The
probability appearing on the left-hand side is a fairly readily interpreted dis-
persion parameter.

If the observations come from normal distributions with parameters (u, , o2)
and (u,, o)) respectively, then the above inequality is equivalent to o2 % o .
Further, because the distribution of the sample variance of three independent
observations from the normal distribution is given by the exponential distribu-
tion, it is relatively easy to investigate small sample, as well as large sample
behavior of the test. The case 3m = 3n = 9 and a = .05 is worked out below.

Txsr: at level .05 reject H, (accept the alternative hypothesis that o2 > o2) if
min (vlyv2) v3) > m‘a‘x(ul,W)u:‘l)

dz

1—3=Huqmw=mm=3f(bwwﬂvwﬂ—
A ka?

_ al _ —ku\3 —3u — l__ 3 3 — ]-
-3£(1 ) m_3g ey 3a+m>

Similar calculations can be carried through for the case 3m = 3n = 12. An
.05 test in this-case must involve some randomization since there are 70 (equally
likely under H,) outcomes. The Wilcoxon test calls for rejection with probability
2 if either of the orders yielding a rank sum for the «’s of 12 is obtained and for
certain rejection if the sum is 10 or 11. A more powerful test studied by Savage
[10] is got by rejecting certainly for the rank sums 10 and 11 and for one of the
two orders with rank sum of 11, rejecting with probability 3 if the other appears.

TABLE 1
Values of k corresponding to stated power of several tests for comparing two variances

Power
Test

.10 .25 .50 .75 .90

N., N,
F test 4,4 1.721 3.938 9.277  21.85 50.01
5,5 1.555 3.095 6.388  14.19 26.24
6, 6 1.463 2.666  5.050 9.569 17.44

N.,N,
Rank-like test 9,9 WorS) 1.50 3.00 6.90 18.04 51.10
12, 12 (W) 1.40 2.48 4.98 11.35 28.95
12, 12 (S) 1.40 2.46 4.87 10.73 26.06
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For each of these rank tests it is possible to find the value of k, defined above as
oa/os , for which the power assumes any specified value. Such values are dis-
played in Table 1, W denoting Wilcoxon and S denoting Savage. Values of &
corresponding to the same power values for a .05-level F' test based upon samples
of equal size N, = N, are also shown. (The latter values can be read directly
from table 8.3 of [5].) It is seen that the rank-like test has power comparable to
that of the F test based on approximately half as many observations, and that
the test is less satisfactory for “distant alternatives,” that is, for large values of .

The asymptotic efficiency for normal alternatives is readily evaluated and
found to be .5.

This two-sample test can be extended to the k-sample dispersion problem by
applying the Kruskal-Wallis H test to the ranks of the variances of triads in the
k samples. In small samples the exact size of a rank-like test can be a powerful
reason for using it. In large samples it may well be more convenient (but not
necessarily more efficient) to apply a Box-test than a rank-like adaptation of it.

For both classes of tests the question of the best subgroup size remains open.
And in the case of the tests proposed here there also remains the question of
which index of dispersion—range, variance, average deviation, etc.,—should be
used within subsamples.

If considerations of asymptotic eﬂiclency for normal distributions are im-
portant to the user then he could construct a test related to the present one just
as the Fisher-Yates-Hoeffding-Terry [13] test is related to the Wilcoxon test.
This modification would entail the loss of ease of interpretation of the con-
sistency parameter. It can be conjectured that such a test would have asymptotic
efficiency 2. The most powerful test of any kind based on u;, * -« , Um , 01, *** ,¥n
would have efficiency £ in comparison with the likelihood ratio test. The locally
most powerful rank test should asymptotically attain this ceiling for alternatives
very near to Ho.
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