FURTHER EXAMPLES OF INCONSISTENCIES IN THE
FIDUCIAL ARGUMENT?

By A. P. DEMPSTER
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1. Introduction and summary. Fisher wrote as though the fiducial argument
were a well-defined form of reasoning: witness phrases like “the fiducial argument
itself,” (Fisher (1956), p. 120)2 and ““a genuine fiducial argument” (Fisher (1956),
p. 172). However, attempts to extend the set of examples of the fiducial argu-
ment beyond the set personally approved by Fisher have often run into the
difficulty that several inconsistent fiducial arguments appeared to be available
for a single situation, e. g., the pair of papers by Creasy (1954) and Fieller (1954),
Mauldon (1955), Tukey (1957) and Brillinger (1962).

Apparently in response to the Mauldon example, Fisher intimated that the
joint fiducial distribution of several parameters should be built up “rigorously
by a step by step process” (Fisher (1956), p. 172). Fisher’s comment is rather
confusing because the Mauldon approach does appear to be a step by step ap-
proach. Brillinger (1962) presented an artificial two-parameter example in which
Fisher’s type of step by step approach can be applied in inconsistent ways. In
Section 2 I'will show that a step by step approach leads to alternative incon-
sistent answers even in the basic two parameter situation of sampling from the
normal distribution.

In Section 3 I will demonstrate a difference between the fiducial distribution
for the means (u1, u2) of a bivariate hormal distribution given by Fisher (1954)
and the marginal distribution of (uy, p2) under the joint fiducial distribution of
all five parameters of the bivariate normal given by Fisher (1956).

2. The mean and variance of a normal distribution. Let N(u, ¢2) denote the
normal distribution with mean y and variance o* and let x2 denote the chi-square
distribution with r d.f. Let M, denote the distribution of a root mean square on
r d.f., ie., the distribution of (Z/r)* where Z has the x} distribution. Let £,(r)
denote the non-central ¢ distribution on r d.f. with parameter 7, i.e., the distribu-
tion of (V + 7)/P where V and P are independent with the N(0, 1) and M,
distributions, respectively. Finally let G.({; ) denote the c.d.f. of the ¢.(7)
distribution.

If X1, X, - -+, Xy denote a random sample of N from N(u, *), then it may
be agreed that any joint fiducial distribution for u and ¢* should depend only on
the sufficient statistics, which may be taken in the form
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(2.1) X= (l/N)gXi and S = [1/(N — 1)1}2“,1 (X: — X)"

Fisher’s fiducial argument (Fisher (1935, 1956)) is easily expressed in terms of
the pivotal quantities

(2.2) U=N(X-pu)/o and Q= S/o.

From a conventional viewpoint, U and @ are independent with N(0, 1) and
M y_, distributions for any given values of x and o’. The fiducial argument says
that one should continue to regard U and Q as having the stated joint distribu-
tion after X and S are fixed by observation. Thus the joint fiducial distribution
of u and ¢ is that implied by

(2.3) u=X+ SU/N'Q and ¢ = S/Q

where X and S are regarded as fixed and U and Q distributed as above. Pre-
sumably a justification of this argument should seek to explain why one should
continue to regard U and Q as having the distribution believed relevant before
observation of X and S. However, this paper seeks only to describe the argument
and not to interpret it. '

Another description of the same argument is given step by step as follows
(cf. Fisher (1956) pp. 119-120):

(i) Note that @ = S/o is a pivotal quantity depending only on the single
parameter o. Use @Q to assign a fiducial distribution to ¢ in the obvious way, i.e.,
o is assigned the distribution of S/Q where S is fixed and @ has the My_1 dis-
tribution.

(ii) Note that, given S and o, X — u has the N(0, o*/N) distribution and so
may be regarded as a pivotal quantity, given o, depending only on the single
parameter u. Using this pivotal quantity, u is assigned the N ( X, o*/N) distribu-
tion as a conditional fiducial distribution of x given o.

Clearly, (i) and (ii) together determine a joint fiducial distribution of x and o.
Also, since the pivotal quantity in (i) is identical to @ in (2.2) and the pivotal
quantity in (ii) is equivalent to U in (2.2), the step by step argument gives the
same joint fiducial distribution as given by the first description.

Following the form of the step by step description above, analternative fiducial
argument will now be proposed. The alternative is achieved by regarding the
parameters not as ¢ and p but, equivalently, as u/o and ¢. The roles formerly
played by S and X will now be played by the equivalent sufficient statistics
X/8 and 8. Steps (i) and (ii) now read as follows:

(i) Note that Gv_1(N*X/S, N'u/o) is a pivotal quantity depending only on
the single parameter z/o. Use this pivotal quantity to assign a fiducial distribu-
tion to u/o in the standard way, c.f. Fisher (1930) and Lindley (1958).

(ii) Note that, given X/S and u/o, S/c has a distribution determined solely
by X/8 and p/s, and so may be regarded as a pivotal quantity, given p/o, de-
pending on the single parameter o. Using this pivotal quantity, one finds a con-
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ditional fiducial distribution of o given u/s. The assertion that the conditional
distribution of S/¢ given X/8 is a function of X/S and p/¢ only follows from
formula (2.8) in the sequel.

The pivotal quantities here are somewhat awkward to deal with analytically
in terms of density functions. Still, matters are perhaps less complex than they
first appear. In the following paragraphs it will be shown that the same distribu-
tion s assigned to u/o by both Fisher’s argument and the alternative argument, but
that the distributions assigned to o given u/o are different in the two cases.

Under Fisher’s argument the distribution of u/s is characterized by

(2.4) w/o = QX/S + U/N,

in accordance with the joint distribution implied by (2.3). Under the alternative
argument, since the pivotal variable Gy_1(N*X/S; N'u/s) is monotone decreas-
ing in u/o for given X/S, the o quantile of the fiducial distribution of u/o is
that value of u/o such that

(2.5) Grr(N'X/8; Now/a) = 1 — a,

for the observed X and 8. The Condition (2.5) may be expressed equivalently
as follows: if U* and Q* are any independent random variables with N(0, 1)
and My_, distributions, so that (—U* 4+ N'u/c)/Q* has the ty_1(N'u/c) dis-
tribution, then, under the alternative argument, the a quantile of u/¢ is that
value of u/o such that

(2.6) Pr ((—U* + N%/0)/Q*) < N'X/8) =1 —«
where X and S are fixed at their observed values. But (2.6) may be written
(2.7) Pr (Q*X/8 + U*/N' S p/o) = a

which, from (2.4), agrees with Fisher’s prescription for finding the a quantile
of u/a. ’

To find the conditional distribution of ¢ given u/c under Fisher’s method,
one must consider the distribution of ¢ induced by the relation @ = S/o where
@ is assigned its conditional distribution given (2.4), i.e., given a fixed linear
combination of @ and U.

Under the alternative method, one must start further back to establish
Q = S/o as a pivotal quantity given X/S and u/o. Here, X and S are regarded
as random given u and o and one seeks the conditional-distribution of S/o given
X/8. This problem may be put in terms of U and @ as defined by (2.2) where
U and @ have their conventional N (0, 1) and My_; distributions given x and o.
In these terms one seeks the distribution of @ given X/S where

(2.8) X/8 = p/oQ + U/N¥Q.

It is this distribution of @ = S/¢ which is used to induce the conditional fiducial
distribution of ¢ given u/v in the alternative fiducial argument.
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Since (2.8) may be written

(2.9) ule = QX/S8 — U/NY,

and since U and — U have the same distribution, it appears, at first sight, that
the Conditions (2.4) and (2.9) lead to identical conditional distributions for @
under the two arguments. But closer inspection reveals that, although the con-
ditional distribution of @ is being found along the same (excepting the U for
— U change) line in the (U, @)-plane, the partition of the (U, @)-plane is dif-
ferent in the two cases. In Fisher’s case one is finding the limiting distribution
of @ given

(2.10) po = QX/S + U/N* £ wo + A

as A — 0. In the alternative case one is finding the limiting distribution of
given

(2.11) X/S < u/oQ + U/N'Q = X/S + A
or
(2.12) ulo < QX/S — U/N* £ p/o + QA

as A — 0. The region defined by (2.10) is a region between parallel lines, whereas
that defined by (2.12) is a region between lines radiating from the point
U= My/o, Q = 0. It follows that, apart from the normalizing constant, the
conditional density of Q in the second case is @ times the conditional density of @
in the Fisher case, and so they are clearly different.

It may be of interest to display these two densities. The joint density of @
and U is

(2.13) KQ" " exp {—[(N — 1)/2]Q"} exp {—3U%.

Proceeding as in the Fisher case, one changes to variables

(2.14) T =QX/S+ U/N* and Q = @Q

and then substitutes T = p/o to find the form of the density of Q. The result is

(2.15) K'Q" " exp {—3(N — 1)Q@" + N(QX/S — u/0)’}}.

The only difference under the alternative argument is that the term Q"% is
replaced by Q"~". It is clear, as one might expect, that for large N these distribu-
tions are but little different.

3. The parameters of the bivariate normal distribution. Fisher (1954) gave a
joint fiducial distribution for the pair of means of a bivariate normal distribution.
Subsequently (Fisher (1956)), he gave a joint fiducial distribution to all five
parameters. Fisher’s faith in the consistency of all genuine fiducial arguments
was evidently so strong that he did not feel the need to discuss whether his two
methods were consistent. This question has also been shrouded by analytical
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difficulties concerned with the Fisher (1956) method. The purpose of this section
is to point out that, in the special case when the sample correlation is zero, the
Fisher (1956) method becomes quite simple, but fails to agree with Fisher (1954).
The section consists of three parts: (i) some preliminary notation and theory,
(ii) an explanation of the Fisher (1954) idea, presented with no extra complica-
tion in a p-variate setting, and (iii) a discussion of the Fisher (1956) method.

The p-variate normal distribution will be denoted N(u, =) and the associated
Wishart distribution on r d.f. will be denoted W(X, r), c.f. Anderson (1958)
p. 17 and p. 158. The basic sample of N from the N(u, ) distribution may be
denoted by p X 1 vectors X;, Xz, -- -, Xy, but for purposes of fiducial inference
one may reduce to the sufficient statistics

(3.1) X = Z:; X;/N and T = Z:; X = X)(Xi— X)'/(N - 1),

where X and T are independent with N(y, £/N) and W(=Z, N — 1) distribu-
tions. Finally, it will be convenient to have for reference two basic properties of
the Wishart distribution: ¢f S has the W (X, r) distribution, then (1), for any
p X 1 vector a, the ratio a’Sa/a’Ea has the x; distribution, and (II), provided =
has rank p and r = p, for any p X 1 vector b, the ratio b'="'b/b'S™'b has the
xf_pH distribution.

The Fisher (1954) method is based on the remark which is a consequence of

the theory of the previous paragraph, that
(3:2) N}a'X — a'y)/[a’Ta/(N — 1)}

has the central ¢y_;(0) distribution for any given a. Thus (3.2) may be used as
a pivotal variable in assigning a fiducial distribution to a'y. For any given random
vector u, the set of marginal distributions of a'w, for all a, uniquely determine
the distribution of u. Thus, one is led to ask whether the above fiducial distribu-
tions of a'y, for all a, are consistent with a distribution over y. Fisher (1954)
answered this question in the case p = 2 by writing down the density for g which
yields the desired marginal distributions. Cornish (1961) extended this to
general p.

More light may be shed on this situation by describing, in terms requiring
no density functions, a joint distribution of w and = which obviously provides
the required distribution for . A distribution of X can be specified by assigning
=7 the W(T ', k) distribution for arbitrary k¥ = p, and a conditional distribu-
tion of u given X can be specified as the N(X, (1/N)X) distribution. Applying
property (II) of Wishart distributions to the W(T™, k) distribution of =" one
finds that a’Ta/a’=a, regarded as a random function of = for given T, has the
Xi-p41 distribution. Consequently

(3:3) N'aX — a'y)/[a'Ta/(k — p + 1)
has the #. 4, (0) distribution. Choosing k = N + p — 2 therefore provides the



INCONSISTENCIES IN THE FIDUCIAL ARGUMENT 889

marginal distribution for a'y implied by (3.2). It should be remarked that
Geisser and Cornfield (1963) have also discussed the above family of distribu-
tions for w and X, and have shown that the marginal density of u agrees with the
Cornish (1961) generalization of Fisher’s (1954) density when k = N + p — 2.
The above joint distribution of y and £ which agrees with Fisher (1954) will
be useful for comparisons with Fisher (1956).

Turning now to the Fisher (1956) argument for the case p = 2, I will show
that, in the special case where the sample correlation coefficient » = 0, the Fisher
(1956) distribution can be simply deseribed, but that it neither agrees with any
of the distributions in the previous paragraph nor does it yield the Fisher (1954)
marginal distribution for y. Some additional notation is required at this point.
Let &,;, t“, 0;; and ¢/ denote the row 7 and column j elements of T, T, = and
=7, respectively. Let Ry_,(p) denote the distribution of a sample correlation
coefficient on N — 1 d.f. when p is the population correlation coefficient, i.e.,
Rn_1(p) is the distribution of 7 = tio/(tut)* where T has the W(E, N — 1)
distribution and p = 15/ (on02)>. Finally let Hy_s(r; p) denote the c.d.f. of the
Ry_1(p) distribution.

When 7 = 0, so that T™" is diagonal, the class of W (T, k) distributions for
=~ becomes especially simple. Indeed, for given %, the distribution of £ may be
characterized by the assertion that "'/, ¢®/ and ¢**/(o*'0™)! are independent
with x, xi and Rx(0) distributions. I will now show that, if » = 0, Fisher’s
(1956) distribution for = is characterized by the assertion that o'/t", o*/t" and
/(" ™) are independent with xy—1, xy—1 and Rx(0) distributions. It will then
be clear that, as has also been shown by Geisser and Cornfield (1963) using a
different argument, that Fisher’s (1956) distribution for £ differs from any
of the W (T, k) family. Finally I will demonstrate a difference in the marginal
distributions for u.

Fisher (1956) p. 170 denotes my quantities o'/, ¢**/t* and ¢'*/(c"'0™)! by
u’, v* and —p. In Fisher’s step by step argument, p is first assigned a fiducial dis-
tribution given r, and then, given p and 7, » and v are used as pivotal quantities
to determine the remainder of the fiducial distribution of =. It is obvious, how-
ever, from Fisher’s formulas (220) or (223) that, when r = 0, u’ and o* are
assigned independent xy_; distributions regardless of p and so independent of p.
It remains, therefore, only to check that Fisher assigns the Rx(0) distribu-
tion to —p.

This last step concerns the original example of Fisher (1930). The pivotal
quantity Hx_1(r; p) is used to assign the fiducial distribution to p, so that «
quantile of the fiducial distribution of p is that value of p such that

(3.4) Hyi(r;p) =1 — a

for the observed r. Now, if U and V have independent N (0, 1) distributions,
then U and pU + (1 — pz)*V are bivariate normally distributed with correlation
coefficient p. Consequently, if Ui, Uz, -+, Unva1, Vi, V2, -+, Vy_1 have
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independent N(0, 1) distributions, then
N—-1

(35) W = ; Ui(pU: + (1 = 6")'V0)
| [Ni U?]* [Ng (0Ts + (1 - WW]’

=1

has the Rw_1(p) distribution. Thus, Condition (3.4) may be written
Pr (W = r) = 1 — a which becomes, when r = 0,

'N—1
(3-6) Pr (21 Ui(PUc‘ + (1 - Pz)*Vi) = 0) =1—a
or
N—1 N—1
(3.7) Pr (El U:V. /2 Ui < p/(1 — ,,2)*) = a
= =1
Now the conditional distribution of
N—1 N—1 3
(38) Z=X U:V: [Z U?]
i=1 §=1

given Uy, Us, -+ -, Uy1 is N(0, 1), so that (3.7) may be written

N—1 3
(39) pe(z /(5 vt s o= ) =

=1
where Z, Uy, Us, -+, Uy-1 have independent N (0, 1) distributions. Finally,
(3.9) may be altered to

(3.10) Pr (Z / [’Z? + NZ_:I U?:r =< p) = a

=1

But Z/[Z" + > 1" Uil has the Ry(0) distribution, which gives the desired
result.

To show that the marginal distribution of w = (1, )’ for Fisher (1956) is
inconsistent with Fisher (1954), I will characterize the fiducial distributions of
p1, in the two cases. In either case one may consider the quantity

NY(X — ) _ NY(E — ) [f_l_:r L1
1=t

th oh ot

(3.11)

as determining the. fiducial distribution of u; . In the Fisher (1956) approach
the three factors on the right side of (3.11) are independent with N(0, 1), in-
verse square root of xx—1 and inverse square root of beta ((N — 1)/2, 1) dis-
tributions. On the other hand, it was shown above that the Fisher (1954) ap-
proach can be reached through assigning the W (T, N) distribution to =77,
and then the three factors on the right side of (3.11) are independent with
N(0, 1), inverse square root of x and inverse square root of beta ((N — 1)/2, 1)
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distributions. These are clearly different. It is curious that both approaches yield
the same marginal distribution for p, but the differences for "' and ¢ carry over
into differences for u; and u, .

Although the foregoing proves the inconsistency rigorously only for the iso-
lated case r = 0, the continuity properties of the mappings involved leave little
doubt that the inconsistency holds in a neighborhood of r = 0. Surely the pre-
sumption, until proved otherwise, is that the inconsistency is general.
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