BAYES ESTIMATION WITH CONVEX LOSS

By M. H. DeGroot anpD M. M. Rao?
Carnegie Institute of Technology

1. Introduction and summary. Let X be a generalized random variable taking
values in an abstract set 9 on which is defined an appropriate o-field of subsets.
Suppose that the distribution of X depends on a real parameter ® and that it
is desired to estimate the value of ® from an observation on X.

Let W () be a sufficiently smooth, non-negative, symmetric, convex function
defined on the real line. Suppose that when the true value of ® is # and the es-
timated value is 8, the loss incurred is W (0 — 3).

For a given prior distribution of ® and any z ¢ X, let F(- | z) be the posterior
distribution function of ® when the observed value of X is x. A Bayes estimate,
for the given value of z, is a number 5* such that

(1) [ W0 — 5% dF(0 %) = inface [ W(0 —8) dF(0]2).
—0<0<e0 —0<f< 0

Thus, for each given z, the problem of finding a Bayes estimate reduces to the
problem of minimizing the integral

(12) [ (6 — 8)aF(o),

where F(-) is a specified distribution function.

In Section 2 the solution of this minimization problem is presented and some
properties of the minimizing values of § are discussed. In Section 3 it is shown
that a Bayes estimator ™(-) satisfying (1.1) for all z ¢ % can be chosen so that
it is a measurable function of z. In Section 4 the question of evaluating the ex-
pectation of W[® — 5%(X)] is considered and lower bounds for this quantity
are presented.

The special problem in which W (- ) is of the form W(t) = |f|*, — © <t < o,
k = 1, is considered in some detail. It is known (see e.g., [1], p. 302) that for
k = 1 the integral (1.2) is minimized when & is a median of the distribution func-
tion F(-), and for k¥ = 2 it is minimized when & is the mean of F(-). The solu-
tion of the minimization problem presented in Section 2 is a generalization of
these familiar results.

2. The minimization problem. For any continuous convex function g(-) defined
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on the real line, let
(2.1) g"(t) = lime,or [g(t + €) — g(2)]/e, —0.<t<

and let g”(¢) be defined similarly as the limit of the difference quotient on the
right side of (2.1) when ¢ — 0. It is well-known that these right-hand and left-
hand derivates exist. Furthermore, for each fixed ¢, the difference quotient on
the right side of (2.1) is a non-decreasing function of ¢ for ¢ > 0 and, hence, so
also is [g(¢ — €) — g(t)]/e. These properties are needed in the following develop-
ment.

Suppose that W () is a continuous non-negative, convex function defined on
the real line such that W(¢) = W (—t) for all real numbers ¢. To avoid a triviality
we assume that W () is not identically a constant. Furthermore, we assume that
W (-) is differentiable at all values of ¢ with the possible exception of ¢ = 0.

Let £(¢) denote the derivative of W(-) at ¢ for ¢ # 0, and to be specific, define
£(0) = W¥(0).

Throughout this section, F(-) denotes a given distribution function on the
real line. It is assumed that

(22) f W6 — ) dF(6) < o, — W <b< .
—0<0<0 .

This, in turn, implies that
f £(6 — 8) dF(8) < <o, —® <5< o,
>4

(2.3)
fug(a—e)dF(e)<oo, — <8< .
<

The finiteness of the first integral in (2.3) is verified by noting that since
W(-) is convex,

(2.4) cf;» £(6 — 5) dF(8) < fM[W(o —b4c) — W8 — 8)]dF(8) < o,

for any ¢ > 0. The second result in (2.3) can be verified similarly.
Now, define

(25) vues) = [

, W(o — &) dF(6), — 0 <§ < o,
<o

In the remainder of this section we will characterize the set I of values of 6 at
which the function U( ) is minimized.

Since W(-) is convex (2.5) implies that U(-) is also convex. Furthermore,
since W (-) is symmetric and not identically constant, then lim,,,, W(¢) = o,
and it follows from (2.5) that lims.,, U(8) = . Under these conditions, the
results summarized in the next lemma are immediate.

LEmMA 1. The set I of values of 8 at which U(8) is minimized is a non-empty,
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bounded, closed interval. For any real number 8, 6 € I if and only if U®G) =2 0
and U*(5) £ 0.

The next lemma gives expressions for U(-) and U”(-) in terms of the deriva-
tive £(-) defined earlier in this section.

LEMMA 2. Foralld, — © < § < oo,

v*6) = [_ 66— 0)ar@) — [ &6~ 8) ar(o),
(2:6) s
Us) = [w £(5 — 0) dF(0) — fm £(6 — 5) dF(6).

Proor. Let {e, ;n = 1,2, -- -} be a decreasing sequence of positive numbers
converging to 0. For any fixed number 8, consider the sequence of functions
{Ga(+);n =1,2, -} defined by

(2.7) Ga(8) =W —8—e) — WO —08)]/en, — <0< oo

It follows from the discussion contained in the first paragraph of this sec-
tion that this is a non-increasing sequence of functions, and hence, by the
Lebesgue monotone convergence theorem,

28) [ . limen Go(6)] dF(0) = limo [ . Ga(0) dF ().
However, (2.7) implies that

(2.9) lim,. Ga(0) = —W* (6 — 8),

and that the right-hand side of (2.8) is

(2.10) liMpe [U(3 + €) — U(8)]/ex = UT(8).

Thus, it follows from (2.8) that

(2.11) U*(p) = — W9 — &) dF(6).

—00< <0

A similar argument, using the non-increasing sequence of functions {H,(-);
n = 1,2, ---} defined by

(2.12) Ha(0) = [W(6— 8+ ) — WO — 8)l/en, — o <0< ,
yields
(2.13) UM6) = — f W6 — 5) dF(8).

—0<0<0

Finally, it follows from the symmetry and differentiability of W(-) that
WE(t) = WE(t) = &(@¢) for all ¢ £ 0; that £(t) = —#(—t) for ¢  0; and that
WE(0) = —W*"(0) = £(0). If we make use of these relations, together with
the integrability assumed in (2.3), the Equations (2.11) and (2.13) become
those given in the statement of the lemma, and the proof is complete.



842 M. H. DEGROOT AND M. M. RAO

Together, Lemmas 1 and 2 immediately yield
TaEOREM 1. The set of values of & that minimize the function U(-) is a non-
empty, bounded, closed interval I such that 6 € I if and only if

(2.14) [m £(5 — 6) dF(8) = fm £0 — 8) dF(6)
and
(2.15) fw £(5 — 0) dF(0) < fm £(6 — 5) dF(8).

We conclude this section with two corollaries that further characterize the
interval I in some special situations.

CoROLLARY 1. If W(-) us strictly convex then I contains exactly one point.

Proor. If W () is strictly convex, then it can easily be shown from the defi-
nition (2.5) that U(-) is also strictly convex and, hence, its minimum can be
attained at only one point.

CoROLLARY 2. Suppose that either £(0) = 0 or F(-) s continuous. Then I is
the set of values of & such that

(2.16) /;d £(5 — 8) dF(8) = fm £(6 — ) dF(6).

Proor. It is readily seen that under either of the conditions of this corollary,
the pair of inequalities, (2.14) and (2.15), reduces to (2.16).

3. Bayes estimators. The interpretation of the results of Section 2 in the
context of Bayes estimation will now be given. For a given prior distribution of
0O, let = be the marginal distribution of the observation X. For any z ¢ &, the
sample space, let F(- | z) be the posterior distribution function of © given that
the observed value of X is x. Let D be the class of all estimators §(:) of ©.
That is, D is the class of all measurable, real-valued functions 6(-) on &. The
assumptions made about W(-) in Section 2 are still in force when F(-) is re-
placed by F(- | z) for any x ¢ . Throughout the rest of the paper, all expec-
tations are taken with respect to the joint distribution of ® and X with the
exception of those that are explicitly indicated as being conditional expectations
given X = z. '

A Bayes estimator is a function 6(-) &£ D that minimizes E[W (0 — §(X))].
In the remainder of this section we will give a characterization of the class of
Bayes estimators. )

For each x e and — o < § < o, let U(3|z) be defined by (2.5) with
F(-|z) instead of F(-), and let I(x) be the interval of values of & for which
U(- | z) is a minimum. Moreover, from our assumption on the existence of the
conditional distributions it follows that for each real number §, U(5| -) can be
taken as a measurable function of z([2], p. 27). From now on we assume that
this has been done; i.e., U(8| -) is measurable in z.
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We will now show that for each = ¢ & it is possible to choose §(z) ¢ I(x) such
that the resulting function 8( - ) is a measurable function of z, and hence §( - ) ¢ D.
It then follows from the results of Section 2 that it is a Bayes estimator.

THEOREM 2. For each x & C, there exists a measurable function 6(-) such that
5(x) € I(x) where I(x) is the nonempty closed interval of values of & that minimize
U(- | z). One such function s defined by taking 6(x) to be the left end point of I(x).

Proor. For definiteness, we consider the choice of §(-) as indicated in the
theorem. Now for each fixed z ¢ &, U(- | z) is a convex function with all of the
properties listed in Lemma 1 and the paragraph preceding it. Since §(x) is the
left end point of I(x), it follows that, for any real number ¢, §(z) = ¢ if and
only if U*(c|z) = 0.

Let {ex, n = 1,2, ---} be a decreasing sequence of positive numbers con-
verging to zero. Then

(3.1) UR(CI ) = limpae[U(c + & | +) — Uel )/en-

Since each difference quotient on the right side of (3.1) is a measurable function
of z, so also is U®(c|-). Thus, for each real number ¢, {z:6(z) < ¢} =
{z:U%(c|z) = 0} is a measurable subset of %, and hence () is a measurable
function of z. ,

Now that we have established the existence of at least one estimator () ¢ D
such that 6(x) e I(z) for all z & %, the next theorem follows immediately from
Theorem 1 and its corollaries.

THEOREM 3. An estimator 8(-) € D is a Bayes estimator if and only if it satisfies
the following inequalities a.e. (w):

/;25(,, 860 —o(z)) dF (0 | z) 2 fw@ £(5(z) — 0) dF (0 | z),
(32) =
0>45(z) 0<5)

Moreover, if W(-) is strictly convex there is, for each x & X, a unique value 6(x)
satisfying (3.2). If £(0) = 0, the inequalities (3.2) reduce to the equation

33) [ He—s)dF@|e) = [ 46 —0)are|2).
0>3 (z) 0<8 (2)

This theorem characterizes the Bayes estimators 8*(-). The value of the
Bayes risk (i.e., the minimum expected loss that can be attained) is also of
interest and in the next section we consider the problem of obtaining lower
bounds for this quantity.

4. Lower bounds for the Bayes risk. Of central importance in the derivation
of lower bounds for the Bayes risk is the following class M of integrable functions
m(-) defined on the product space of ® and X:

(4.1) M = {m(-):Em(®, X)|z] = 0a.e.(r)}.
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The next result, which provides a useful class of lower bounds, appears as
Theorem 7 in [3] in a somewhat different context. The utilization of this result
in the problem being considered here requires essentially nothing more than a
change in notation and viewpoint. A sketch of the proof is given for completeness.

THEOREM 4. Suppose that for some value of k(k > 1) the function W'*(-) is
convex. Let k' = k/(k — 1). Then for any m(-) ¢ M such that 0 < E[|m(0, X)|*']
< o and any estimator 6(-) e D,

E(W(® — §(X))) =z WIE(Om(O, X))/E(Im(8, X)|)]

« [E(| (8, X))/E"" (Im(®, X)[")]".
For k = 1, (4.2) still holds if E'* (|m(©, X)|*') is interpreted as the essential
supremum of |m(0, X)|.

Proor. Let W(-) = WY*(.). Then W(-) is convex and has the properties
that W(t) is non-decreasing for ¢ = 0 and W(t) = W(—t) for all ¢. It follows
from these properties and Jensen’s inequality that

Ellm(®, X)|W(0 — 8(X))]
(4.3) = E(Im(8, X)|)WIE(|(® — 8(X))m(®, X)|)/E(Im(8, X)|)]
> B(jm(O, X)|)WIEL(® — 8(X))m(, X)/E(Im(6, X)])].
But, since m(-) ¢ M,
E[(® — §(X))m(0, X)] = E[Om(0, X)]
— E[(X)E(m(0, X)| X)] = E[Om(0O, X)].

(4.2)

(44)

Thus,

E[jm(0, X)| W(0 — 3(X))]

2 E(|m(0, X)|)WIE(Om(0, X))/E(Im(®, X)|)].
For k > 1, the Holder inequality states that
(4.6) E[m(0, X)| W(® — §(X))] < E"W*(® — 8(X))IE"[|m(0, X)|"].

Since W*(-) = W(-), the desired result (4.2) follows immediately from (4.5)
and (4.6). Fork = 1, W(-) = W(-) and, again, the desired result follows from
(4.5) and the appropriate modification of (4.6).

A useful property of (4.2) is that the lower bound is valid for all estimators
8(+) &€ D and does not involve 4(-). However, one important question raised by
this result is that of choosing m(-) ¢ M and k so that one obtains the best pos-
sible lower bound. A helpful result (as shown in [3]) is that for any fixed
m(-) € M, the right-hand side of (4.2) is a non-decreasing function of k. The
conditions for equality in (4.2) are relatively complicated. We will forego further

(4.5)
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discussion at this level of generality and turn to the special but important
situation where

4.7) w(t) = |, — 0o <t < o,

for some value of £ = 1. Specializing the above theorem for this W (-), and
utilizing the well-known condition for equality in the Hélder inequality, yields

THEOREM 5. Suppose k > 1 and let k' = k/(k — 1). Then, for any m(-)eM
such that 0 < E[lm(0©, X)|*] < o« and any estimator 5(-) ¢ D,

(4.8) E(10 — 5(X)[") = [|E[Om(®, X)]|/E"™[Im(8, X)[*1.

Equality holds in (4.8) if and only if there exists a constant ¢ such that, for almost
all values of 9 and z, |0 — 8(x)|* = ¢ |m(6, )| and (0 — 8(z))m(8, z) is of
constant sign. For k = 1, (4.8) still holds if E"*[|m(©, X)|*'] is interpreted as the
essential supremum of /m(0, X)|.

Through use of the condition for equality given in Theorem 5 and the known
form of the Bayes estimators, it can be shown that the bounds given in (4.8)
is always attained by the Bayes estimator with an appropriate choice of m(-)
from M. This result is summarized in the next theorem. Its proof is omitted.

THEOREM 6. Suppose k = 1. Let k' and the right-hand side of (4.9) below be as
defined in Theorem 5. Then there exists a function m*(-) € M such that

(4.9) infsrenE(|© — 8(X)[] = {|B[OM*(O, X)]|/E"[Im*(0, X)[*1}*.

It is easy to construct functions belonging to the class M. Indeed, if g(-) is
any integrable function of § and « then m(6, ) = ¢(6, z) — E[g(®, X)| ]
defines a function in M. However, it would be of great interest to construct
functions m(-) e M that maximize the right-hand side of (4.8), without making
explicit use of the Bayes estimator *(-). We will now briefly illustrate how this
might be done.

Suppose that there exists a real-valued sufficient statistic X with an absolutely
continuous distribution. Let p( - ) denote the prior density function of ©, o( - | §)
the conditional density function of X for each given 6, and f(- | ) the posterior
density of © for each given X = z. Then, under the standard regularity con-
ditions justifying the interchange of differentiation and integration, it follows
that

dlog f(6 | x) _ dlogp(z|6) Lw [0¢(z | 8)/92] p(6) db
o B Jx ® >

[ etz 19) p(6) as

and if m(0, x) is defined as either side of (4.10), then m(-) e M. If (6 | z) is of
the form B(x)e*h(6), then m(8, ) = 6 + B(z)/8(x) = § —E(® | ). When
k = 2, it follows from Theorem 5 and the well-known fact that 6*(-) given by
8*(z) = E(® | ) is a Bayes estimator, that this m(-) maximizes the right-hand
side of (4.8).

(4.10)
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