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Esrael Institute of Technology

1. Introduction and summary. The present study is an extension of the previ-
ous work of the authors [3], [5], in which two randomization procedures in
fractional factorial experiments were investigated. The general problem is to
choose, in an optimal manner, & fractional replication of a full factorial system
and an estimator, for the purpose of making inferences concerning a subset of
pre-assigned parameters. We consider factorial systems of order 2™, which con-
sist of m factors each at 2 levels. The results can be generalized for factorial
systems of order p™, where p > 2. The factorial model adopted for the present
study is the same as that adopted in the previous work, and the reader is referred
to the preceeding papers [3], [5] for details and properties. The first two sections
of [5] are essential for the present paper.

The statistical properties of the conditional least-squares estimators (c.l.s.e.)
were studied in [5] with respect to two specified randomization procedures (R.P.I.
and R.P.IL.), which are particular types of random allocation designs. It was
shown that the c.l.s.e.’s constitute a complete class of linear unbiased estimators.
The c.ls.e. can be characterized as least-square estimators adjusted for the block
of treatment combinations chosen and the information available on the nuisance
parameters. In the present study we extend the investigation into the comparison
of different randomization procedures. We consider a general class of procedures,
characterized as follows: By some confounding method we construct M = 2™ °
blocks, each one containing S = 2° treatment combinations. We choose one of
the blocks with an arbitrary probability vector, £ and observe the associated
random variables. R.P.I. is the special case where every block has the same
probability of being chosen. A fixed fractional replication procedure is the special
case where one of the blocks is chosen with probability one. Each randomization
procedure is represented (uniquely) by a probability vector, £ and each c.ls.e.
is represented by a vector y in (2™ — 2°)-dimensional Euclidean space. A strategy
of the Statistician is thus represented by a pair of vectors (%, v). Minimax
strategies are studied in the present paper for two states of information concerning
the nuisance parameters: (i) all the nuisance parameters are bounded; (ii) all
the nuisance parameters are bounded and all their signs are known. As proven in
the present paper, the minimax strategy corresponding to Case (i) consists of
R.P.I. with an unadjusted c.l.s.e. and is thus independent of the actual bounds
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of the nuisance parameters. On the other hand, the minimax strategy for Case
(ii) consists of some fixed fractional replication with an adjusted c.l.s.e. which
depends on the actual bounds of the nuisance parameters. These minimax
theorems are proven with respect to a mean-square-error loss function, defined
as the trace of the mean-square-error matrix. A closeness loss function is con-
sidered too. The closeness of an estimator is defined as the probability that the
values of the estimator will lie in a prescribed neighborhood of the true values of
the parameters. In Section 2 the mean-square-error matrix and the closeness of a
c.ls.e., under an arbitrary randomization procedure, £, are derived. The mean-
square-error and the closeness loss functions are defined in Section 3. Formulae
for mean-square-error Bayes strategies, against any given a priori distribution of
the nuisance parameters, are then derived. The closeness risk function is approxi-
mated by a similar function which has the same Bayes strategies as the mean-
square-error loss function. It is shown that when the size of the experiment,
S = 2°, grows the closeness risk function and the approximative function con-
verge. The minimax theorems are stated and proved in Section 4 only with
respect to the mean-square-error loss function. It can be shown that the minimax
closeness strategies, for the states of information studied, are the same as those
for the mean-square-error loss function. This can be concluded also from the
results of Section 3. In Section 5 we present a numerical example to illustrate the
results and the computations involved.

2. Mean-square-error and closeness of conditional least-squares estimators,
under randomized fractional replication procedures. Consider a conditional
least-squares estimator (cl.s.e.) of a subset of S = 2° pre-assigned parameters
of a N = 2™ factorial system (s < m) with a randomized fractional replication
procedure (R.F.R.P.). As in the preceeding paper [5] assume, without loss of
generality, that the subvector, @, of 8 = 2° pre-assigned parameter consists of
the first parameters, namely B, - - - , Bs—1 of the linear factorial model. Further-

more, assume that the m — s defining parameters are the main-effects
Bs, Bas, -+, By_s . Accordingly, the treatment combinations of the full factorial
system are classified into 2"° blocks {X,:v = 0,---, M — 1}, where
X, = {zt =7+ v8;4=0,---, 8 — 1}. Denote by Y(X,) the vector of

random variables (observation vector) associated with block

X, (v=0,---, M —1).
Then, the factorial model for Y(X,) is
(2.1) Y(X)——(C(‘”)a+(H)ﬁ+e foral v =0,---, M — 1
(C®) is the matrix of coefficients corresponding to a S factorlal system, having the
properties: (C®)'(C®) = SI®, and 1°'(C*®) = (8,0, -+, 0). B designates
the vector of N — S nuisance parameters (N =27),1ie., ﬁ = (Bg, -, Br-1)-
(H,) is a rectangular matrix of order S X (N — 8), given for eachv =0, -
M — 1by:
(2.2) (Hv) = (61()]{”), s ,cv(M-l)) ® (C(S))
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and where (C*) = ||c{¥||;0,u =0, - -+, M — 1. ¢is a random vector, of order
82 é) 1, independent of X, (v =0,---,M — 1), with E{¢f = 0 and E{ec} =
oI,

A R.F.R.P. is a procedure according to which a block (or generally n
blocks, 1 < n < M) of treatment combinations, X, , is chosen with a specified
probability &, . Thus, a R.F.RP. is represented by a probability vector
E= (b, -, EM.l) of order M. As proven in the preceding paper, if all the
blocks X,(v = 0, --- , M — 1) are chosen with equal probabilities, then the class
of all c.l.s.e. constitutes a complete class of unbiased linear estimators of the pre-
assigned parameters . However, if ¢ = (1/M)1% there is no unbiased linear
estimator of . Thus, we measure the precision of a c.l.s.e., under an arbitrary
R.F.R.P. § by its mean-square-error matrix, and by its closeness (in probability)
to the true point . We derive first the expression for the mean-square-error
matrix.

A cls.e. of a, designated by &(v), is given by the formula:

(2.3) &(v) = (1/8)(CO)V(Xy) = (Ho)v]

where v is any fixed point in an (N — 8)-dimensional Euclidean space. Substi-
tuting (2.1) for Y (X,) in (2.3) we get:

(24) a(y) = a+ (1/8)(C®)(H.)(B — 7) + (1/8)(C®) e

Let D¢(a(y)) denote the mean-square-error matrix of &(y), under R.F.R.P. &
defined to be

(25) Dy(a(7)) = Ef(a(v) — @) (a(v) — a)'}.
According to (2.4) and the assumptions about ¢, we obtain:
Dy(a(v)) = (o*/8)I®
+ (1/8)(C®)YEf (H,) (8 — v)-(8 — 7)'(H.)'}C®).
By (2.2) we can write, foreachv =0, --- , M — 1,

(2.6)

M-1
(27) (1/8)(C) (HB = 1) = X (B = 1)
where (ﬁ - 'Y) = ((ﬁ - 'Y)O ) (B - 'Y)l y " (B - 'Y);l—l) i'e',
(ﬁ - 'Y)u(u = 17 e 7M - 1)
are subvectors of order S >< 1. Substituting (2.7) in (2.6) we attain:

(28) Dila(n) = (/9 19+ % > (’fsv o0 c,sff;) (8 = 1oy (B— 1)l

u1=1 ug=1 \ v=0

In particular, for £* = (1/M)1*° we have

(29)  Delaln)) = /SIP+ T (8= DulB— M.
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This results from the orthogonality of the row and column vectors of (C**). The
closeness of a c.ls.e., &(v), to « is the probability, under R.F.R.P. £, that a(v)
lies within a prescribed nelghborhood of a. Let N, denote a spherical neighborhood
about &, with radius p = 0,ie., N, = {@:|@ — a| < p}. Denote by ¥:(p; a, 8, v)
the closeness of @&(v) to « under £¢. Then,

(2'10) ‘l’E(p; a, B, 7) = PEH&('Y) - Oll = P}-

To evaluate (2.10) we have to specify besides ¢ also the distribution of e. Thus,
as commonly practiced, assume that e has a multivariate normal distribution,
with mean zero and dispersion matrix ¢’I; i.e., £(¢) = (0, ¢’I*®). Further-
more, from (2.4) we obtain that

l&(v) — of = (1/8)(8 — v)'(H.) (H,)(8 — )

+ (2/8)(8 — ) (H.) e + (1/8)€e.
Hence, the conditional distribution of |&¢(y) — of® given X, , is like that of
(6*/8)%°[S; Mo (B, 1)]; where x’[f; ] denotes the non-central chi-square statistic,

with f degrees of freedom and a parameter of non-centrality \. From (2.11) we
obtain that, for eachv = 0, --- , M — 1,

S 8—1[M~—1
e e =S5 o (b vous) |

Denote by F(r | f; ) the e.d.f. of x’[f; A] at the point 7. F(r | f; A) can be repre-
sented as a mixture of central chi-square c.d.f.’s, F(r | fn ; 0), by the formula:

(2.11)

(2.13) F(rlf;n) = ¢ 2 (\"/m)F(r | + 2m; 0)
where, for everym = 0, 1, - -
F(r|f+ 2m;0) =0, ifr<0
(2.14) —t/2 gt /21 .
= Suiii I"('m ¥77% f dt, ifrz0

(see Kempthorne [4], pp. 221).

It follows that the closeness of a c.ls.e., @(v), is independent of &, and is given
by
M—1

(215) ¥i(p; B,7) = E{F(r|8; M(B8, 7))} = Z(:) EF(r|8; M(B, 7))

where 7 = ¢°S/c”. In particular, Yi(p; B, B) = F(r|8;0) > ¢:(p; B, y) for all
B # v, since F(r |f; \) is a monotonically decreasing function of \, at every r
and f.

3. The decision framework and Bayes strategies. The decision problein for the
Statistician is to choose a R.F.R.P. and a c.ls.e. in some optimal manner. The
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Statistician’s strategies for this decision problem are thus represented by pairs
of vectors (£ v). £is a M X 1 probability vector, v is any vector in E¥~®, We
consider two kinds of loss functions. One based on the mean-square-error matrix;
the other based on the closeness of &(y) under £. Accordingly, let

Ine 7 8) = tr{Delan) - § 19

M—1 8—1 M—-1 2
=2 & > [‘;1 S (Bigus — 'Ye+us):|

v=0 =0

(3.1)

be the mean-square-error loss function; and let
M-—1

(3.2) Ly(¢,v;8) = F(r| 8;0) — ,_Eo EF(r | S; M(B, 7))

be the closeness loss function. Both Li(¢, 8; 8) = 0 and Ly(¢, B; 8) = 0 for every
£. Indeed, when g is known the present decision problem has a trivial solution.

Let 5(8) be an a priori distribution (c.d.f.) of 8 in E®™. Define the cor-
responding risk functions,

M—1 s—1 FM—1 2
(3.3) Ri(&,v;n) = Z:o & / > [Z'Céf) (Bitus — 'Yi+u8):| dn(B)

=0 | u=1

and
M-1

(34) Ry(&,v59) = F(r|S;0) — Zo sva(rlS;Mﬂ, 7)) dn(B).

Assume that E,{A2(8, v)} < K < « forally =0, ---, M — 1;ie., therisk
function Ri(¢, v; u) is bounded. For S sufficiently large, i.e., S = S(e, 7, Au(n, 7)),
we can approximate Ra(£, v; 7) by

M-1

(3.5) Ry (& v;n) = F(r|8;0) — Z; &F(r | 8; Ao(n, 7))
so that |Rx(£ v; 7)) — Ry (& v; n)| < ¢ where
(36) Auln ) = [ M(B,7) dn(8), forv =0, , M — 1.

Indeed, since (d/d\)F(r|S;\) = F(r|S + 2;A) — F(r|S;\) < 0 for all A
we obtain, by expanding F(r | 8; N+(B, v)) about A,(n, v), the inequality

37) [ @ 18:0(8,7)) dn(8) < P(r| 85 As(n, )

foreachy = 0, --- , M — 1. With the assumption that E{\3(8,v)},» =0, ---,
M — 1, are uniformly bounded we obtain:

(3.8) fF(rlS;M(B, v)) dn(B) = F(r|8;Av(n, 7)) + o(F"(r | S; Au(m, 1)),
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F7(r | 8; Au(m, N)) — 0;

where F"(r|8; Au(ny)) = (@YdDF( | 8; N) hepsan. However,
F'(r|S;N\) = F(r|S+4;\) —2F(r| S+ 2, M)+ F(r|8;\) »0as S — .
Since 8 = 2 grows exponentially with s, we expect the approximation to be
adequate even for experiments of moderate size.

TrEOREM 3.1. Let 1(B) be an a priori distribution of B, then the Bayes strategies
(&'(n), ¥'(n)) against n(8), with respect to Ru(%, v; n) and B3 (£ v; n) are the
same.

Proor. Let £, v = 0, -, M — 1, denote the probability Vector whose vth

component is 1 and all the other components are 0. Thus,
M-—1

8—1 2
Rl(s(v)) Y5 77) = ;0 f I:Z;l 01(}:[) (.Bi-l-us - 'YH-uS)] dﬂ(ﬂ)

! 2
(3.9) =2 [ v
20°
—FA«»(%’Y) . forv=0,---,M — 1.
Ri(£™, v; ), forallv = 0, --- | M — 1, are strictly convex functions of v, at-

taining their minimum at y (n), Whose components are given by
(3~10) 'Y?—l-us(’?) = fﬂs‘+us dﬂ(ﬂ); forall: = 0,--- 7S -1

andallu =1, ---, M — 1. Let
(3.11) Ri(n) = minym,..., -1 RB1(£®, ¥°(n); 1)

and let v, be any mteger from 0 to M — 1 for which Ryi(¢", ¥°(n); n) = Ri(n).
Then (£°?, 4°(n)) is a Bayes strategy against 5(8), relative to Ri(£, v; n).
Finally, according to (3.9), v"(7) minimizes A,(n, v) forally =0, -+, M — 1.
Hence RF (£*,v°(n) ;1) = min, RF(¢®, v;9),forally =0, --- , M — 1, because
F(r|8; Ay(n, v) is a monotonically decreasing function of A,(#, v). Finally, if
Avy (1, v) < Aoy(n, v) then F(r|S; Avl(n, v)) > F(r|8; Avg(n, 7)) or, equiva-
lently, B¥(:*2, 7°(n); m) < RE(E™, v'(n); 7). Thus, if (87, v'(n)) is a Bayes
strategy against n(B), relative to Ri(%, v; n), then it is also a Bayes strategy
against n(B), relative to B3 (£, v; 7).

In the following section we prove two minimax theorems, with respect to the
mean-square-error loss function L;(%, v; 7). As a result of Theorem 3.1 and the
preceding discussion on the approximation of R3 (£, v; ) to the closeness loss-
function we expect the same minimax strategies to hold also for the closeness loss
function. Indeed, one can prove it directly by studying the closeness loss function
La(%, v; B). To save space, we shall present the minimax theorems only for the
mean-square-error loss function.
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4. Minimax mean-square-error strategies. Let (B, 8“~) be a probability
space, where 8~ is the Borel field of sets over ™. Let B e ®“ ™ be a set
in 8™ and 3¢(B) the class of all probability measures over (E¥™, @¥~9),
which assign probability zero to points outside B. In the present section we
study the minimax strategies relative to the case where: (i) B is an (N — S)-
dimensional hypersphere, i.e., B = {8: |8 — 8°| £ R} for some 8’ and R; and (ii) B
is the positive orthant of an N-dimensional hypersphere, i.e.,

={B: 18— @ < R,and (8: — B{) = Oforallt =0,---,N — S — 1}. The
result is later generalized to an arbitrary orthant of an N-dimensional hyper-
sphere.

TrEOREM 4.1. If B s an (N — 8)-dimensional hypersphere, centered at B°, with
radius R then, a minimaz and admzsszble strategy is (£%, 8°), where £ = (1/M)1";
and the minimaz risk is R’.

Proor. Without loss of generality, let 8° = 0. First we notice that for every
n £ 3¢(B), where B = {8: |8| £ R}, the following holds

(4.1) Ri(£%,0;7) = fB |8 dn(8) < R

Accordingly, every minimax strategy of nature is some mixture of the boundary
points of B. In other words, it suffices to consider the subclass of strategies
.'JC(B*), where B* = {8: |8] = R} Thus, R.(£%, 0; n) = R? for all 5 & 3¢(B*). It
rema,ms, hence, to show that (£, 0) is a Bayes strategy agamst some n ¢ 3¢(B*).
Let n° £ 3¢(B*) be a d.f. concentrating on two points (8%, —g%), i.e.,
n(B) =% if 8= :!:B*, g* ¢ B*
= 0, otherwise.
The Bayes strategy against n°(8), where 8* is any point on the boundary of B,
is °(1°) whose components are
(4.3) vi(n") =0 forall t=0,---,N—8—1.
Thus RI(E, v 1) = R1(£, ; o°) for all ¢ and 4. It remains to show that
Ri(%, 0; 1°) = Ri(£%, O, 7°) for all probability vectors ¢. Indeed,

M—1 8—1 /M—1 2
(44) Ri(§0;7°) = ; £ D (Z e a:';us).

=0

(4.2)

If £ 5 £ then £, = MAX,=o,..., s1 (£} > 1/M. Since B* can be any point on the
boundary of B, let

(4.5)  Blius = ol [R/(N — 8)1,
forall4=0,---,S8 — l;andallu = 1, --- , M — 1. Then, substituting (4.5)
in (4.4) we get

M—1 81 /M—1 an R 2
RI(E)O;'” Z EVZ(Z Cou’ Copu (N S)*)

v=0 =0 \ u=1
(4.6) .
_ 2, S(M — 1)2 (M— () (u))
=R E'-’O (M I)S (M — 1) v;‘) Ev uZ=1 Cou’ Cogu | -



OPTIMAL STRATEGIES IN FACTORIAL EXPERIMENTS 787

But if v % v, then D _ucy cia’cil? = —1. Hence,

(47) Ru( 05 1") = B'{&e(M — 1) + [1/(M — DI(1 — &,)} = B
Equality holds if, and only if, £, = 1/M. Thus, (£, 0) is the unique minimax
strategy. Therefore it is an admissible one. To prove that the minimax risk is
R’, substitute £* in (4.7).

We turn now to the case where, in addition to the information that 8 is
bounded, all the signs of the components of 8 are known. This case is represented
by the set
B={g: |8l SR and sgn(B) = (—1)"* forall

t=0,---,N—8—-1; where i, = 0, 1}.
There is no loss in generality to assume that all the components of 8 are positive.
Indeed, by applying the orthogonal transformation,

(-»®
e 1
(4.9) g* = . 8

0 .-
I_ (_l)izv—s—x

the set (4.8) is rotated into the positive orthant. Furthermore, it is sufficient
to prove the result for the positive simplex generated by the points 8%,
k=0,--,N — 8; where 8 = 0 and 8% for k = 1,---, N — 8 are the
orthogonal unit vectors, whose components are given by:

=0, otherwise

(4.8)

(4.10)

forallt=0,:---,N — S — 1.
TraEOREM 4.2. If B is the simplex

B ={B:6,=0 forall

411 &
(4.11) t=0++-,N—8—1; and Z‘)BtéR}
=

then (£*7°, [R/(N — S)N1¥®) is a minimaz and admissible strategy, with
minimaz risk R*(1 — 1/8).

Proor. Without loss of generality, assume B = 1. Any good strategy of Nature
consists of some mixture of the N — S + 1 extreme points

B® (k=0,---,N —8).

Let 3¢*(B) be the set of all (N — S + 1) X 1 probability vectors, n' =
(M0, *++, mv_s), representing mixtures of the points B*. Furthermore, let
38 (B) < 3¢*(B) be the subset of all (N — S 4 1) X 1 probability vectors
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whose first component 7, = 0. For every 9 & 3¢*(B) we have:
M—-1 N—8

(4.12) Bi(tvim) = 2 6 2 mLa (87, v; 8Y)
where, forally =0, --- , M — 1,
8~1 /M~1 2
(e, 56°) = 2 (5 orea) it k=0
8—1 /M—1
(43) =1 + Zo (Z Cvu '7'+u5>

M—-1
— 9640 (z csfw.-kw), § k1
Y=

with 4, = k — 1 (mod. 8) and uz = 1 + [(k — 1)/S]forallk =1, --- ,N — 8.
In particular, for v° = [1/(N — 8)]1%® we have, forally = 0, --- , M — 2,

Li(£%, 7% 8%) = 1/8(M — 1), f k=0

(4.14)
=[(8 —1)/8I1 + 1/(M — )] if k=1

and forv = M — 1 we have,
LE2, o5 8% = 1/8, if k=0

(4.15) \
: = (S —1)/8, if k=1

It follows that, for every £ and 9

Ri(% 75 1)

(4.16) = (1 — m){(1 — £a)(1 = /)L + 1/(M — D)
+ Eaa(1 — 1/8)} + mf (1 — £a0)[1/S(M — 1)) + £42(1/8)}.
Thus, a good strategy of Nature against any strategy (£, v %) of the Statistician,
is in 3¢5 (B). Moreover, Rl(s, 7 ; 'n) is independent of the »’s in 3Co (B) It re-
mams to show that (E ”"1), v’) is Bayes against some n in 3¢ (B). Let
= (0,1/(N — 8), -+, 1/(N — 8)). According to (3. 10) " is Bayes against
17 , for every £ and thus for every £ Finally, accordmg to (4 16),
inf; Ri(%, ¥ 1%) = (1 — 1/8) is attained by £ = ©,0,---,0, 1)". Both
£¥ and 4° are unique minimization points of Ri(Z, v; 7°). Thus (E(M"l), 7) is

an admissible strategy.
To conclude the present case we mention that the minimax strategy for an

arbitrary set (4.8) is represented by (£°%, 7"); where 7’ = [R/(N — S)]l(”"“” as

before, and £° is found as follows. We determine for every v = 0, --- , M — 1
the Bayes risks

® 0.0y _ p2lq_ 1 I:M—l (a) ) ]2]
(4 17) RI(E y Y 3" ) - R I:l (M 1)282 'g) uZ: Cou Sgn (Bt-l-us) .
£ is the vector which minimizes (4.17) overallv = 0, - — 1. As in (4.16)

(vo)

it can be shown that £°% is unique.
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5. Numerical example. The following numerical example illustrates the results
of the present study, and the actual computations involved. We shall consider
the problem of estimating 4 parameters of a 2 factorial system. For the purpose
of actual comparisons we assume that ¢* = 0, i.e., the experimental results given
are the expected treatment yields. We sometimes use capital letters A, B, C
and D and their combinations to present main-effects and interactions, and
small letters a, b, ¢, d, ab, - - - to denote treatment combinations. The following
data, taken from O. L. Davies [2] p. 275, represent a 2* factorial system comprised
of the following factors:

A: acid strength—levels: 87 %, 93 %.

B: reaction time—levels: 15 min., 30 min.

C': amount of acid—levels: 35 ml., 45 ml.

D: reaction temperature—levels: 60°C, 70°C.

The response of the system is the-amount of Isatin Derivative (g. per 10 g.
of bﬁe materials). This variable is denoted by Y (z,). The response values in
the given experiment are represented in Table 1.

Let {M, A, B, C} be the subset of 4 pre-assigned parameters. Let {M, ABC, D,
ABCD} be the specified subgroup of defining parameters. The 4 blocks of treat-
ment combinations, corresponding to this subgroup of defining parameters, are
presented in Table 2 with the associated expected treatment yields.

The estimates of the pre-assigned parameters, using the conditional least-

TABLE 1
Yield of Isatin Derivative in a 2* factorial experiment

Temperature D

Acid Strength Reaction Time 60°C 70°C
A B Amount acid C Amount acid C
35 ml. 45 ml. 35 ml 45 ml,
87% 15 min. 6.08 (1) 6.31 (¢) 6.79 (d) 6.77 (cd)
30 min. 6.53 (b) 6.12 (be) 6.73 (bd) 6.49 (bed)
93% 15 min. 6.04 (a) 6.09 (ac) 6.68 (ad) 6.38 (acd)
30 min. 6.43 (ab) 6.36 (abc) 6.08 (abd) 6.23 (abed)
TABLE 2
Possible vectors of observations, y(X,)(v = 0, 1, 2, 8) in a % replicate of a 24 factorial system
y(Xo) y(X1) y(X2) y(Xs)
6.08 (1) 6.04 (a) 6.79 (d) 6.68 (ad)
'6.43 (ab) 6.53 (b) 6.08 (abd) 6.73 (bd)
6.09 (ac) 6.31 (c) 6.38 (acd) 6.77 (cd)
6 6.23 (abed)

.12 (be) 6.36 (abc) 6.49 (bed)



790 S. EHRENFELD AND S. ZACKS

squares estimator &(0) (for details see Zacks [5], Section 5) are given, for each
of the four possible blocks X, (v = 0, 1, 2, 3) in Table 3.

The expectations and variances of the estimates in Table 3 are the arithmetic
means of the possible estimates, and the variances about these means. According
to the assumption that ¢* = 0, these are the expected values and variances of
the components of the c.l.s.e. &(0), under £* (each block chosen at random, with
equal probabilities). The covariances of these estimates; under &*; are:
cov (M, A) = —0.0129; cov (M, B) = —0.0319; cov (M, C) = —0.0023;
cov (4, B) = 0.0094; cov (4, C) = —0.0021; cov (B, ) = 0.0018.

According to Theorem 4.1 these estimates under £ constitute a minimax
strategy when the 12 nuisance parameters may assume arbitrary bounded values.
We turn now to the case where the signs of the nuisance parameters are known.
This state of information corresponds to an orthant of a 12-dimensional hyper-
sphere, centered at the origin. Assume that all the nuisance parameters are

TABLE 3
The possible estimates of M, A, B, C; their expectations and variances under £* (R.P.I.)
Pre-assigned Possible Blocks . )
Parameters P X TP X Expectations Variances
M 6.180 6.311 6.435 6.602 6.382 0.0244
A 0.080 —0.110 —0.205 —0.147 —0.095 0.0114
B 0.095 0.135 —0.152 —0.122 —0.011 0.0160
C —0.075 0.025 0.000 —0.102 —0.038 0.0027
TABLE 4
Minimaz adjustments of &(0)
Pre-assigned Possible Blocks
Parameters Xo X X, X;
M 0.0114 0.0114 0.0114 —0.0342
A —0.0342 0.0114 0.0114 0.0114
B 0.0114 —0.0342 0.0114 0.0114
c —0.0114 —0.0114 —0.0114 0.0342
TABLE 5
Minimaz estimates of M, A, B, C
: Possible Block
Pre-assigned : o e Expectation  Variance
Parameters Xo X X, X
6.1914 6.3224 6.4464 6.5678 6.3820 0.0196

0.1064 0.1008 —0.1406 —0.1076 —0.0110 0.0016

M
A 0.0458  —0.0986 —0.1936 —0.1356 —0.0950 0.0079
B
c —0.0864 —0.0136 —0.0114  —0.0678 —0.0380 0.0017
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bounded by B = 0.1370, and the signs of the nuisance parameters are:
sgn (ABC) = +1, sgn (D) = 41, sgn (ABCD) = +1

sgn (BC) = —1, sgn (AD) = —1, sgn (BCD) = +1
sgn (AC) = +1, sgn (BD) = —1, sgn (ACD) = -1
sgn (AB) = —1, sgn(CD) = —1, sgn(4BD) = -1

According to (2.3) and Theorem 4.2, the minimax adjustments of the estimates
in Table 3 are given by the components of —(c{PI®, ¢9I®, ¢91®) °, where
vi = (0.1370/12) sgn (8;) forallt =0, --- ,11;and C$% (v = 0,1,2,3;u = 1,2, 3)
are the elements of (C“). These minimax adjustments, corresponding to different
possible X, (v = 0, 1, 2, 3) are given in Table 4.

The sum of the minimax adjustment values, over the possible samples is always
zero. This is due to the property of the (H,) matrices under £* (R.P.I.). Adding
the minimax adjustment values of Table 4 to the estimates in Table 3, we obtain
the minimax estimates of the pre-assigned parameters in Table 5.

Comparing the variances of the unadjusted estimators &(0) given in Table 3,
to those of the adjusted estimators, presented in Table 5, we see that the total
reduction in the actual variances due to available information about the signs
of the nuisance parameters, and using the appropriate minimax estimators is
from 0.0545 to 0.0308, i.e., 43.5%. In reality we cannot compare the actual
total reduction in the variance, since we do not know all the possible estimates.
We can compare, however, the minimax risks corresponding to different states
of information on the nuisance parameters. In the present example of 12 nuisance
parameters the reduction in the minimax risk is of 8.3 %. The use of minimax
adjusted estimators protects the statistician against the least favorable a priori
distribution of the 8’s. The actual gain would be generally higher than that
expected by comparing the minimax risks.
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