GENERALIZED BAYES SOLUTIONS IN ESTIMATION PROBLEMS!

By JErROME SACKS

Northwestern University

0. Summary. In estimation problems where the parameter space is not com-
pact the class of Bayes solutions (®) is usually not a complete class and it is
necessary to take the closure (in a suitable sense) of ® to obtain a complete
class. When the parameter to be estimated is that of an exponential density the
limits of Bayes solutions can be characterized as generalized Bayes solutions in
the sense that they minimize a posteriori risk where the a priori distribution may
have infinite variation (theorem and corollaries in Section 2). The extent to
which exponential densities are necessary for this characterization and some con-
sequences of this characterization are contained in a series of remarks at the
end of Section 2. In Section 1 we motivate the ideas by obtaining the above
characterization for the problem of estimating the mean of a normal distribution
with the parameter space restricted to [0, « ) and with squared-error loss func-
tion.

1. Introduction. In estimating the mean of a normal distribution with known
variance and squared-error loss function it has long been observed that the
usual estimator (the sample mean, £) while not a Bayes estimator is the limit
of a sequence of Bayes estimators and, moreover, can be thought of as a Bayes
estimator if the notion of a priori distribution is enlarged to include Lebesgue
measure on the real line. In particular Z can be written as the a posteriori ex-
pected value of the unknown mean where the “a priori distribution” is Lebesgue
measure. One of the main consequences of the Wald decision theory is that the
class of Bayes estimators and their limits (in an appropriate sense) form a
complete class. In analogy with & it is natural then to inquire whether every
limit of Bayes estimators bears a similar representation, namely, if 7 is a limit
of Bayes estimators is there a measure F on the real line such that 7 can be written
as the a posteriori expected value of the mean when F is the ““a priori distribu-
tion”? If 7 can be so represented we will call it a Generalized Bayes Solution
(GBS) with respect to F. It is a consequence of the Theorem of Section 2 that,
for this normal example, every limit of Bayes solutions is a GBS, i.e., the ques-
tion raised above has an affirmative answer.

With the normal example of the last paragraph as motivation let us consider
the more general estimation problem with the space of states of nature @ = {w}
a subset of the reals, decision space T = {t} = Q, loss function W, a fixed number
of observations n, and x = (=, - -- , 7,) the observation vector having density
p(z, ») with respect to some ¢-finite measure g when w is “true.” For such a
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752 JEROME SACKS

problem we will call a decision function 6 a GBS with respect to a measure F
on © which gives finite measure to bounded subsets of @ if, for almost all z(u), &
selects (perhaps in a randomized way) a decision among those #’s which mini-
mize the (generalized) a posteriori loss

(11) [ 7,000z, @) / [ 50z, 0)P(d0).

When F is a probability measure or a finite measure (as would be the case if
2 were bounded) § is a Bayes solution so that the generalization is reached only
when Q is unbounded and F(Q) = + «. We are only concerned with F’s such
that (1.1) is finite for some ¢ and a.e. () as is the case in the context of the normal
‘example when F is Lebesgue measure. The question that this article deals with
is: what is the relation of the closure in the sense of regular convergence (see
below and Section 2) of the class of Bayes solutions (call the closure ®&’) to the
class of GBS’s (®*)? For the appropriate decision theoretic definitions and
results we refer to LeCam’s [3] generalization of the Wald theory.

Let ®, denote that part of ® which excludes those 8’s with infinite risk (hence
inadmissible). ®, is obviously the pertinent part of ® and is a complete class
because ®' is. The Theorem of Section 2, which is stated for exponential densities
and @ = (— o, + »), shows that, under the assumptions made there, if 6 ¢ B
then there is an F such that (1.1) is satisfied except, possibly, for certain z’s.
When these exceptional 2’s have measure 0 then we can conclude (Corollary 1)
that ® C ®* and therefore ®* is a complete class. Corollary 2 shows that if all
members of ®, are nonrandomized then ®, = ®*. Remark 3 at the end of Sec-
tion 2 indicates how the theorem and corollaries may be generalized to include
other than exponential densities but it is not clear how far matters may be
extended nor to what extent the assumptions we make are essential.

As indicated below, the arguments of Section 2 work when, for example,
Q = [0, = ); indeed the proofs are somewhat simpler in this case. We choose to
prove the results in the case € = (—®, 4 «) because the argument for the
full-line requires certain considerations which do not appear in the half-line
case and which will also appear when generalizing to higher dimensions (see
Remark 4). The main ideas, however, are already present in the half-line case.
In fact, to exhibit the main ideas in Section 2 let us consider the example of
estimating the mean w of a normal distribution with variance 1 where w is known
to be non-negative, the loss function is squared-error, and with one observation.
Let {£,} be a sequence of a priori distributions and let {6.} be the corresponding
Bayes solutions. Since the loss is squared error, 8, is non-randomized and let us
denote by 7,(2) the point (in [0, = )) which §, selects when z is observed. Sup-
pose 7,(2) — 7(z) < = a.e. (Lebesgue measure). We want to show that there
is a non-decreasing function F on [0, « ) such that

(12) @ = [ " op(z, @) dF /[ " p(z, w) dF
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where p(z, 0) = ¢ *"¢*. Note that since 5, is Bayes with respect to &, ,

m(z) = fon wp(z, w) d&/f: p(z, w) dé,

We show first that there is an @ > 0 such that
(1.3) lim SUPn+e £a(0)/En(a) <

for any v > 0 (compare Lemma 1 below). If (1.3) is not the case then for each
a there is a v > a and a sequence {n;} such that lim;., £;(v)/&:;(a) = + o
(define £,(v)/£.(a) = 4+ if v > a and £&(a) = 0). Let

'Y(a') = inf {p(x7 w)l we [a7 v]}'

Then, for any z,

e ’ ) dn;
- llIn:-»eof P(x w) ( ) = hmrmj; p(z, )Sﬂj(a)
: s & (v) — & (a) _ ©
Zl v(a) limje S &j(a) ==+,
Hence
wp(z, w) —< + | wp(z, ») 0
#(2) = Tt 7a; () = limyue [ _ £nj E(a) f dEi(a)
(1.5) fo p(z, @) s,.,("&) +f., p(m,0) 2o

= limj.m]; wp(z, ®) d&,/j; p(z, w) dén; 2 @

But if (1.5) is true for any z and all a > 0 we must have 7(z) = + « for all
x, which violates our assumption that 7 is finite valued. Thus (1.3) is estab-
lished.

Put F, = &/&.(a). As a consequence of (1.3) we can find a subsequence
F,, and a non-decreasmg function F such that F,, — F and F(w) < o« for each
w (of course F(+ ) may be + ). We might as well suppose that {Fy} is
the sequence {F,} so that F, — F.

The next step is to show that

(1.6) limsup,,mf0 p(z, w) dF, < © a.e.

(compare Lemma 2 below). If (1.6) fails for some x then there is a subsequence
{n;} such that

N d,
(17) limw [ 203, @) s = e
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for all y = z. From (1.3) and (1.7) we conclude that
lime [ DY, ©) dbny/bny(0) =

for all » > 0 so that, by (1.4) and (1.5) (replacing a there by v), we obtain
7(y) = 4 for all y = z. This contradiction establishes (1.6).
The final step is to verify

(1.8) ﬁm""”jo‘ wp(z, w) dF, = £ wp(z, w) dF ae.

Since wp (@, w) is continuous in « for each z, we need only show uniform inte-
grability, i.e.,

(1.9) lim 4 im SUPr- f wp(x, w) dF, = 0.
A
For y > x observe that
f wp(a:, ‘-’)) dF, = f we(a:—y)wp(y"w) ar, £ R(A) f P(?/, O)) ar,
A A A

where R(A) = supuss we® ¥ — 0 as A — . Thus, if (1.9) is false then, for
all ¥ > z, we must have lim supr.« [%p(y, ) dF, = + o which contradicts
(1.6). The same argument shows that lim,.. [¢ p(z, @) dFn = [ p(z, ) dF.

Note that the first part of the argument ((1.3)) results from the observation:
if {£,} sends mass to infinity “too rapidly” then 7, could not converge to a finite
. The other parts of the argument ((1.6) and (1.9)) show that we can take
the appropriate limits under the integral sign. It will be seen in the example
in Remark 3 that, even though {£, behaves properly, the non-interchange-
ability of limit with integration can cause the theorem to fail when the assump-
tions below are not satisfied.

2. Results and proofs. Let u be a o-finite measure on the real line and let
the space of states of nature @ = {w | [ e“u(dz) < »}. For weQlet p(z, w) =
p(w)e™ where p () = [ €“u(dz). We will assume that u is such that @ =
(— o, + o). It will be easy to see that there is nothing lost by this apparent
lack of generality in assuming © to be the full real line rather than some interval.
Let the decision space T be the full real line. We suppose one observation whose
density with respect to u is p(%, @) when w e Q is the state of nature; because
the densities are exponential the same results will hold for any (fixed) number
of observations.

For our purposes we define a decision function & by: for fixed z, 8§ is a prob-
ability measure on the Borel sets of the extended real line, and for a fixed Borel
set A, & is u-measurable in z. We represent the value 6 assigns to the pair 4, =
by 8(A | z). A sequence {5,} is said to converge regularly to & if (LeCam [3]),
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for every f ¢ L, (u) and every bounded continuous real valued function « on the
extended real line

T e 0 ot
[ [ s@uwsa ouas) — [ [ @] aud).

A consequence of §, — § regularly is:
limy»e 8,(C | £) = 0 for all bounded sets C' and all z ¢ E with

(2.1)
p(E) > 0 implies §(C | ) = 0 for all bounded C a.e. (x) on E.

A further consequence is:

lim,,. 8,(C | ) = 1 for z ¢ E with u(E) > 0 and

(2.2) .
C compact implies (C | z) = 1 a.e. (u) on E.

Denote by W(w, t) the loss when v is the state of nature and ¢ is the decision.
We shall assume (Assumption 1 below) that W(w, {) — +© ast — —» or
+ «. Consequently, any decision function & which gives positive measure to
+ o or —« for some set of # which has positive u-measure will have infinite
risk at every point w. Such a & can safely be ignored. In any case, if we denote
by ® the class of all decision functions which are Bayes solutions and by ®’ the
closure of ® in the topology of regular convergence then ([3]) ® is complete.
Let ®, be that subset of ® which excludes all &’s in ® which give positive meas-
ure to +® or — on a set of  of positive u-measure. The remarks at the
beginning of this paragraph imply that & is complete. Our goal is to obtain a
representation for the members of ®,. We make the following assumptions.

AssumprioN 1. W is non-negative, finite, and continuous in both variables.
W(w, t) = 4+ ast — 4+ or — o uniformly on compact sets of w.

AssumpTiON 2. If w > ¢ > sthen W(w, 1) < W(w, s) and

inf,z: [W(w, 8) — W(w, t)] > 0.

If w <t < sthen W(w, t) < W(w, ) and inf,<; [W(w, s) — W(w, t)] > 0.
AssumpTioN 3. For each ¢t and each ¢ > 0,

supu,<o W(w, t)e™ < o,  supezo W(w, t)e ** < o,

€W

and lim e SUPuz4 W(w, )¢ = limyme SUPu<—us W(w, t)e® = 0.

Examples of W’s which satisfy these three assumptions are easy to give. In
particular, W(w, ) = |0 — | a > 0 is one such family of W’s. Recall that
we are assuming that Q is the entire real line. Parts of each of the three assump-
tions are not needed when, for example, @ = [0, « ). The necessary modifica-
tions in any of the cases where @ is not the entire real line are easy to make.

Let {6,, n = 1} C ® and let {£,} be the sequence of a priori distributions
such that é, is Bayes with respect to £, . Let § ¢ B and suppose that & is the
regular limit of 6, . In what follows K, , K., etc., will denote ‘“‘constants” ap-
propriately chosen to suit the context in which they appear. The dependence



756 JEROME SACKS

of these “constants” on certain auxiliary quantities will be displayed unless
there is no issue. We begin by collecting some notation and facts before pro-
ceeding with the main argument.

Let

ate,n) = [ pla, @)tu(de);
(23) -
B(z,n) = j; p(, 0)ia(dw);  w(2,n) = alz,n)/B(z, n).

Some modification in the limits of integration is necessary if £, has positive
measure at 0 but we will not worry about it. When 8(z, n) = 0, i.e., when
£.(0, ©) = 0 (£(a, b) is the measure £, assigns to the interval (a, b)), we take
w(z, n) = 4 ». The arguments all become simpler when all the £&,’s are con-
centrated on either [0, ©) or (— o, 0] but we shall proceed as if the support
of £, lies on both sides of 0 (the support of a measure is the smallest closed set
whose complement has measure 0). Observe that, for fixed =,

(24) a(z, n), 1/8(z, n), and w(z, n) decrease in z.
Let |
(2.5) X, = {z| hm inf,.e w(z, n) < 1}.

Whenever X, is not empty-it is an infinite (to the right) interval by virtue of
(24). Let z* = inf {z | z £ Xo}. When X, is empty put z* = + . It may or
may not be that z* ¢ X, and this ambiguity will require some trivial circumlocu-

tions.
When z is observed, ¢ is the decision made, and £, is the a priori distribution,

we denote the a posteriori expected loss by
‘(2-6) B(t’ z, n) = -[eo\ W(w; t)p(x: w)En(dw) / [a(x; n) + ﬂ(x: n)]‘

We will only be concerned with the situation when, for each z, n, . a(z, n),
B(z, n), and B(t, x, n) are all finite. The more general situation can be handled
with simple modifications. Since 8, is Bayes with respect to £ we know that
for each z, 8,(- | z) assigns measure 1 to {t | B(¢, z, n) is minimized} (A-sump-
tion 1 guarantees that the minimization actually takes place).

Assumption 2 implies that, if vy > 0 and ¢ > v, then

infc§7 infagt [W(w; 0) - W(w’ t)] = Kl(‘Y: t) > 0)

(2.7) . .
inf, > infu < W(w, ¢) — W(o, —t)] = Ky(v,t) > 0.

Thus, if ¢ > ¥ > 0, we have ((2.6) and (2.7)), forall¢ < v,
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la(z,n) + B(z,n)1B(c,z,n) = ft i W (w, ©)p(z, 0)n(dw)
= [ W, iz, 0)ta(de)

(28) + [ W0 = Wi, Dlp(z, 0)ta(d)
2 [" W, 000z, )6 (de)

+ K1) [ 9o, 6)n(do)
and, for all¢ = —v,
e, ) + Bz WIBle,2,m) 2 [ Wla, —0)p(s, )ea(do)

(29) —t
+ KZ('Y’ t) -[eo p(x; "")En(dw)-

Since p(z, ») is continuous and positive for all z and w we have

[ #@ @) = 8z m) — [ p(a, @)ta(a)
(2:10) 2 8z 1) — Ka(a, D50, 1)
[ 2@ 0)k(de) 2 atz,n) ~ Kz, 05.(~1,0).

Assumption 1 implies [2; W(w, —8)p(z, 0)&(dw) = Ky(x, t)e(—t, t) and
JLe W(w, —t)p(z, ©)ta(dw) = Koz, £)2(—1, 1) so that

o, ) + Bz, 1B, 2, m) S [ Wi, Dp(a @)a(do)
(211) .
+ Kala, 08a(=1,8) + [ W (o, 00z, )0 (do)
and B

la(z, n) + Bz, WIB(=t,2,7) = [ W(o, ~0p(a, o)t (do)
(2.12) ‘ .
+ Koo, O8(—40) + [ Wlo, ~p(z, 0)tu(do).
If e > 0and y + ¢ < z we have, by Assumption 3,
[ W, 0pz, @)iaae)

(2.13) -
= [ 76, 067 p(y, 0)8utde) < Kl Daly, n)
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and, similarly,if y > z + e
(2.14) f W(w, —)p(x, )k (dw) < Kile, )8(y,n)

where K:(e, t) — 0 as t — + o and similarly for K3 . Returning to (2.7) note
that K;(v, t) and Ky(v, t) are both increasing with ¢, so that, for fixed ¢ > 0,
we can find ¢ (which will depend on v and €) such that, for all £ = max (%, v),

Ki(y,t)/3 — 2Ki(e, t) = Ky(say) > 0;
Ki(v,1)/3 — 2Ks(e, t) = Ky > O.

One further deduction from the nature of p(z, w) is that, for any u > 0,

(2.15)

(216) (@, n) + 8z, ) 2 [ pla, 0)elds) 2 Kulz, w)(—u, w).

Let {m;} be a sequence of integers (all different) such that = (¢* + ¢, m;) < 2
for all j where e is some fixed positive number. That we can find such a sequence
{m;} follows from (2.5) at least if X, is not empty; if X, is empty then the re-
marks in this paragraph are vacuous. v is fixed and e is fixed so we can find # as
described above (2.15) and let us take ¢ > max (¢, v). The choice of {mj},
(2.3), and (2.10) used in (2.8) yields, for all z = z* + &

. . _°° W(w, t)p(x7 w)fm,-(dw)
mfcé‘)’ B(C, z, m]) Z . a(x, mj) + 5(33, m,-)

KI('Y) t) _ Kl('Y; t)Ka(.’l:, t)gmj(07 t)
3 a(z, m;) + Bz, m;)

Now take y = 2* 4. ¢ in (2.13) and conclude that for all z = z* + 2e

(2.17)
+

IA

[ (e, 0p(@, ), (do) < Kole, Dala® + ¢ m,)
(2.18) = Ki(e, t)w(z* + ¢ m;)B(z™ + ¢ my)
< 2Kq(e, 1)B(z™ + ¢, my)
< 2K(¢, t)B(x, m;).
Using (2.18) in (2.11) we have for all z = z* + 2¢

[ W6, 00z, )80, (d0) + Kola, 05 (~1,0
(219) Bt z,m;) = a(z, m;) + B(z, m;)

+ 2K7(6, t)'

Using (2.15) we obtain from (2.19) and (2.17) (lumping some constants to-
gether and observing that £x;(0, t) < &n;(—t, 1))
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Klz(x; t, 'Y)Emj( —t7 t)
a(x: mf) + ﬁ(x: mi)

(2.20) inf,<, B(c, x, m;) = B(t,z, m;) + Ky —

for all z g z* + 2e.
Since z* — € is not in X, we have lim inf, 1r(x — ¢ n) > 1 and, therefore,

for all but a finite number of n, m(z* — ¢, n) = 1. An argument like that in the
preceding paragraph enables us to conclude that for all but a finite number
of n,

Kl3(x7 t; ’Y)En( _t’ t)
(2.21) inf,>—, B(¢,2z,n) = B(—t,2,n) + Ko — (o, 7) + B, )

for all z < z* — 2e.

Lemma 1. There exists a subsequence {ni} and a number a such that, for all
b < o, lim SUPkso £ny(—, b)/E”k( —a,a) < .

Proor. We will argue by showing that the negation of the lemma implies
the existence of a set E of positive u-measure such that 6(C|z) = 0 on all
bounded sets C and all z ¢ E. Thus & could not be in ®, and this is contrary to
our assumption.

Let X, be as defined in (2.5) and suppose (z*, «) has positive u-measure.
If this is not the case then u(— o, 2*) has positive u-measure and a parallel
argument will work. If (z*, «) has positive u-measure then, for some ¢ > 0,
(z* + 2¢, ») has positive u-measure. Let {m;} be the sequence described above
(2.17). Consider the interval [—v, v]. Let ¢ > max (%, v) and suppose that
the lemma is false. Then there is a number b > ¢ and a subsequence {n} of
{m;} such that lim,e &, (—b, b)/&n,(—t,t) = + ». To avoid circumlocutions
define &,(—u, u)/&.(—0v,v) = + 0 if w > v and £.(—v,v) = 0 and in the same
circumstances define £,(—v, v)/&(—u, ) = 0. From (2.16) and (2.20) we
obtain

(222) infusy Ble, 7, m) = B(t, 2, m) + Ko — Ku(z, 1, v)Kn(, b) ;_k((%
ng

for all z = z* + 2¢ Thus, by (2.22) for each = z* + 2¢ there is a ko suffi-
ciently large so that for all &k = k
(2.23) inf, <y B(c, z, ne) > B(t, z, nx).

Let X, = {z |z = 2% + 2¢, (2.23) holds for all k = r}. Let I* = (2* + 2¢, ).
Note that lim,o Xry = I *. Choose 7, such that

(2:24) p( X)) Z w(I*)(1 = 1/2y).
Since 8,,([—7, v] | z) = Oforall k = r, and all z ¢ X, ,, we have by (2.2)
6([_’)" '7] |x) =0 .

a.e. on X, ,. We will let ¥y assume only positive integers as values. For each
such v we can find a subsequence {nz} such that (2.22) holds for all z = z* + 2¢
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and, consequently, we can define X,y such that (2.24) holds and such that
6([—v, 7] |z) = 0 ae. on X,,y. X,y C I* for each r and v and from (2.24)
we have ,

u( 1g1Xr7.1) 2 %ﬂ(I*)°

Take E= 5= X, and we conclude that, for every bounded set €' and every
zeE, 8(C|x) = 0. But this implies that § £ ®, which is a contradiction.

If (2%, @) has u-measure O then (—», *) has positive u-measure and we
can use (2.21) instead of (2.20) to yield the same conclusion. This finishes the
proof of Lemma, 1.

Let {m} and a be as in Lemma 1. Define measures Fo, = &/En(—a, a).
Because of Lemma, 1 a subsequence {r} can be extracted so that F,, converges
(weakly) to a measure F on the real line with the property that F is finite on
bounded intervals and is not everywhere 0 (in particular, F(—a, a) = 1). This
being so we might as well assume that {£} is the original sequence {£,} so that,
in addition to 8, — 6, we now have F, = &w/En(—a, a) — F. F, of course, may
or may not assign finite measure to the whole line.

LEMMA 2. For almost all (1), im SUPpae Yo p(2, 0)F,u(de) < .

Proor. Let ‘

X = {x | lim SUP2-»e0 ﬁ(x7 n)/En(fa, a) = +°°}
X, = {2 | lim Suppw (2, 7)/Ea(—0, @) = + o},

We wish to show that both u(X;) and u(X:) are 0. Considering X; first let
x; = inf {x |z £ X;}. Since X, is an infinite (to the right) interval (8(z, n)
increases in ) we have two situations to be concerned with, namely, either
u(@r, ©) > 0or p({z}) > 0 and a(z;, ©) = 0.

CaSE 1. u(21, ©) > 0: In this case there is a positive number ¢ such that
u(z1 + 2¢, ©) > 0. Let {ny} be a sequence of integers such that

(2.25) limg.e B(21 + € M) /Eny(—a, @) = + co.

Let X5 = {x | lim infy.e 7(z, ) < 1} andlet z¥ = inf {x|zeXy). ifaf < 2 +
2¢; then we can proceed as in Lemma 1 as follows: let {m;} be a subsequence
of {ny} such that =(z; + 2¢, m;) < 2 for all j and observe by use of (2.20)
that, for v > 0 and ¢ > max (4 ,7) (see the proof of Lemma 1),

inf,<y B(c, z, m;) = B(t, x, m;) + Ky — Kis(z, t, v) e i’;:)(;tbg o

Em,‘(_t7 t)
2 B(t, z,m;) + Ky — Ku(z, t, v) Bz, my)

for all z > z, + 2¢ . Since {m} isa subsequence of {n:} we obtain from (2.25)
and the fact that F,,(—¢,t) — F(—t,t) < o
Em,'(_t; t) < Emg(_t;‘t) — Emj(_t; t) Emj(_ay a). —0
ﬁ(x7 mf) - ﬁ(xl + e ’ mj) E”'i(_ay 0/) ﬁ(xl + «a ) m:')
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as j — . We can now argue as in Lemma 1 to obtain a subset E of
(xl + 251: °°)

with u(E) > 0 and §(C |z) = O for all z ¢ E and all bounded sets C.

If 2f > 1 + 2¢ and u(z¥, ©) > 0 then we can argue as above to obtain
a subset B of (21, «) ete. If 2f > 2, + 2¢ and u(z*, ©) = 0 then there is a
number m > 0 such that z; + 2¢ < 2f — n and u(z: + 26, 2F — @) > 0.
Since zf — m & X, and since lim infy,q w(zF — 71, ) > 1 we have 2 —meX,
and, in fact hm,,_,‘,° a(z, )/t (—a, a) = +o for all z < 2F — #,. Thus
,u(Xz) > 0 and we ¢an now argue as in the first part of this Case 1 using (2.21)
instead of (2.20).

Cask 2. u({2:}) > 0 and u(x;, ©») = 0: Here we can find a sequence of
integers {ny} with limp,. B(21, M)/t (—a, a) = + . If z¥ (as defined in
Case 1) is smaller than x; We can proceed as above to show that 6(C | z;) =
for all bounded sets C. If x1 = 2, and zf £ X§ the same argument holds. If
af = z, and zf £ X5 or if z¥ > a, then z; & X, and again we refer to the previous
argument.,

We have now shown that u(X;) = 0. A parallel argument shows that x(X:) =
0, and this concludes the proof of Lemma 2.

Let 20 = inf {2 |2 ¢ support of u} and let z = sup {z | z £ support of u}.
2 may be —« and z; may be + .

Lemma 3. For almost all x(u) € (20, 21)

) +o0
(226) it [ 9@ 0)Fad0) = [ p(z, )F(de) <
and
+o0 +e0 )
(227) limes [ W, 0p(z, 0)Pa(de) = [ W(a, p(a, 0)F(de)

uniformly on compact sets of t. The right hand side of (2.27) is finite and con-
tinuous in t.

Proor. Let us first establish (2.26). Since p(z, ») is continuous in w we know
thatforany 0 < 4 < , liMpe [24 (2, 0)Fa(dew) = [24 p(z, ©)F(dw). Thus
we have only to estabhsh uniform integrability, i.e.,

(2.28) i 4o 1im SUDpae ] p(z, @) Fa(dw) =0
A
and
' —4
(2.29) lim 45 lim suUpyse p(z, w)F,(do) = 0.

Let X' be the set of z & (20, 21) Where (2.28) fails. We wish to prove that u(X') =
0. If u(X’) > 0 then there is an 2" such that x(z’, ©») > 0 and

1M 42en im. SUPgace f p(&, @) Fa(dw) > 0.
A4
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But, for z >
[ 2 w)Futda) 2 ¢4 [ p(a!, w)Fudo)
A

and, consequently,

+00 *
lim sup . p(z, w)F,(dw) = gim lim supL p(z, w)F,(dw) = + o

for all z > 2. This, however, contradicts Lemma 2 and thereby establishes
(2.28) for almost all z < 2, . Similarly (2.29) follows for almost all > 2, and,
therefore, (2.26) is proved. '

We next show that (2.27) holds for any ¢ (the exceptional set of z’s will not
depend on ¢). Because W is continuous in w it is again sufficient to prove uni-
form integrability. If z and ¢ are such that

lim 40 lim supn.mf W(w, t)p(z, w)F,(dw) > 0
A
then observe that, for y > =z,
[ o, 080, )Fad0) < supuzs (o, 0671 [ 9y, )Fa(d)

so that, by Assumption 3, im sUp,.« [% P(y, @)Fa(dw) = + . Now use
Lemma 2 or the first part of the argument of this Lemma to obtain the necessary
contradiction. The finiteness of the right hand side of (2.27) is obvious.

To prove continuity in ¢ of the limit, observe first that, for fixed ¢ > 0,

tote tote
limeer, [ W0, 000z, )P(do) = [ W(o, w)p(z, @)F(d0)
0—€ 0—€
by bounded convergence. Since W(w, t) < W(w, & — €) forty + ¢ > ¢t > t —
e = w (Assumption 2) we have by Lebesgue’s dominated convergence theorem
to—e

timery [ Wa, 0p(a, )P () = [ Wi, W)p(z, 0)F(do)

with the same result for the integral over [f, + €, ]. Thus continuity of the
limit is established.

Turning now to the question of uniformity in (2.27) let C = [—v, ¥] with
v > 0. If the limit in (2.27) is not uniform for ¢ ¢ C then, for ¢ > 0, there is
a sequence {t,} C C-with ¢, — &, & ¢ C such that
+00
W (o, 6)pa, @) F(ds)| >

+o0
(230) | W(e, t)p(z, 0)Fa(do) -

/—00

Continuity in ¢ shows that for n large enough

+o0 ) +o
231) |[ - Wla, tpla, 0)F(do) — [ W(a, t)p(s, 0)F(de)| < ¢/8.
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For any A we have, from the continuity of W,

[W(w; tn) — W(w, to)]p(x; w)Fn(dw)

’ to+4
t

0—4

(2.32) tobd
< [T W, ) — W(o, 0)lp(s, 0)Fa(de) < /8
to—A
for n large enough. Since W(w, ty — 4) < W(w, t,) < W(o, &y + 1) for v <
to — 9 = t, = t) + 5 we have

[ et = ) = Wi, Wlp(a, @) ()

= j_.:’_A [W(w) tn) - W(w, to)]p(x’ w)Fn(dw)

= [—o:_ [W(w’ to + 77) - W(wy to)]P(x, w)Fn(dw).

Now, using (2.27) for fixed ¢ (it is easy enough to check that (2.27) holds even
when the range of integration is cut down to (— «, {, — A]) and the continuity
in ¢ of the right hand side of (2.27) (even when the range of integration is re-
duced) we obtain, for n large enough,

(2.33) < ¢/8.

[ W 0) — We, 0, @)Fu(do)

Similarly, for n large enough,

[ 7 ) = Wo, )lp(a, ) Faldo)

tot+

(2.34) < ¢/8.

Using (2.27) with ¢ = ¢ and the range of integration | — %] = 4 we obtain
from (2.31), (2.32), (2.33), and (2.34) that (2.30) cannot hold for any n
sufficiently large. This establishes the uniformity desired and completes the
proof of Lemma 3.

TueoreM. If Assumptions 1, 2, 3 are satisfied and {8,} s a sequence of Bayes
solutions such that 8, — & regularly with § & ® then there exists a measure F on
(— o, + ) such that for almost all x(u) in (2, 21) (see above Lemma, 3 for the
definition of z, and 21) (B, | ) = 1 where

n{

Proor. As noted following Lemma 1 we can assume that there are measures
F, and a measure F with F, — F. Lemma 3 is valid for {F,} and F and we take
the exceptional set of  in the Theorem to be the exceptional set of Lemma 3.
Henceforth all statements will be for x £ (20, z1) and not in the exceptional set.
Put

+o0 ,
f W (o, £)p(x, o)F (dw) s mz'nimz’zed} .
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400

H(t, o) = [ Wo 0p(a, )F(@do), H(bz,n) = [ Wo, 0pao)Fade),

m(z) = inf, H(t, z), m(z,n) = inf, H(t, z, n),
B.. = {t|H(t,z) < m(z) +r}, Bz = {t|H{ 2,n) < m(z,n) + r}

for r = 0. Note that B,,, = B, and that Bj, is the same as the set of ¢ where
B(i, z, n) is minimized (see (2.6)). From Assumption 1 and Fatou’s Lemma
H(t, :c)(H(t, z,n)) — 4o ast— + o or — o, From Lemma 3 H(¢, 2) <
for each ¢ and the same is true for H(t, z, n) for each n. It follows that B, is
a bounded set and so is B3, . B,.-(Bx,) is a closed set because H(t, z) (H (%, z,n))
is continuous in ¢. Since &, is Bayes, we have, for almost all z, all » = 0, and
all n, 8,(Ba, | ) = 1. If the theorem is false we can find positive numbers
To, Y0, &, and a set Ey of z, Ey C (2, #1), and u(E,) > 0 such that

(2-35) 6(Bz,r I x) é 1- €, Ba:.r c [—_'YO ) 70]

for all z ¢ Eg and all r < 7.

The uniformity (for ¢ in a compact set),of the convergence of H(¢, z, n) to
H(t, r) (Lemma 3) implies m(z, n) — m(x). In addition, the uniformity of
convergence implies that there is a number v; and a set E; with B, C E, and
uw(E1) > 0 such that Bz, C [—y1,vi] alln, all z ¢ Ey, all » £ ry. Again from
the uniformity of the convergence in (2.27) B;, — B,,. as n — o for each
zeBiand 0 < r < ro. In fact (let r = ro/4 for specificity) Bz,2 C B,, for
n = no(z, r). If we let

Ei = {x | Bwe C B, foralln 2 k, x e By}
then, for some £ sufficiently large, u(Ex) > 0 and, for x & Ej, ,
(236) 1= 6n(B:rﬂ I II)) an(Ba: r I x)

Suppose there is an z* ¢ B, with u({z }) > 0. By (2.36)1limye 85(Bos s | 2) =
1 and by (2.2) we must have 8(B,s >} *) = 1 but this contradicts (2.35).
If there are no atoms in Ej, then we can find an z* ¢ By, such that

[&* — n,2* + 21N B,

has positive y-measure for all » > 0. Observe that H(¢, z) is continuous in 2
uniformly for ¢ in, a compact set—the argument is similar to that of the last
part of Lemma 3 and, in fact, somewhat simpler—and consequently, m(z) is
continuous in . Thus, for some positive 4 and all

yeE* =" — 9,2+ 49 NE,, B,,C By or € By, .
Note that u(E*) > 0. Since 4r = r, we have, by (2.35),

(2.37) 8(Booar|y) S 8(Byur|y) S 1 — &
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for all y ¢ E*. Since E* C Ey, we have for alln = &
(2.38) = 3u(Byrz | ¥) = 8u(Byir | y) = 8u(Borr | y)

for all y ¢ E*. Use of (2.2) shows that (2.37) and (2.38) are incompatible with
the regular convergence of 3, to § and the theorem is proved.

COROLLARY 1. Let & be the set of all measures F on the Borel sets of the real
line which are finite on bounded sets and such that H(t, ) < « for all t a.e. (u).
For F ¢ let By be the set of &’s which satisfy §(B,|z) = 1 a.e. (u). If

w({a U fa}) = 0

and Assumptions 1, 2, and 3 are satisfied, then ® C &* = U {®r|F ¢} and
hence ®* is essentially complete.

COROLLARY 2. If, in addition to the hypotheses of Corollary 1, W is strictly
convex in t for each w, then By = ®".

Proor. Corollary 1 is immediate from Theorem 1. To prove Corollary 2
observe that the convexity of W implies that, for any F ¢ F, ® consists of a
single (non-randomized) decision function—call it 5. Since (= |[2) =0
a.e. we need only show that 8 ¢ ® in order to conclude that 8r ¢ ® . For each
positive integer n, define F, to be the restriction of F to [—n, n] (we might as
well assume that F, is non-trivial for all n). Let ¢, = F,/F[—n, n]. Then ¢, is
a probability measure concentrated on [—n, n] and if 8, is Bayes with respect
to ¥, then the convexity of W implies that 8,(t.(z) |z) = 1 where #,(x) is
that ¢ which minimizes

Ht,z,n) = L W (o, )p(, o)F (do)

It is easy to prove that H(t, , n) — H(¢, ) as n — o uniformly on compact
sets of ¢ and consequently ¢,(z) — #(x) a.e. (u), where {(z) is that ¢ which mini-
mizes H (i, x) That 6, — & regularly is an immediate consequence Thus 67 £ B
and hence ®* C ®,. Corollary 1 tells us that B C ®* and we are finished.
Note that what was needed is the guarantee that B consists of a single decision
function and convexity of W assures this.

~ Remarks. 1. We do not know whether % = ®, or not in the situations not
covered by Corollary 2. If B, consists of two points't; , & then it might be (as
far as we know) that By N [t — ¢ & + €] is empty for some ¢ > 0 and all n
and, consequently, 8, could not converge regularly to & if 8({to} [#) > 0 and
u({z}) > 0.

2. That we cannot rule out the condition u({zo} U {z}) = 0 in Corollaries

1 and 2 can be seen by the following example where we exhibit {5,} and & with
8, Bayes, 8, — 0 regularly, and & ¢ ®*. Let u assign uniform measure to [0, 1)
and let x give measure 1 to {1}. Let F, assign uniform measure to [0, 1] and let
F.({n}) = 1/n. Take & = F./(1 + 1/n). Let §, be Bayes with respect to £, so
that 8,(t.(z) | ) = 1 where

t(x) = [[ wp(z, ) do + p(x,n)]/l:fol p(z, w) do + %p(m, n)] .
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It is easy to check that, as n — «, p(z, n) — 0if z < 1 while p(1, n) — 3.
Consequently #,(x) — t(x) where

(2.39) i) = [ fo (2, @) do + 6(z) %] / [0 (o, ) ds

where ¢(2) = 0if z < 1,¢(z) = 1if z = 1 (we needn’t worry about z £ [0, 1]).
If 6 is defined by &(¢(x) |z) = 1 then §, — & regularly and hence & ¢ ®, . If
8 £ ® then there is an F such that

(2.40) H(z) = [:w wp(, ©) F(dw) / [ :w p(2, 0)F(dw)

ae. (u). Let L(z) = [ip(z, 0) do = [§€“p(w) dw and let
+o0

L¥*(z) = ) p(z, w)F(dw).

_dlog L*(z) _dlog L(z) , %¢(x)
Hz) = dx N dx + L(x) ~

Hence, for # < 1 we have, for some constant A > 0, L*(z) = AL(z). Since
L* and L are Laplace transforms it must be that ¥ = AU where U is uniform
measure on [0, 1]. But (2.39) and (2.40) are in conflict when x = 1 and con-
sequently é £ ®*.

3. The results above can be generalized to other than exponential densities.
The key assumption is Assumption 3 which, for nonexponential densities would
be modified by replacing e* by p(x + ¢, w)/p(z, ) (in case there is more than
one observation we would consider

p(x1+ €,1‘2+€,"',1‘n+ f,w)/P(xl,'“:xn;w))-

For example, if p(z, ) = ¢ “", @ =1[0, o), W(w, t) = (o — ¢) then As-
sumption 3 holds and we could carry out the arguments to obtain the same con-
clusion. In fact, if Assumption 3 is modified as above, and p(z, w) is continuous
and positive for all w and z, and if the support of u is the entire real line (or all
of n-dimensional space when there are n observations) then the arguments can
be modified to give the same conclusions. The requirement that u gives positive
mass to every open interval enables us to consider in (2.22), for example, in-
tervals of z’s which lie far to the right of z* so that the lack of monotonicity of
a, B, and = is not, essential to drawing the necessary contradictions.

Examples where these results fail are not too hard to provide but the only
ones we know-are when Assumption 3 is violated and p is not exponential. In
particular take @ = (—w,4o), W, t) = (0 — 1), plx, w) = ¢ “ ¢z, w)
where ¢(z, w) = 1if 2 > w, ¢(z, w) = 0if z < w, and the sequence

£ = Fo/(2n + ¢"/n)

where F, is Lebesgue measure on (—n, n], puts mass €¢"/n at —n, and gives
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the rest of the line 0 measure. It is simple to verify that 8, (the Bayes solution
with respect to £,) — & regularly when 6(¢(z) | ) = 1 and

(z) = (f_:we"’dw— 1)/[:e”dw =z—1—¢€"

To show that there is no F such that
(241) faWF@ﬁ/[.fM&0=x—l—f’
integrate by parts to conclude that F is differentiable and then (putting f = F')

d ‘ 2] - d —2 “ %)
2 [ es@do=L@—1-¢ [ efuda
implies ze’f(z) = (x — 1 — e )ef(x) + [“we’f(w) dw (1 + €) so that
ef(x) = [2we"f(w) dwie., f is constant and this contradicts (2.41).

4. If p is a two-dimensional exponential density, i.e., if

p(z, w) = p(wr, we) exp (10 + Tawe), @ = (w1, w2),and x = (1, 2)

then the same results will hold with appropriate alteration of the assumptions.
The argument proceeds as before except that «(z, n) + B(z,n) has to be
broken up into four pieces corresponding to the four quadrants in the plane.
Similarly the results can be generalized to n-dimensional exponential densities.

5. One of the questions that led us into these investigations is: what are the
admissible procedures for estimating the mean of a normal distribution when
the loss is squared error? In particular we became interested in the problem of
finding an admissible minimax estimator when the parameter space is restricted
to [0, ») and, stimulated by Karlin’s [1] work on admissibility, we announced
(Abstract 75, Ann. Math. Statist., (1960) p. 246) the result that

f(z) = f we 1O g / f 9 gy
o o

is such an estimator. Independently of us Katz [2] obtained the same result
and we refer the reader to Katz’s work for a proof of this fact.

A consequence of Corollary 2 is that for W(w, t) = (0 — t)* and p an ex-
ponential density, every admissible estimator must be of the form

(2.42) t(z) = (d/dz) log Ly(z)

where Ly is the Laplace transform of a measure ¢ on € (¢(dw) = p(w)F(dw)).
Thus, for example, in the problem of the last paragraph {(z) = max (0, ),
which is the maximum likelihood estimator, is inadmissible. A sidelight of this
occurs on comparing the risk functions of { (which is known to be minimax)
and ¢* which reveals that t* is not an improvement of # and that, consequently,
there are many admissible minimax estimators for this normal estimation
problem.
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That (2.42) does not answer the question raised at the beginning of this
Remark can be seen by taking F(dw)= €“dw for any « > 0, and observing
that for @ = (— o, + ) this results in an inadmissible ¢. R. Farrell has pointed
out to us that the restriction of this F to [0, « ) gives an inadmissible estimator
when @ = [0, «).
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