A COMBINATORIAL THEOREM FOR PARTIAL SUMS

By R. L. Graham

Bell Telephone Laboratories

1. Introduction. Let (x_1, \dots, x_n) be a sequence of real numbers, $s_k = \sum_{j=1}^k x_j$ and $M_k = \max(s_1, \dots, s_k)$. As usual let the superscript + mean maximize with zero. In a recent paper of M. Dwass [2], a theorem equivalent to the following is proved (generalizing a result of Kac [3] and Spitzer [4]):

Theorem. $\sum_{\sigma} (M_n^+ - M_{n-1}^+) = s_n^+$ where σ ranges over all cyclic permutations of (x_1, \dots, x_n) .

In this note we give a generalization of this theorem. It will be seen that several recent results of L. Takács [5], [6] may be derived from this extension.

2. The basic theorems. We begin with a preliminary lemma. Let $X = (x_1, \dots, x_n)$ be a sequence of real numbers. Let m(X) denote the rth largest term of X (or zero if r > n) and let m(X, y) abbreviate $m((x_1, \dots, x_n, y))$.

LEMMA. If
$$y \ge 0$$
 then
$$m(X, y)^+ - m(X)^+ = m(X, y) - m(X, 0).$$

Proof. There are three cases:

- (i) Suppose $m(X, y) \leq 0$. Since $y \geq 0$ then m(X, 0) = m(X, y) and $m(X)^+ = 0$ $m(X, y)^+ = 0$ and (1) follows.
- (ii) Suppose m(X, y) > 0 and m(X) > 0. Then $m(X, y)^+ = m(X, y)$ and $m(X)^{+} = m(X) = m(X, 0)$ and (1) follows.
- (iii) Suppose m(X, y) > 0 and $m(X) \leq 0$. Since $y \geq 0$ then a moment's reflection shows that $m(X)^+ = 0 = m(X, 0)$. But we have $m(X, y)^+ = 0$ m(X, y) and so (1) follows.

This completes the proof.

Now denote the partial sum $\sum_{j=1}^k x_j$ by s_k . Suppose $1 \le r \le n$ and let $m_k =$ $m((s_1, \dots, s_k))$. Then we have Theorem 1. $\sum_{\sigma} (m_n^+ - m_{n-1}^+) = s_n^+$ where σ ranges over all cyclic permutations

of (x_1, \dots, x_n) .

Proof. If $s_n < 0$ then the theorem is immediate since in this case $s_n^+ = 0$ $m_n^+ - m_{n-1}^+$ for all permutations of the x_i . Assume $s_n \ge 0$ and note that

$$m_n = m((x_1, x_1 + x_2, \dots, x_1 + \dots + x_n))$$

= $x_1 + m((0, x_2, x_2 + x_3, \dots, x_2 + \dots + x_n)).$

Therefore by the lemma

$$\sum_{\sigma} (m_n^+ - m_{n-1}^+) = \sum_{\sigma} (m_n - m((x_1, x_1 + x_2, \dots, x_1 + \dots + x_{n-1}, 0)))$$

$$= \sum_{\sigma} (x_1 + m((0, x_2, x_2 + x_3, \dots, x_2 + \dots + x_n))$$

$$- m((0, x_1, x_1 + x_2, \dots, x_1 + \dots + x_{n-1})))$$

$$= x_1 + \dots + x_n = s_n$$

Received April 9, 1963.

since the sum is taken over all cyclic permutations of (x_1, \dots, x_n) . This proves the theorem.

Theorem 1 is a special case of a more general result. Let (x_1, \dots, x_{t+u}) be a sequence of real numbers and let $m_j(k)$ denote $m((x_{k+1}, x_{k+1} + x_{k+2}, \dots, x_{k+1} + \dots + x_{k+j}))$ for $0 \le k \le t$ and $1 \le j \le u$. Then exactly as before we have

THEOREM 2. If $1 \le r \le u$ and $\sum_{j=1}^{u} x_{k+j} \ge 0$ for $1 \le k \le t$ then

$$\sum_{k=1}^{t} (m_n(k)^+ - m_{n-1}(k)^+) = m_u(t) - m_u(0) + \sum_{k=1}^{t} x_k.$$

If we let t = u = n and $x_{n+j} = x_j$ for $1 \le j \le n$ in Theorem 2 then $m_n(n) = m_n(0)$ and we obtain Theorem 1. A similar substitution in Theorem 2 yields

THEOREM 3. Let (x_1, \dots, x_n) be a sequence of real numbers and let $1 \le m \le n$. Suppose the sum of any m consecutive x_j is nonnegative where the x_j are considered cyclically i.e., x_1 follows x_n , etc. Then for $m-1 \le q \le p \le n$ we have (using the notation of Theorem 1)

$$\sum_{q} (m_{p}^{+} - m_{q}^{+}) = (p - q)s_{n}^{+}$$

where σ ranges over all cyclic permutations of (x_1, \dots, x_n) .

3. Concluding remarks. It may be noted that several results of L. Takács follow directly from Theorem 1. For example, if we assume that the x_j are integers and $x_1 + \cdots + x_n = 1$, then Theorem 1 asserts that for any integer r satisfying $1 \le r \le n$ we have

$$\sum_{\sigma} (m_n^+ - m_{n-1}^+) = (x_1 + \dots + x_n) = 1$$

where σ ranges over all cyclic permutations of (x_1, \dots, x_n) . Since each summand $m_n^+ - m_{n-1}^+$ is a nonnegative integer then there must be exactly one cyclic permutation of (x_1, \dots, x_n) such that $m_n^+ - m_{n-1}^+ > 0$. This inequality holds, however, if and only if there are exactly r of the partial sums s_j which are $\geq s_n = 1$, i.e., if and only if there are exactly r positive partial sums. This is just Theorem 1 of Takács [5]. Similarly, by replacing x_k by $1 - x_{n+1-k}$ and taking r = 1 in Theorem 1, we obtain the following interesting result of Takács ([6], Theorem 1) (which may also be derived from an elegant result of Dwass [2]):

THEOREM. If x_1, \dots, x_n are nonnegative integers such that $x_1 + \dots + x_n = k \le n$ then there are exactly n - k cyclic permutations of x_1, \dots, x_n such that the jth partial sum is less than j for $j = 1, 2, \dots, n$.

The author wishes to express his gratitude to the referee for several very helpful simplifying suggestions.

REFERENCES

- DINGES, H. (1962). Eine kombinatorische Überlegung und ihre masstheoretische Erweiterung. Z. Wahrscheinlichkeitstheorie 1 278-287.
- [2] DWASS, M. (1962). A fluctuation theorem for cyclic random variables. Ann. Math. Statist. 33 1450-1454.

- [3] Kac, M. (1954). Toeplitz matrices, translation kernels and a related problem in probability theory. Duke Math. J. 21 501-509.
- [4] SPITZER, F. (1956). A combinatorial lemma and its applications to probability theory. Trans. Amer. Math. Soc. 82 323-339.
- [5] TAKÁCS, L. (1962). Ballot Problems. Z. Wahrscheinlichkeitstheorie 1 154-158.
- [6] TAKÁCS, L. (1962). A generalization of the ballot problem and its application in the theory of queues. J. Amer. Statist. Assoc. 57 327-337.