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1. Summary and introduction. Wald’s Fundamental Identity in sequential
analysis [15] has been widely used for various applications apart from sequential
sampling. Bartlett [1] used it for the insurance risk problem and also for the
random walk and gambler’s ruin problem. It is the purpose of this paper to show
how the Fundamental Identity can be used to derive certain results in Dam
Theory. The paper is purely of an expository nature and considers only simple
examples; more difficult problems will be dealt with in a future paper.

We consider here a continuous time dam model due to Gani and Prabhu ([5],
[6], [7]), based on Moran’s ([10], [11]) discrete time model. Briefly it is as follows:

(a) The dam has finite capacity K.

(b) Let X(T) represent the input (including the amount overflowed, if any)
during a time interval of length 7'; we assume that X (7') is an additive process
with stationary increments. It is known that for such processes the m.gf. is
given by E{e™ "} = ¢ ™® where £(0) is a function of a specified type (Lévy
9.

(¢) The release is continuous and occurs at a unit rate except when the dam
is empty.

It then follows that the net input (including the amount overflowed, if any)
in the dam during the time interval (0, 7') is Y(T) = X(T) — T whose m.g.f.
is Mz(0) = ¢ " "® For T = 1 this gives My1(8) = ¢ " *®.

Let us denote the dam content at time ¢ by Z(t), with the initial content
Z(0) =u (0 < u < K); we have, then Z(t) = u + X(¢) — ¢. It follows from
the above assumptions that the stochastic process Z () is a temporally homoge-
neous Markov process. Following Moran’s first paper, attention was concen-
trated mainly on investigating the stationary properties of the system. Later,
Kendall [8], Gani [4], Prabhu [13] and Weesakul [16] considered the problem of
emptiness of the dam; it is with this second problem that the present paper is con-
cerned.

Considering the dam process described above as a random walk with barriers
at Z = 0and Z = K, the process starting at Z(0) = wu, we obtain the probability
that the dam becomes empty (i.e. the process terminates at 0) before it over-
flows (i.e. the process terminates at K) and the probability of the reverse situa-
tion; further, we derive the probability distribution of the time at which the dam
becomes empty. We do this by making use of the following extension of Wald’s
Fundamental Identity to continuous time parameter by Dvoretzky, Kiefer and
Wolfowitz [3].
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If{Y(T); T = 0}, Y(0) = 0, is a process with stationary independent incre-
ments and if M;(0) = E[’"®] exists for all real 6, then

(1.1) E[TY My(6)71 = 1,

where ¢ is such that Y(t) = bor Y(¢) < a, whilea < Y(7) < b for all r < .
(Here a and b are constants, a < 0,5 > 0.)

We also require a lemma due to Bartlett [1].

Lemma. Let Y be a random variable such that: (a) E(Y) exists and is not equal
to zero; (b) M(8) = Ele™’] exists for 0 in a finite interval; (¢) M(8) — « as
0 — + . Then there exists one and only one real 6y %= 0 such that M (6,) = 1.

Since the Identity as stated above is applicable only when the process starts
from zero, we put b = K — u, and a = —wu. Applying the above lemma to the
input process of the dam model, we find that there exists a nonzero real solution
6o of the equation

(1.2) 0+ £(0) = 0;
we then have, putting § = 6, in (1.1)
(1.3) E["T] = 1.

If the boundaries @ and b are exactly reached at stage “t”” we put Y (¢) = a with
probability P, and Y (¢) = b with probability P, = 1 — P, ; then (1.3) gives
P + (1 — P,)e" = 1, so that

(1.4) P, = (1 — ®) /(e — &™),

Using (1.3) the characteristic function (c.f.) of the time ‘¢’ at which the dam
becomes empty for the first time before touching the barrier K can also be deter-
mined. It is known that the equation 6 + £(6) = ¢ has two roots 6,(¢) and
0:(¢) such that 6;(¢) — 0 and 6:(¢) — 6o as ¢ — 0. Hence, in the case where
the boundaries “‘a’’ and ‘b’’ are exactly reached, we obtain from (%.1)

Poe™® Ca() + Pie™® Co(9) = 1,
Paeaﬂz(qS) Ca(¢) + Pbebﬂz(qS) Cb(¢) =1,

where C,(¢) is c.f. of ¢ conditional on Y (¢) = @, and Cy(¢) is defined similarly,
so that E[e*®] = P.Ca(¢) + PsCo(¢). Equations (1.4) and (1.5) give P.Cu(¢),
the c.f. of “¢” the time at which the dam becomes empty for the first time without
overflowing, (cf. Bartlett [1] pp. 18-19).

Before we use the Fundamental Identity in any problem let us consider the
advantages of this method. The main advantage is its simplicity and easy
applicability. Moreover, by a slight modification we can derive the more impor-
tant probability distribution of the times of emptiness, no matter how often the
dam has overflowed in the meantime. In random walk terminology this means
that we have an absorbing barrier at 0 and a reflecting barrier at K. Another
advantage of this method is that it can be used even when the inputs are not
independent, as assumed in the above model, but Markovian. In this case the

(1.5)



1590 R. M. PHATARFOD

extension of Wald’s Fundamental Identity to Markov Processes (Bellman [2],
Tweedle [14], Phatarfod [11]) has to be applied; this problem will be considered
in a future paper.

2. A compound Poisson input. We consider first the case where the inputs
arrive at random at an average rate A, and the amount of each input has a nega-
tive exponential distribution with parameter u, while the release is assumed to
be continuous at a uniform unit rate. The total input in the dam during the time
interval (0, T') is then given by a compound Poisson distribution whose m.g.f.
is exp \T{(1 — 6/u)™" — 1}]; the net input is Y(T) = X(T) — T, with the
m.gf. Mr(0) = exp NT{(1 — 6/u)™" — 1} — 6T). If u 5= A, the nonzero real
solution of M;(0) = 1 is easily seen to be 6y = u — A.

We shall derive our results by first considering the process to start from zero
with. barriers at b and @ and then putting b = K — u and ¢ = — wu. At the
termination of the process, Y (¢) takes the value “a”’ or lies in the internal (b, «).
Let the Pr{Y(t) = a} = P,,and Pr{Y(t) = b = P, =1 — P,. Also let the
conditional p.d.f. of Y (¢) — b conditional on Y () = b be p(x); because of the
“forgetful property’”’ of negative exponential distribution, p(z) = ue . Hence,
we have, from (1.3)

b6
e’

1= P, 4 (1 — P,) f O, G — P 4 (1 — Po) —°
0

1 — 6o/u
Putting o = u — A = v, = — u, b = K — w and denoting the probability by
P, , we obtain,
(2.1) P, = ("™ — pe’™)/(\ — pe'™), (u 5 N).

If, however, u = X\ (i.e. mean input \/u = output 1) then, by a limiting process
we obtain,

(2.2) P.=1—u/(K + 1/A).

We will now proceed to derive the probability distribution of ¢, the time at
which the dam becomes empty for the first time, before it overflows. The roots
0:(¢), 0:2(¢) of log M(8) = —i¢ are found to be

(2.3) 81(8), 62(¢) = v + i & {(» + i) — 4 ipu}?).
Putting 0 = 6,(¢) in (1.1) we obtain,

1 = P& 90C,(¢) + PyCi(s) f e emHe g
0

(24)
o PyCy(9)e"®
= P, 9q, vCo
12 C(¢)+——————~1 —
where C,(¢) is c.f. of t, conditional on Y () = a, and Cy(s) is c.f. of ¢, conditional
on Y(t) = b.

Similarly putting § = 6:(¢) in (1.1), we obtain
(2.5) P ® Co(4) + Py Co(9)e™ /(1 — 6/u) = 1.
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Substituting b = K — u, ¢ = — u and writing P,C.(¢) as P,Cyu(¢) in (2.4) and
(2.5) we obtain

_ utistn (B — B1)e
(2'6) Pu Cu(¢) =€ (ﬂ — 01)61{02 — (ﬂ . 02)eK91

as the c.f. of “¢” the time at which the dam becomes empty for the first time,
without overflowing,.

Using the above result, we shall now derive the c¢.f. C(¢) of the time of first
emptiness, regardless of how many times the dam overflows in the meantime.
The barrier zero-can be reached from » after 0, 1, 2, - - - number of passages
through K. We derive the conditional characteristic functions of ¢ for all these

cases; their sum will give the required result.
The c.f. of ¢, conditional on not touching K is obviously C5(¢) = P,C.(¢).
The c.f. of ¢ conditional on only one passage through K is

where Q,D.(¢) is the c.f. of “t”, of reaching K before reaching zero and
PxCx(¢) the c.f. of “4” of reaching zero from K before passing through K.
The first expression can be obtained from (2.4) and (2.5) in a manner similar to
that used for P,C.,(¢), while the second can be obtained from (2.6) by putting
% = K. Thus

(2.7) QuDu(¢) = Me™* — €} /[(n — 62)e™" — (u — 61)e™™]
(2.8) PxCx(¢) = ¢““ (0, — 61)/[(n — 61)e™ — (u — 62)e™"].

Similarly the e.f. of ¢ conditional on two passages through K is Ci(¢) =
Q.D.(¢)QxDx(¢)PxCx(¢). Hence

C(¢) = Co(¢) + Ci(¢) + Ca(e) + -
= P,Cu(¢) + QuDu(¢)PxCx(¢)/(1 — QxDx(9)),
for |QxDx(9)] < 1.
Substituting the values of P, , Qu , Cu(¢), Du(s) ete., in (2.9), we obtain

Wit {(” _ ol)e(K—u)dg . (” _ 02)6(K—u)01 _ )\[e(K—u)Gg _ e(K—u)Ol]}
(u — O)exd2 — (w — 02)6”1 — \(eRf2 — ¢Kf1]

as the c.f. of the time at which the dam becomes empty, for the first time regard-

less of overflow in the meantime.

(K—u)fy (M _ 02)6(K—u)91

(29)

(210) C(¢) = e

3. A further application: Discrete time model with geometric input. Here we
consider a discrete time model in which the dam is fed during time intervals
(t,t +1) (t=0,1,---) by independent inputs with Pr {X(t) = 1} = pq’
(r=0,1,---,0<p<1,¢g=1— p),and there is a release of one unit at
the end of every such interval, except when the dam is empty. The net input
Y(t) = X(¢) — 1 hasthe m.gf. M(6) = pe’ (1 — ¢¢’)™". The nonzero solution
of M(6) = 11is 6y = log p/q, (p # ¢q). For the sake of simplicity we assume that
u and K are integers.
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We proceed as in Sections 1 and 2, using Wald’s Fundamental Identity instead
of its extension, and noting that, since the geometric distribution has the “forget-
ful property”’, the excess over the upper boundary ‘b’ has the same distribution
as X(¢). Thus

o WM (s) = AT ()
(3.1) P,Gu(s) =s (p/Q) NEH(s) — MNEH(s)

K—utl K—utl K—u—1 R—u—1
WA T =N T =TT =)

/0 S E T = W)

(3.2) G(s)

where G,(s) is the conditional probability generating function (p.g.f.) of ‘“4¢”’,
the time at which the dam becomes empty for the first time, without overflowing,
G(s) is the p.g.f. of the time of first emptiness regardless of overflow and A (s),

n(s) = (1 £ {1 — 4pgs}?)/2q.
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