MINIMAX CHARACTER OF HOTELLING’S 7% TEST IN THE SIMPLEST
CASE

By N. Giri,! J. KiereRr,? aND C. STEIN?

Cornell University and Stanford University

Summary. In the first nontrivial case, dimension p = 2 and sample size N = 3,
it is proved that Hotelling’s 7" test of level « maximizes, among all level « tests,
the minimum power on each of the usual contours where the T° test has con-
stant power. A corollary is that the T” test is most stringent of level « in this
case.

1. Introduction. Let X;, ---, Xy be independent normal p-vectors with
common mean vector £ and common nonsingular covariance matrix =. Write
NX = 2VX;and S= D27 (Xi — X)(X; — X)". Let 6§ > 0 (and finite) be
specified. For testing the hypothesis Ho:¢ = 0 against H;:NEZ7' = § at sig-
nificance level «, a commonly employed procedure is Hotelling’s T test, which
rejects Hy when T° = N(N — 1)X'S7'X > ¢’ or, equivalently, when U =
T*/(T* + N — 1) > C, where C (or C) is chosen so as to yield a test of level
a. Throughout this paper 0 < o < 1,80 that 0 < C < 1.

In this paper we are interested in a minimax question regarding the T test,
namely, whether or not that test maximizes, among all level « tests, the mini-
mum power under H; . We succeed in proving that the answer is affirmative in
the first nontrivial case, p = 2, N = 3 (for each possible choice of § and «a),
although there are strong indications, mentioned at the end of this section,
that the answer is also affirmative for general p and N. However, analytical
difficulties make it seem most unlikely that our method of proof can be gen-
eralized to handle more than a few of these cases. What is worse is that this
proof yields no real understanding of why the result holds, nor of what it is
which distinguishes this problem from others where Stein has shown that the
best invariant procedure under the real linear group (which, among procedures
based on the sufficient statistic (X, S), the T -test is, here) is not minimax.
(See Stein (1955), Lehmann (1959), pp. 231 and 338, and James and Stein
(1960), p. 376.) We nevertheless publish the present result in the hope that it
may interest others to attack the problem.

The results previously proved for the T” test include the best invariant charac-
ter under the real linear group, as mentioned above. For testing H, against
Hi:¢27'% > 0, Simaika (1941) proved this test to be uniformly most powerful
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of level & among tests whose power function depends only on £ =7'¢; this result
also follows easily from the best invariant property. Stein (1956) showed that
the test is admissible for testing H, against Hi , but the method used there yields
nothing for the test of H, against H; ; the minimax proof of the present paper
also yields no admissibility result for the problem of testing H, against H; .
Hsu (1945) showed that the T° test maximizes a certain integral over H; of the
power, but, as he points out, this property is shared by many other tests, since
the integral in question is infinite in value; thus, this result cannot be used to
prove the desired minimax property. Of course, when p = 1 we have the usual
properties of the symmetric Student’s test, and when N < p it is easy to see
that the infimum over H; of the power of every test equals the size of the test;
hence, the case p = 2, N = 3 is the simplest one to be considered.

We now outline briefly our method of proof. We may restrict attention to
the space of the minimal sufficient statistic (X, S). The examples of Stein
mentioned above show that the Hunt-Stein theorem can not be applied for the
real linear group G of p X p nonsingular matrices (p = 2) which leave the
present problem invariant, operating as (X, S; ¢ =) — (X, ¢S¢’; g% 929").
However, the theorem does apply for the smaller group G+ of nonsingular lower-
triangular matrices (zero above the main diagonal), which is solvable. (See
Kiefer (1957), Lehmann (1959), p. 345.) Thus, there is a test of level & which is
almost invariant (hence, in the present problem, there is such a test which is
invariant; see Lehmann (1957), p. 225) under Gr and which maximizes, among
all level o tests, the minimum power over H; . Whereas T" was a maximal in-
variant under G, with a single distribution under each of Hy and H; , the maxi-
mal invariant under Gy is a p-dimensional statistic R = (Ry, ---, Rp)’ with a
single distribution under H, but with a distribution which depends continuously
on a (p — 1)-dimensional parameter A = (8, -+, 8p)’, 8: = 0, D7 6; = &
(fixed), under H;. Thus, when N > p > 1 there is no UMP invariant test
under Gr as there was under G. We compute the Lebesgue densities fz and f5° of
R, under H; and H,. Because of the compactness of the reduced parameter
spaces {0} and T = { (8, -+, 8,):0; = 0, D7 8; = 8} and the continuity of
f& in A, it follows (see Wald (1950)) that every minimax test for the reduced
problem in terms of R, is Bayes. In particular, Hotelling’s test U = > R; > C,
which is Gr-invariant, maximizes the minimum power over H; if and only if
there is a probability measure A on I' such that, for some constant K,

TACry, oo rp) >
Pff’)k(rly 7rp) )\(dA) {<}K
(1.1)

2 >
according to whether . r; {Z} C,
1

except possibly for a set of measure zero. (Here C' depends on the specified a,
and A and K may depend only on C and the specified value § > 0.) An examina-
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tion of the integrand in (1.1) will allow us to replace (1.1) by the equivalent

fz(rla"'7rp) —_ 3 > —
(1.2) R Mda) = K if ;n =C.
We are able to evaluate the unique value which K must take on in order that
(1.2) can be satisfied, and are then faced with the question of whether or not
there exists a probability measure N satisfying the left half of (1.2). Writing
A (4) = N(A), we show that \*, if it exists, depends on €' and & only through
(6. The development thus far, which hold for general p and N > p, is carried
out in Section 2. In Section 3 we then obtain a A and carry out the proof that it
satisfies the left half of (1.2) in the special case p = 2, N = 3.

The complexity of A and of our proof that it satisfies the left half of (1.2)
make it seem desirable to try other approaches for the general problem, but we
have thus far succeeded with none of these. One attempt which must occur to
most people who work on this problem is to consider instead the problem where,
for fixed T = HsHy (say), the vector n = H3'¢ is uniformly distributed on the
sphere #'n = & under H; ; one can then use Gz on this modified problem, for
which the presence of the minimax property for the T” test would imply its
presence in the original problem; unfortunately, one obtains a test other than
Hotelling’s, and which is not minimax for the original problem.

As announced earlier in an abstract (Giri and Kiefer (1962)), it is easy to
see that, for every «, N, and p, Hotelling’s test has certain local and asymptotic
minimax properties as § — 0 and § — «. This lends credence to our conjecture
that the minimax result proved for 7" in the present paper actually holds for
all N and p.

The result for the test based on the multiple correlation coefficient R? when
p = 3, N = 4, which is analogous to the result of the present paper, will be
published elsewhere.

2. Reduction of the problem to (1.2). Since much of this development proceeds
along standard lines, we shall omit some of the routine details. The reader may
consult Lehmann (1959) for nomenclature and for a treatment of invariance
and minimax theory in hypothesis testing.

We need only consider test functions which depend on the sufficient statistic
(X, 8), the Lebesgue density of which is

fiz@, 8) = c(det Z) TV (Jop g)@W-rDI2
X exp {'—% tr 2_1(,5' - N(x" — E) (x- _ E),)}

where ¢ = N??/QV? p? @R T2, T ((N — 4)/2).

We can compute a maximal invariant of (X, S) under the action of the
group Gr of nonsingular lower triangular matrices which leave the problem
invariant (as described in Section 1) in the usual fashion: If a function ¢ is
invariant, then ¢ (&, s) = ¢ (4%, gsg') for all g, s, Z. We may consider the domain
of S to be the positive definite symmetric matrices, which have probability one

2.1)
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for all £, 2; then there is an F in G such that 8 = FF'. Putting g = LF " where
L is any diagonal matrix with values =1 in any order on the diagonal, we see
that ¢ is a function only of the vector LF X and hence, because of the freedom
in the choice of L, of |[FX], or, equivalently, of the vector whose ¢th element is
the square Z; of the ith component of F—*X. Write by for the i-vector consisting
of the first ¢ components of a p-vector b, and C}; for the upper left-hand ¢ X ¢
submatrix of a p X p matrix C. Because of the way in which inverses are formed
inGr, Fraq)™ = F Y, so that

Z; = Xiq(Fla) " (Fra) "X = X (Sta) "X -

The vector Z = (Z;, -+, Z,)' is thus a maximal invariant if it is invariant,
and it easily seen to be the latter. Z; is essentially Hotelling’s statistic computed
from the first 7 coordinates. We shall find it more convenient to work with the
equivalent statistic R = (Ri, ---, R,)" where

21: R;=NZ/(1 + NZ,)

or
R;=NZ/(1 + NZ;) — NZi.y/ (1 + NZiy) (Z_, = 0).

It is easily verified that B, = 0, 2.7 R; < 1, and of course Y f R; = U =
/(N — 1+ T.

A corresponding maximal invariant A = (6;, -, §,)’ in the parameter space
of (u, Z) under G'r when H; is true is easily seen to be given by

8 = Nttg (Cra) “Ea — Niteon (i) Ern (6 = N£/Zu).

Here 6; = 0 and »_78; = 4. The corresponding maximal invariant under H,
takes on the single value 0 = (0, -- -, 0). The Lebesgue density function f4 of
(Ry, -+, R,) depends on A under H;, and is a fixed fo under H,.

We must now compute fi and fo. (Actually, we need only obtain fi/fs for
use in (1.2), so we could proceed without keeping track of factors not depending
on A in this derivation; however, it is not much extra work to keep track of
these factors, so we shall do so.) We may put = = Tand N* ¢ = (3}, 8%, --- , 68)’
= N’ (say) in (2.1), since fi depends only on £ and = only through A. Let B
be the unique lower triangular matrix with positive diagonal elements for which
BB = 8, and let V = B™'X. One computes easily the Jacobians S/0B =
27117 %" and 8X/9V = det B = ] bs., so that the joint density of V and
BwhenX =1,£=pis

ho1 (v, b) = 27f, 1 (bv, Bb) JT 07"

Putting W = (Wi, ---, W,) with W; = |V, and noting that the p-vector
w with positive components can arise from any of the 2” vectors ¥ = Mw where
M is diagonal with diagonal entries =1, we can write ¢ = bM where g ranges
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over all matrices in Gr and obtain for the density of W

W) = 2 [ fougw, 00) T lgal™ IL das

(2.2) = 2% f exp {—1% trlgg’ + N(gw — p)(gw — )}
H lgad ™ I>I dgii »

the range of integration being from — o« to + « in each variable. Let A be a
lower trlangular matrix for which A(I + NWW') A" = I. Then 4 ‘A =
I + NWW N"t=1- (14 NW W)_INWW, so that NWAAW =
NWW/@1 + NW'W). Since Aq (I: + NW@Wiq) Atg = I, we obtain simi-
larly
NWigAtaAdwWe = NWiaWa/ A + NWiaWa)

2.3) i

= NZ;/(1 + NZ,) = ZR,«,

so that N*AW is a vector whose sth element is R:. Writing g4~ = ¢, we have
ag/0g = Tl aZ™*. Ao, tr NgWy' = (N')'qW'AW) = Zm (iR i .
From the equality of the second and fourth expressions of (2.3) we see that
W= N"R/(1 — 2i R)(1 — 21" Ry), so that

oW /oR = I_I1 [(8W?/0R:) /(oW 3/ oW ;)]

=N""22"’(=1—2p;R> HR‘*ﬁ( z )

Since Ti a2 = det (Afada) = 1/det (I: + NWuWia) = /(1 + NWiaWwa)
=1— Y.iR;and gi = auigii, (2.2) yields

fa(r) = hi(w(r))ow/or = liN_"’2 (1 — Zp:r,>(N_p_2)/2 _6/2/H r,]
X feXp (=3 2 [gh — 2(8:m) g} H 2 H dgij

127

the integration again being from — « to -+ in each variable. For 1 > j, in-
tegration with respect to ¢.; yields a factor @r)* exp {84;/2}. For j = ¢, we
obtain a factor

(2T)§eriﬁile[x% (T;&i)](N_i)/z
= Q"THVED (N — 4 + 1)/2)¢ (N — 5 + 1)/2, 55 78/2),
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where x: (8) is a noncentral chi-square variable with one degree of freedom and
noncentrality parameter 8(= Exi(8) — 1), and where ¢ is the confluent hyper-
geometric function (sometimes denoted as 1),

(24) ¢(a, b;2) = Zo [T(@ + /)T (®)/T @I + )il
=
Thus, finally, forr e H = {r:7; > 0,1 < 7 £ p; 2Zr; < 1}, we have

70 = [ - T /1w - p/ T4
(25) ) ,
X expd~5/2+ 2 T o/2f [ 6(V = i+ 1/2, 35 s8/2)

Of course, f; (r) is just the expression preceding the exponential in (2.5), while
fA () /fs (r) is the exponential and the product following it.

The continuity in A over its compact domain T' is evident, so we can con-
clude that the minimax character of the critical region U = C is equivalent to
the existence of a probability measure \ satisfying (1.1). Clearly (1.1) implies
(1.2). On the other hand, if there are a A and a K for which (1.2) is satisfied
andif r* = (F, -+, 7% is such that ) ¥ = ¢’ > C, writing f = fi/fs and
** = Cr*/C’, we see at once that f(r*) = f((C'/C)r*™) > f (r**) = K because
of the form of f%/f¢ and the fact that C’/C > 1 and D, ri* = C. This and a
similar argument for the case ¢’ < C show that (1.2) implies (1.1). (Of course,
we do not assert that the left side of (1.2) still depends only on 2, r;if S ()

The computation of the next section is somewhat simplified by the fact that,
for fixed C and 8, we can at this point compute the unique value of K for which
(1.2) can possibly be satisfied. Let B = (Ry, ---, Rp1), and write fa (| w)
for the version of the conditional Lebesgue density of R given that SPRi=u
which is continuous in # and w for 7; > 0, 2.7 ' r; < u < 1, and is 0 elsewhere;
write f3 ¥ (u) for the denstiy of U = >"? R; which is continuous for 0 < u < 1
and vanishes elsewhere (and which depends on A only through 6). Then (1.2)
can be written as

26) [ 2] C) an(a) = [Kﬁ’k*(c)]fé"(? 1) for n>05 n<C
' f(C) o T
The integral of (2.6), being a probability mixture of probability densities, is
itself a probability density in #, as is fo (| C). Hence, the expression in square

brackets equals one. It is well known that, for 0 < C < 1,

" _ T'(N/2) ¢ (0-212(1 _ (n\(N—p=2)/2 .
(27) £ e) = /T (N =572 CrE1 = 0) ¢(N/2,p/2;C5/2).
(See Anderson (1958) or use (2.5).) Hence, from (2.5), (1.2) becomes
(2.8) frexp {f: r,zgf} :1¢((N — i+ 1)/2,3;7:6:/2) dNA) = $(N/2,p/2;C8/2)

j=1 >j

2
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for all » with #, > 0, D> 7 = C. Write T; for the unit (p — 1)-sim-
plex { (8, - -+ ,B,):8: = 0, .7 B; = 1}. Writingy = €6 and making the change
of variables 8; = §8./8, t; = vr,/C, and writing A* for the measure on T asso-
ciated with X on T(A\*(4) = A (84)), (2.8) becomes

[ e {ZuZ ST oV =i+ D2 1728 02 61, ,6)

(2.9) 1 i=1 " 1>j
= ¢( N/2,p/2;v/2)

for all (&, ---,t,) with > t; = yand &; > 0 (hence, by analyticity, for all
(b, -, t,) with 2t = v). Thus, \¥, if it exists, depends on C' and 6 only
through their product v. (When p = 1, I'; is a single point, but the dependence
on v is genuine in other cases.)

3. The case p = 2, N = 3. Representing the integration in (2.9) in terms of
B:(0 < B = 1) and noting that ¢ (3, 3; 2/2) = (1 + z)e"’, we obtain from
(29),on writing 4 =y — &, =1 — B,

(3.1) fo 14 (v — &) (1 —B)] ¢(1,%; 8 62/2) dN*(8s) = > 4(3/2,1;7/2).

One could presumably try to solve (3.1) for A* by using the theory of the Meijer
transform (with kernel ¢ (1, ¥; 2/2)). We proceed instead by expanding both
sides of (3.1) as power series in #; . Writing u; = [58°d\*(8),0 < i < « for
the sth moment of \* and

(3.2) B = ¢ "(31;v/2),

we obtain the equations

@1l+y—ym=2~B
(b) —(2r — Dy + @r + )ty — vptra = BT + 3)/rIT3)] 721

as equivalent to (3.1). (Of course, uo = 1 for \* to be a probability measure.)
One could now try to show that the sequence {u.} defined by uo = 1 and (3.3)
satisfies the classical necessary and sufficient condition for it to be the moment
sequence of a probability measure on [0, 1] or, equivalently, that the Laplace
transform Qg u;(—t)’/7! is completely monotone on [0, « ), but we have been
unable to proceed successfully in this way. Instead, we shall obtain, in the next
paragraph, a function m, (z) which we then prove, in the succeeding paragraphs
below, to be the Lebesgue density d\* (z)/dxz of an absolutely continuous proba-
bility measure \* satisfying (3.3) (and. hence, (3.1)). That proof does not rely
on the somewhat heuristic development of the next paragraph, but we never-
theless sketch that development to give the reader an idea of where the m., of
(3.8) came from, rather than merely to pull it out of thin air.

The generating function ¥ (!) = D jout’ of the sequence {u;} satisfies a
differential equation which is obtained in the usual fashion by multiplying (3.3)

3.3)
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(b) by £ and summing from 1 to o :

201 — W (@) — & — vt +1)v (@)
(3.4) =Bl — )7 — 1] + A — w) — 1]
=Bt — )t —t—1.

(A corresponding use, instead, of the Laplace transform to obtain (3.8) below,
is more involved.) This is solved by treatment of the corresponding homogeneous
equation and by variation of parameter, to yield

_ Nt -1 v B
a8 W) = = [ | oy~ =y a4

the integration being understood to start from the origin along the negative
real axis of the complex plane. The constant of integration has been chosen to
make ¢ continuous at 0 with ¢ (0) = 1, and (3.5) defines a single-valued function
on the complex plane minus a cut along the real axis from 1 to «. In fact, the
analyticity of ¥ on this region can easily be demonstrated by considering the
integral of ¢ on a closed curve about 0 avoiding 0 and the cut, making the in-
version w = 1/t, shrinking the path down to the cut 0 = w =< 1, and using
(3.30) below. Now, if there did exist an absolutely continuous \* whose suitably
regular derivative m, satisfied

(3.6) fo @)/ (1 — ) do = $(0),

we could obtain m., by using the simple inversion formula

3.7) my @) = Qmiz)™" limeo[¢ @™ + d¢) — ¢ — de)].

However, there is nothing in the theory of the Stieltjes transform which tells us
that an m, satisfying (3.7) does satisfy (3.6) (and, hence, (3.1)), so we use
(8.7) only as a formal device to obtain an m, which we shall then prove, in the
remaining paragraphs, satisfies (3.1). From (3.5) and (3.7) we obtain, for
0<z<1,

_ e—'ya:/Z © _71‘/2[ B u} ] 2z 714/2 }
(38)  m(z) -m{f e Ferteean R Rty

In order to prove that d\*(z) = m,(z) dx (with m, defined by (3.8)) satisﬁes
(3.1) with A* a probability measure, we must show that

(a) my(z) = Oforalmostallz,0 < z < 1,

) [ mifa) s =1,

(3.9) () m= f xm.,(x) dx satisfies (3.3) (a)

1
d) p = f z" m,(x) dzx satisfies (3.3) (b) forr = 1.
0
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Condition (3.9) (a) follows at once from (3.8) and the fact that B > 1 and
w1+ u) < @+ w)*foru > 0. To prove (3.9) (d), we note that m, as defined
by (3.8) satisfies the differential equation

(3.10) my () + m,@)y/2 + (1 — 22)/2c(1 — 2)] = B/2rz'(1 — )™,

so that an integration by parts yields, for r = 1,

(r+1) pr —rprs = fo [(r 4+ 1) 2" — r2" ] my(2) d

3.11) = [ @ = a™) @) do = L= /2) /2 — /2

+ BT (r + %)/2%'%7'!

which is (3.3) (b). The proof of (3.9) (b) and (c) relies on certain identities
involving hypergeometric functions. In the next paragraph we list some of the
readily available properties of hypergeometric functions which will be used in
the proof.

The material summarized in the present paragraph can be found, for example,
in Erdélyi (1953), Chapter 6. The confluent hypergeometric function (2.4) has
an integral representation when ¢ > a > 0 given by

312)  sage) = O [ peia
T T@)T(c—a)h
The associated solution ¢ to the hypergeometric equation has the representation

(3.13) ¥(a,c;2) = I%a) fow T (L4 0T

if @ > 0. We shall use the fact that the general definition of ¢, as used in what
follows when ¢ = 0, satisfies

(3.14) v(©,c;x) = 1.

We shall also use the differential properties

d _fa . .
(315) — ¢(a,c;2) = <E - 1> ¢(a,c + 1;2) + ¢(a,c; 2)
(816) % y(a,6;2) = ¥(a,¢;2) — Ya,c + L),

(3.17) %nﬁ(a, ) =2"'alla—c+1) ¢ (a+1,¢2) —¢(ac2)],
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and the identities

(3.18) (@a—c+ )¢(a,c;z) —apla+ 1,¢;2) + (¢ — 1)gla,c — 1;2) =0,
(3.19) cpa, c; x) —epla — 1, ¢; z) — ap(a, ¢ + 1; ) = 0,

(3.20) v, c;x) —ap(@a+ 1,¢c;2) — ¢(@,c— 1;2) =0,

321) (c—a)l(a,c;z) —ay(a,c+ 1;2) + ¢(a— 1,¢;2) = 0.

A useful integration formula (Erdélyi, op. cit., p. 285, equation 16) is, for
y>0,

(3:22) [ @+ o150 dr = 9 L0)

The formula obtained by the (obviously permissible) differentiation under the
integral sign of (3.22) with respect to y and use of (3.17) is

(323) [ "+ 9) 63, 1;2) do = —[T(3)/201 (% 1 9)/2 — ¥, 1)),

The function m, defined by (3.8) can be written, using (3.13), in terms of
hypergeometric functions, for 0 < z < 1, as

6_7”/2 © iz 2 .
e e /) (14 )

— (1 4+ W) du + e ¢(3,1;7/2) fo (1 —w)™ du}
e—‘ya:/Z

T 2r [a(l — o)
(3.24) + ¢(3,1;v/2) [f:z vl gy — j:o p e dvi'}

_ 1
T 2r[z(1— o))

my(z) =
{e—wz 6(3, 1;v/2)¢(1,1;v/2) — T3 (%, 1;7/2)

(e ¢(3, 1;7/2)¥(, ;¥ — 2)/2)
— e T@)Y($1;v/2)).
We now prove (3.9) (b). From (3.13), (3.12), and (3.22), we have

! 1
fo 2r (1l = )T ¥(1,1;v(1 —2)/2) dz

' 1
N fo or (1 — o) ¥(1,1; vz/2) do

_ 1 dx © —1 —yzt/2
b 21r[x(1—a:)]*fo 1+~ d

=3[ DT80 w2) T = FTEIG T v/2).

(3.25)
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From this, (3.24), and (3.12), we have, putting v/2 = ¢,
4ez 1
(326) H(x) = ey fo mae(@) do = 2¢(3,1;2)%(3,1;2) — 6(3,1;2)¥(3, 1;2).
2

We shall show that
(3.27) H' (z) — H() = 0,

from which H (2) = Ce’. (This identity is probably known, but we were unable
to find it in the literature.) By direct evaluation in terms of elementary integrals
when ¥y = 0 (or by using (3.26) and the expansion of ¥ and ¢ near z = 0), we
have [ mo () dz = 1; hence, (3.9) (b) follows from (3.27). To prove (3.27),
we use (3.15) and (3.16), which yield (omitting everywhere the argument z)

(3.28)

To this expression add the following four left hand side expressions, each of
which equals zero (where a and ¢ are the arguments as they appearin (3.12) and
(8.13) and where, as in (3.28), we again omit display of the common argu-
ment z of ¢ and ¥):

¥ (3, 1) times (3.18) witha = %, ¢ = 2;
¥ (3, 2) times (3.19) witha = §,¢ = 1;
(3.29) v . X
2¢ (3, 1) times (3.20) witha = 4, ¢ = 2;
—¢ (3, 2) times (3.21) witha = §,¢ = 1;

one obtains H — H = 0, as desired.
We now verify (3.9) (c). We first note, from (3.12) and from (3.19) with

a = 3, ¢ =1, that

1 y/2
330) [ §E Wy = o3, 1/2)/2 + 000 20/ /4 = 94, 159/2)/2

An alternative way of writing (3.9) (c¢) is, by (3.9) (b) (which we have just
proved),

330 1=l Ly " [ 14201 = )] my(e) da.
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The right side of (3.31) may be expressed, using (3.25) and (3.30), as

1 P+ ;
o, 1;v/2) Jo 2aly(1 ;Yyy))]g {6(3, 1;v/2)¥(1, 1; vy/2)
— " Ty, 1;7/2)} dy

_ (L, 15 vy/2) Ty(1, 15 vy/2)
f “2alyd — Y W+ o 2nly(1 — y)I d
TG 1v/2) [F A4 yy)e” ay
¢(%’ ) 7/2) 27"[?/(1 - y)]l
_ [, 1,7y/2)d NG )¢( Lv/2) _ TG 15 v/2)
o 2nly(1 — Yt 2 )
To evaluate the integral on the last line of (3.32), we use (3.21) with a = 1,
= 0 and (3.14), (3.13), (3.12), and (3.23), to write

(3.32)

P (L, 1 vy/2) g " 100, 05 vy/2) = (L, 05 vy/2)] 5
o 2nly(1 — )P o r[y(l -y
(333) -1~ [matgn) a+orera

=1- fo (14 7% (3, 1; v1/2)e " dt

=14+ THWE 1;v/2)/2 — (5, 1;v/2))/2.
Thus, (3.32) and (3.33) imply (3.13) and, hence, (3.9) (c)-
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