ON A BOUND USEFUL IN THE THEORY OF FACTORIAL
DESIGNS AND ERROR CORRECTING CODES!

By R. C. Bosk aND J. N. SRIVASTAVA
University of North Carolina

0. Summary. Consider a finite projective space PG(r — 1, s) of »r — 1 di-
mensions, 7 = 3, based on the Galois field GF, , where s = p", p being a prime.
A set of distinet points in PG(r — 1, s) is said to be a non-collinear set, if no
three are collinear. The maximum number of points in such a non-collinear set
is denoted by ms(r, s). It is the object of this paper to find a new upper bound
for ms(r, s). This bound is of importance in the theory of factorial designs and
error correcting codes. The exact value of m3(r, s) is known when either » < 4 or
when s = 2. Whenr = 5, s > 3, the best values for the upper bound on m;(r, s)
are due to Tallini [10] and Barlotti [1]. Our bound improves these when s = 3
or when s is even.

1. Introduction. R. A. Fisher [4], [5] showed that the maximum number of
factors, which can be accommodated in a symmetrical factorial design in which
each factor is at s levels and the blocks are of size s” (where s is prime), without
confounding any main effect or two factor interaction is (s" — 1)/(s — 1).

Bose [2], generalizing Fisher’s result proved the following: Let m.(r, s) denote
the maximum number of points which can be chosen in the finite projective
space PG(r — 1, s), where s is a prime or the power of a prime, so that no ¢ of
the points are dependent. Then m,(r, s) is the maximum number of factors which
we can accommodate in a symmetrical factorial design in which each factor is at s
levels and the blocks are of size s”, so that no ¢ factor or lower order interaction
is confounded. Fisher’s result follows at once by noting that for the case t = 2,
m.(r, s) is simply the number of distinet points in PG(r — 1, s).

For a fractionally replicated design 1/s* X s”, consisting of a single block with
s" plots or experimental units, n = r + k, a slight modification of Bose’s argu-
ment shows that if it is required that no d-factor or lower order interaction,
should be aliased with a d-factor or a lower order interaction, then the maximum
possible value of 7 is ma(r, ). On the other hand if it is required that no d-factor
or lower order interaction should be aliased with a (d + 1)-factor or a lower
order interaction, then the maximum value of n would be myg.1(7, ).

The number m,(r, s) also turns out to be important in information theory. If
there is an s-ary channel, i.e. a channel capable of transmitting s distinct symbols,
then for an (n, k) group code, with k£ information symbols and fixed redundancy
r = n — k, the maximum value of n for which d errors can be corrected with
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certainty is mq(r, s). Similarly the maximum value of n for which d errors can
be corrected with certainty and d + 1 errors can be detected is maq411(7, s). This
parallelism between the theory of fractional replications and error correcting
codes has been brought out by Bose [3].

Thus the problem of finding the maximum value of m.(r, s), and of obtaining
by a constructive method the corresponding points of PG(r — 1, s) is of some
importance. This problem may be called the packing problem. Only partial
solutions to this problem are at present known. In the absence of a complete
solution a good bound on m,(r, s) is desirable. In this paper we shall consider the
case t = 3. For this case the packing problem reduces to finding the maximum
number of points in PG(r — 1, s) so that no three are collinear. Such a set may
be called a non-collinear set, and ms(r, s) is then the maximum number of points
in a non-collinear set in PG(r — 1, s).

Bose [2] showed that for the case r = 3, (i.e. for a’finite projective plane)

(1.1) ms(3,s8) = s+ 1 when s is odd,

(1.2) ms(3,8) =s + 2 when s is even.
For the case r > 3, s = 2, Bose [2] showed that

(1.3) ms(r, 2) = 21

and the same result was obtained independently by Hamming [6], in connection
with binary group codes correcting one error and detecting two errors.
For r = 4, Bose [2] showed that when s is odd

(1.4) mg(4,8) = & + 1, §>2

and the same result was proved to hold true for the case when s is even (s > 2)
by Qvist [7], the particular case s = 4 having been obtained earlier by Seiden [9].

When r = 5, s > 2, the exact value of ms(r, s) is not known. The best upper
bounds currently known are due to Tallini, and Barlotti. Thus Tallini [10] has
shown that

(1.5) ma(r,s) < s+ 1, §s>2 r=4

the result holding both for odd and even s. When s > 3, Barlotti [1], has improved
the bound given above. He shows that:

r—b

(1.6) ma(r,s) < s> — (s — 5);)8" +1, r=5, s=7andodd,
(1.7) mg(5,8) < 8 — 1, s =5,
(1.8) ms(r,s) < 87 — 23:2:: s —1), s=5, r=6,
(1.9) ms(5,8) < §°, s even,

r—6
(1.10) my(r,8) < 8% — sz; s, sevenr = 6.
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We obtain in Theorem 2, Section 4, a new bound which is an improvement over
these results when s = 3, or sis even (s > 2). For s = 5, = 5 our bound is the
same as Barlotti’s. In other cases Barlotti’s bound is better. For lower bounds on
ms(r, s) and other important results on non-collinear sets reference may be made
to Segre [8].

2. Symmetric representation for ¢ = 3. A set of points in finite projective

space PG(r — 1, s) of r — 1 dimensions, based on the Galois field GF, where
h o . . . . . .

s = p' (p being a prime), is said to be a non-collinear set if no three of the points
are collinear. The set is said to be complete if we cannot add any new point to
the set, so that it still retains the property of non-collinearity. The maximum
number of points in a non-collinear set in PG(r — 1, s) may be denoted by
ms(r, s). The same number in the notation used by Barlotti [1] would be de-

noted by M,,.. Let .

(2.1) S=4,,4,, -, 4.,

be a complete non-collinear set in PG(r — 1, s). Since there are

(2:2) N, = (s —1/(s—= 1),

distinet points in PG(r — 1, s), there are n. = N, — m points

(2.3) B,,B;,--- B,, n=N,—m

not (;ontained in the set S given by (2.1). We will denote by S the set of points
(2.3).

From the property of non-collinearity no line in PG(r — 1, s) can intersect
the set S in more than two points. A line will be said to be a secant of S, if it
intersects S in two distinct points, it will be said to be a tangent to S if it inter-
sects S in a single point, and will be said to be a non-infersector if it contains
no point of S.

Through each of the points B; in (2.3) there must pass at least one secant of S.
Ifnot A, , A, - -+ Am, Biwould be a non-collinear set contradicting the property
of completeness. Let u; be the number of secants through B; (1 = 1,2, ---,
n =N, —m), 1 £ u; < [m/2], where [z] denotes the largest integer not ex-
ceeding z. On every secant there must occur exactly s — 1 of the points B, since
each line of PG(r — 1, s) has exactly s 4+ 1 points.

The secants can be exhibited in a tabular form as follows, where the ¢th row

shows the secants passing through B;.

BiAmAnz, BiAmAm, cery BilArgAiuge

B:AmAne, ByAgnAse , ey ByAzu,1A2u,2
(2.4) ey . .

BiAmAaz, BidmAie, e Bid A,

BnAnllAn12 ) BnAn2lAn22 y M) BnAnu,,lAnu,,2 .
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Here the points A4,
1=7=m, 157 = u, 1=k=2

belong to the non-collinear set S = 4, 4, -, A, , and the points
B,, By, :--, B, belong to the complementary set S.

The coordinates of B; can be represented by the vector
(2.5) bi=(bi1,bi2,"',bi1) i=1,2’..‘.’n=Nr._m
and the coordinates of A, by the vector
(26) at:(aﬂ’at?"";ah‘) t=1,2,--~,m.

The relations between these vectors then can be exhibited as
(2.7) b: = >\i1(aill + Piail2) = >\i2(ai21 + Piai22) == >\iu.~(aiu,~1 + Piu.’aiuﬂ))
where \’s and p’s are non-zero elements of GF, and the a’s belong to the set of
vectors a, , a,, - -+ a, representing the pointsof S, (+ = 1,2, ---, n).

The scheme (2.4) or its vector equivalent (2.7) may be called the symmetric
representation for ¢ = 3. It specifies the structure of the complete non-collinear
set S = A4,, 4,, -+, A,. We shall use this scheme for obtaining an upper
bound on m3(r, s). This scheme can also 'be used for constructing non-collinear
sets, but this will be considered in a separate paper.

3. Proper and improper non-collinear sets. Consider the complete non-collinear
set S given by (2.1). A plane II cannot contain more than s + 2 points of S
when s is even, and more than s 4 1 points when s is odd, from the result due to
Bose [2] mentioned in the introduction, since the points of S contained in IT must
themselves form a non-collinear set.

We shall call the non-collinear set S, improper if there is at least one plane
1T which contains s + 2 points of S. In this case s must be even. We shall call
the non-collinear set S proper if there is no plane II which contains s + 2 points
of S. In this case s may be odd or even.

Let the complete non-collinear set S = A4;, Az, --- , A, be improper, and let
II be a plane which contains s 4+ 2 points of S, which may without loss of gener-
ality be taken to be A;, A:,--- Asy2. Through the plane II there pass
N,_s = (s7° — 1)/(s — 1), 3-spaces of PG(r — 1, s). Now from the result of
Qvist [7] mentioned in the Introduction, no 3-space can contain more than s* + 1
points of S. Hence each 3-space contains s> — s — 1 or less points other than
Ay, As, -+, Asia . We therefore have the theorem:

TaeEorREM 1. The number of points m in an tmproper non-collinear set in
PG(r — 1, 8), s > 2, satisfies the inequality

(3.1) ms(s+2)+ (8 —s—1)N,5.

4. Some useful lemmas. The number u; of the secants of S, passing through
B; may be called the weight of B;. We may write
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(4.1) u; = w(B;).

Each of the points 4, contained in a secant through B; may be supposed to con-
tribute a weight 3 to B;. The weight of B; is then the sum of the weights of all
the points A4, lying on secants through B., i.e. the weight of all the points 4
occurring in the 7th row of the scheme (2.4).

LemMa 1. D i u = dm(m — 1)(s — 1), n = N, — m.

The number of distinct secants of the set S is exactly m(m — 1)/2 since any
secant must contain exactly two points of S. Consider the secant passing through
the points A; and A ;. There are exactly s — 1 of the points B, on 4,4;. The
points A; and A4 ; each contribute a weight % to each of these s — 1 points, and to
no other points B. Hence the total weight of the points B is m(m — 1)(s — 1)/2.
This proves the Lemma.

We shall define the weight of a secant A4 ; as the sum of weights of all the
s — 1 points B, contained in 4:A4; , and denote this weight by w(A4.4)

LEMMA 2. D i, w(AA;) = D rqut, 4,5 =1,2,---,m.

Consider any point B;. There are u; secants passing through it. Hence in
counting the weight of all the secants, the weight of B; is counted u; times. This
proves the result.

Lemma 3. If the non-collinear set S = Ay, Ay, -+ - , Ay is proper

(4.2) w(did;) = (s — 1) + 3(m — 2)(s — 2).
Let Bij1, Bij2, - -+ , Bij,s—1 be the points of S lying on 44 ; . By definition
8—1
(43) W(A.A,) = ;lw(B.yk).

Let A, be a point of S distinct from A; and A; . If A, contributes a weight  to
B.ji , there exists a point A; of S (distinet from A;, A;, A,) such that the line
A.A; passes through B;j . If A, contributes a weight 1 to each of the points
By, Bija, -+, Bije1, then there exist distinet points 4, , Az, - -+ A, (dis-
tinet from A;, 4;, A,) of 8, lying in the plane 4:4;A4, . Hence this plane has
s + 2 points of S, which contradicts the fact that S is proper. Hence A, can
contribute a weight } to utmost s — 2 of the points B on A;4; . Hence the total
weight contributed by the m — 2 points of S not lying on 4.4 to points of S on
A;A;doesnotexceed (m — 2)(s — 2)/2. On the other hand each of the points 4;

and A ; contributes a weight % to each of the points Byj; , Byjz, - -+ , Bij,.—1 . Hence
8—1
(4.4) 2 w(Bii) £ (s — 1) + 3(m — 2)(s — 2).

k=1
This proves the Lemma.
6. Upper bound on the number of points contained in a non-collinear set in

PG(r — 1, s), where s > 2. First let the non-collinear set S = A;, As, -+, An
be proper and complete. Then from Lemmas 2, and 3,

(5.1) jmim — 1) {3(m — 2)(s = 2) + (s — 1)} 2 2 ul.
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Also from Lemma 1
(52) 2 uiz (1/n)(2 w)'= m'(m — 1)*(s — 1)’/4(N, — m).
n=N,—m
Hence from (5.1) and (5.2) we have
(53) m(s"—s—1) —mf(s— 25— 1) + N'(s — 2)} — 2N, = 0.
Hence m cannot exceed the positive root of the quadratic equation
(54) 2% —s—1) —2{(s" — 25 — 1) + N.(s — 2)} — 2N, = 0.

If the non-collinear set S is improper and s > 2, then s = 2", where n = 2.
One can check after some calculation that in this case the result of replacing z in
the left hand side of (5.4) by (s + 2) + (s> — s — 1) N,_; is negative if r = 4.
Hence the upper bound on m given by (3.1) is smaller’than the upper bound on
m given by (5.5). The later bound is therefore valid in all cases where s > 2,
r = 4. If we have a non-collinear set which is incomplete then we can add more
points to it to make it a complete non-collinear set. Hence we have the theorem:

THEOREM 2. If my(r, s) denotes the maximum possible number of points in any
non-collinear set in PG(r — 1, s), then ms(r, ) cannot exceed the positive root of
the equation (5.3), if s > 2, r = 4.

Hence if s > 2,7 = 4, ma(r, 8) < ¢(r, s) where ¢(r, s) is given by

(5.5) ¥(r,s) < {N.(s —2) + (s — 25 — 1)
+ [Ni(s — 2)" + 2N,(s" — s — 2) + (s" — 2s — 1)"P}/2(s —s — 1)
where N, = (s — 1)/(s — 1).

6. Discussion of special cases, and comparison with previously known bounds.
(a) Consider the special case s = 3,7 = 5. Let f(x) denote the left hand side
of (5.4). Then f(z) = 52 — 2(2 + N,) — 2N, , where N, = (3" — 1)/2. Let
u= (24 N,)/5. Then f(u +1) =7 — N, <0, f(u + 2) = 24 > 0. Hence

¥(r, s) lies between v + 1 and v + 2. Thus
ma(r, s) < ¥(r,s) < (N, + 12)/5 = (3" + 23)/10.

The best previously known bound due to Tallini [10] is given by (1.5) which
in this case reduces to ms(r, s) < 37/9.

Hence for this case the bound given by (5.5) is always better than the bound
given by (1.5).

(b) Consider the special case s > 3, r = 5. Denoting the left hand side of
(5.4) by f(z) wehave f(z) = zfz(s" —s — 1) — (s — 25 — 1) — Nis(s — 2)] —
2N, 5 - Let

u=[(—=2—1) = Ns(s —2))/(8" —s—1) =5 — {3(s + 1)/(5— s— 1)}.
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For any ¢
flu+¢) = (u+c)e(s* — s — 1) — 2N;
= Ngle(s —2) — 2]+ ¢(s* — 25— 1) + (" — s —1).

Taking ¢ = 3(s 4+ 1)/(s* — s — 1), we see that f(s*) > 0. Takingc¢ = —1 +
[3(s + 1)/(s* — s — 1)], we find that f(s* — 1) < 0. Hencey(r, s) lies between
s* — 1 and s*. We therefore have ms(5, s) < s — 1.

This equals the Barlotti’s bound given by the Equation (1.7) for the case
s = 5, and improves Barlotti’s bound given by the Equation (1.9) when s is

even.
(¢) Consider the case when s is even, s > 2, r = 6. As before let f(z) denote

the left hand side of (5.4) and let
u=[(s$—2s—1) — N.(s — 2)]/(s"— s — 1).

1]

Then
f(u) = =2N, <0, f(u+1)=(s—4)N,+ (s —2)(2s + 1).

Hence ¢(r, s) lies between w and u + 1. Thus ms(r, s) < ¥(r,s) < u + 1.
It is easy to check that in this case v + 1 is less than the right hand side of
the Equation (1.10), so that our bound is an improvement over that given by

Barlotti.
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