ON THE TRAFFIC-LIGHT QUEUE

By J. N. Darrocn!

University of Adelaide

0. Summary. A formal solution for the stationary distribution of queue-
length at a fixed-cycle traffic light is found for a fairly general distribution of
arrivals and for a single stream of vehicles which either all turn left or else all
go straight on or turn right. (We assume that the vehicles are driving on the
right of the road.) Some inequalities are derived for the expected queue-length
and for the expected delay per vehicle.

1. Introduction. Consider a single stream of vehicles approaching an inter-
section controlled by traffic-lights and forming a queue there. For our purposes,
one cycle of the lights comprises one green and one red phase since the amber
phases can be thought of as effectively green or effectively red. For vehicles
which have just been queueing and are going straight on or turning right we
suppose that, as they cross the stop-line during the green phase, they are sepa-
rated by constant time intervals-of unit length. Further, we assume that the
green and red phases are of fived durations equal to g and r units respectively,
where g and r are integers. Let Xj,, denote the queue-length at time ¢ = F,
k=0,1,2 ---,g+ r — 1, during the nth cycle, where { = 0 at the beginning
of the green phase, and let X, have p.g.f.

¢in(2) = Bl

Let Y%, denote the number of vehicles arriving at the end of the queue (or, if
there is no queue, at the stop line) during the interval £ < ¢t < k + 1 in the nth
cycle. We shall assume that the variables Y, . are independently and identically
distributed with p.g.f.

Yi(z) = El"™"]
and mean
a = E[Y:,] = ¢1(1).

Winsten [1] and Newell [3] made the same assumptions as the above and
took

(1) Wz) =1— a+ a.

Winsten pointed out that, on this assumption of 0 or 1 arrivals per unit time,
g+r—1

(2) Xnt1 = max {X,, + I;} Yin— 9,0}
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ON THE TRAFFIC-LIGHT QUEUE 381

and showed that in equilibrium the average delay per vehicle is expressible in
terms of g, r, @ and E|X,] as

(3) [r/(1 — a)(g + NIEX,] + a(r +1)/2].

(We omit the subscript n when referring to stationary random variables, proba-
bilities and probability generating functions.) Using (2) Newell proved that in
equilibrium

(4) ¢,(2) = I_Il (1 —2)/(z — 2)]
where 21, 2, - -+ , 2, are the r zeros of 2 — (1 — a + az)°*" outside the unit

circle of the complex plane. He also derived some asymptotic formulae for
E[X,] and, using (3), for the expected delay.

In this paper we adopt an approach which does not assume (2) and allows a
general y¥1(2) and a flexible service mechanism (see Section 2). This approach
leads to inequalities for the expected queue-length and the expected delay.
Moreover, the removal of the restriction to 0 or 1 arrivals per unit time which,
though reasonably satisfactory for a traffic-light queue is not so for other queues,
permits interpretation in the wider context of any queue with geometrically
distributed service-time (see Section 2) and with service interrupted at regular
intervals. With this wider context in mind, we note that by taking

— (@)1
'/’l(z) =€ )
the assumption of independent Y, is consistent with customers arriving in

batches of random size (with p.g.f. 7(2)), the time-intervals between batches
having independent exponential distributions with means equal to y .

2. The service mechanism. We suppose that, fork = 0,1, --- , g — 1,
Xivin = Xon + Yin + Upn — 1 if Xin > 0
= Vin if Xipn=0.

(During the red phase, Xs1102 = Xin + Yin, k=g, +1,---,9+7r—1.)
The Uy, are defined to have p.g.f. 1 — A + Az and to be independent of each
other and of the X; , and of the Y} ,. The V., are defined to be independent
of each other and of the X}, but V;,, is related to Y., by the condition that

(6) Vk,n é Yk,n .

We assume that the V;,, have a common distribution with p.g.f. 8(2). One con-
sequence of (6) is that

(7) 8(0) = ¥1(0).

Let us distinguish by the labels L and L those vehicles which are going to turn
left and those which are going straight on or turning right. The inclusion of the
variables U, ,, in the model provides for the fact that, in an L queue, the front

(5)
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vehicle has to get across the oncoming stream of traffic and may have to
wait to do so. However the assumption that these variables are independent and
have constant probabilities 1 — A, A of equalling 0, 1, is only a first approxima-
tion of what actually happens. We note that, on this assumption, the “service”
time (where ‘“‘service” means permission to cross the halt line) has a geometric
distribution interrupted, of course, by the red phases. Still considering an L
queue, it would be reasonable to assume that, if Yz, > 0, Vi, = Vi, — 1 with
probability 1 — X and V.. = Y, with probability A, and this mechanism would
also apply to queues other than at traffic lights.

For an L queue, which has the right of way during the green phase, it would be
reasonable to take A = 0, that is to put Uk, identically equal to zero. It may
also be reasonable to put V. identically equal to zero, but the weaker assump-
tion allows for the fact that oncoming L vehicles or pedestrians may hinder the
free passage of the arriving ¥}, vehicles and cause some of them to stop.

As we have suggested, the service mechanism given by (5) is capable of pro-
viding a reasonable model either for L queues or for L queues and these often
occur in practice, side by side on a multi-lane road or at intersections with re-
stricted entries. Unfortunately (5) cannot be made to describe a single mixed
stream of L and L vehicles but, in this connection, we refer to Newell [4] who
considered the behaviour of two opposing single-stream mixed queues during
those cycles in which they both remain non-empty.

3. The stationary distribution.
TraEorREM 3.1. A sufficient condition for the distribution of queue-length to
converge to a stationary distribution is

(8) (g +r)a+g\<g.

Proor. Let N denote the number of cycles (in the present context we think of
a cycle as starting with a red phase) from one occurrence of the event E, =
[X, = 0] to the next. Suppose first that §(z) = 1. The variables Uy,, are defined
during the whole of all green phases in which the queue remains non-empty and
[N > »] = Nlm=1 [Sn > 0], where :

m  fg+r—1 g—1 g—1
Sm = Z( Z Yk.n + 4 Yk,n+1 + Ig Uk,n+l - g>.

n=1 k=g k=

Since E[S.] = m[(g + r)a + g\ — g] < 0, a fourth-moment one-sided Cheby-
cheff inequality gives P[S,, > 0] < ¢/m’. Therefore,

PIN > 1] <P[S,>01<¢/r >0 as »— .
Moreover,

ENl=14+ 2 PIN> <1 +c2‘11/y2< .
v=1 y=

Thus the event E, has finite mean recurrence time. It follows (see Ieller [2]
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for instance) that, as the Markov chain formed by the states X, = 7, ¢« = 0,

1,2, ---, and consecutive cycles is clearly irreducible and aperiodic, it is also
ergodic. It follows that the queue-length distribution is ergodic at all points of
the cycle.

When 6(z) # 1, a slight modification of the above argument shows that the
event E = [X,X» --- X, = 0] has finite mean recurrence time. Consider the
subsequence of cycles at which E occurs and let us imbed in this subsequence
the Markov chain whose states are

Ek:[Xk:O’Xk+1>O"";Xa>0]7 k=1,2,---,9—1,

and E, . Because this chain is finite it follows that the number of cycles in the
subsequence between two occurrences of E, has finite mean. Therefore the re-
currence time of X, = 0 in the full sequence has a finite mean and, once again,
the queue-length distribution is ergodic. '

TuroreMm 3.2. The p.g.f. of the stationary distribution of X, is related to the

stationary probabilities Q. = P[X; = 0],k =0,1,---,gby

()¢ — 1] (}_: Q: ﬁ)
- P2 [ga(2))
20— (Ya(2))'(¥1(2))

where Yo(2) = (1 — X + Ne)u(z) and ¢ = §(2) = 2/¥(2).

Proor. From (5) we obtain
(10)  drs1a(2) = [(1 = N + NeWu(2) /2] (dr,n(2) — $5.2(0)) + 6(2).1(0),

and thence

(9) ¢o(2) =

$on(2) = ($2(2)/2)'$0n(2) + 10(2) — s“][; ¢k,n<0>r*‘“+l]'

Consideration of the red phase gives ¢o.41(2) = ¢g.x(2)(¥1(2))" and in equi-
librium we have ¢o.41(2) = ¢o.n(z). Formula (9) follows from the above rela-
tionships by writing ¢, .(2) = ¢,(z) and ¢, (0) = Q.

TuroreM 3.3. Condition (8) is also mecessary for a stationary distribution to
exist and

g—1

(11) ,;;Q" =lg—(g+ra—gl/l —a—r+06(1)] =K, say.

Proor. Since ¢,(2) is a p.gf., #,(1—) = 1, and this gives (11). Clearly
0<Q <1,k=0,1,---,9 — 1in equilibrium from which it follows that
(9+rma+gr<g.

The complete solution for ¢,(z) is given in Theorem 3.4, the proof of which
requires the following lemma which is very similar to some theorems in Takécs
[5].

LeMMA 3.1. Let ¥(z) denote a p.g.f. for which

(i) ¥(z) 4s analytic in |2] < 1 4+ A for some A > 0,
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(i) {¥(2)] = 1 on the unit circle only at z = 1.
Then provided that

(12) v(1) <g

the equation

(13) 22— V() =0

has g distinct roots, 2o, 21, * * + , 2,_1 say, within the unit circle, where 2, = 1 and

l2e] < 1fork = 1.
Proor. Conditions (i) and (12) imply that for some & > 0,

(14 8)° > ¥(1 + ).
Since ¥(z) is a p.g.f., [¥(z)| = ¥(|2|) and therefore
l2| > [¥(2)]"" on |z =1 + 6.
By Rouche’s theorem it follows that the equation
(14;) z2— " w(2)]" =0

has exactly one root zx in |z <1+ 8,k =0,1,---,¢g — 1. Clearly 20 = 1 and,
by Condition (ii), |z] < 1,k = 1,2, ---, g — 1. The proof is completed by
noting that z, # z, for k; # k, since e %% 5 ¢**/? and that the roots of (13)
are those of the Equations (14;).

Before applying Lemma, 3.1 to

V(z) = [a(2) W) = (1 — N + X2)°[a(2)]°",

we note that it is difficult to imagine Condition (i) placing any practical limita-
tion on ¥1(z) and Condition (ii) certainly does not. For (ii) is contravened only
if A = 0 and the values of 5 for which P[Y: . = j] > 0 are confined to asequence
of the form a, a 4+ b,a 4+ 2b, --- , b > 1, and in any practical example this is
not so because P[Y; = 0] > 0 and P[Y, = 1] > 0.

TueoreEM 3.4. Subject to the conditions

(1) ¢1(2) s analytic in |z2| < 1 + A for some A > 0,

(i1) |¢1(2)| = 1 on the unit circle only at z = 1,

(iil) tnequality (8) s satisfied,

[8(2)¢ — 1lya(2)) Ty (s‘ - s“k>

(15) #) = K e M\
where K 1s given by (11),2, ,20, -+ , 2zg1are the g — 1 zeros of 2° — [2(2) ’[Yr(2)]
which are strictly inside the unit circle, and ¢ = ¢(2r) = 2/¥e(2k).

Proor. Applying Lemma 3.1 to ¥(2) = [¢2(2))°[¢1(2)]” we deduce that, since
¥'(1) = (g + r)a + g\, the denominator of (9) haszeros z, = 1 and 2, |zk] < 1,
k=1,2,---,9— 1. We note that |{x| < 1 since {f = [Y1(2x)]" and |¢1(2:)| < 1.
Because ¢,(2) is a p.g.f., it is analytic within the unit circle and the numerator
of (9) must therefore have the same zeros as the denominator. Clearly 2z, = 1
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isa zeroof 8(z)f — landnoz; ,k = 1,isa zero of 8(z)¢ — 1 because |0(z:)| < 1
and |{x| < 1. Let us write

g—1

Zmr—@qnu—w)

Then z; must be a zero of one of the factors { — ai . Suppose, without loss of
generality, that it is the first; then a; = {1. Now ¢ — 1 = [z — we(2)]/¢e(2)
and, by a simple application of Rouches theorem with the unit circle as contour,
we deduce that z — ¢1¥»(z) has only one zero, namely z; , within the unit circle.
Therefore z; must be a zero of one of the factors { — a,, -+, ¢ — a,-1. Con-
tinuing in this way we have a; = {2, -+, @y_1 = {41 . On imposing the condi-
tion that ¢,(1—) = 1, (15) now follows.

COROLLARY 3.4.1. The ratios of the probabilities Qo, Q, -, Q,, are inde-
pendent of 6(z).

Proor. From the following identity in ¢,

> ot = KIT 16 — /(1 = 1)

we deduce that the numbers @/K, k = 0, 1,---, g — 1, are functions of
¢1, 2, o+, Ok - But the latter depend only on N and ¢1(z) and are independent
of 6(z). The proof is completed by observing that @, = Qu[¢1(0)]".

CoroLLARY 3.4.2. The probabilities Qy, @1, - -+, Q, satisfy the inequalities
Q < < - <.

Proor. This intuitively obvious property follows by putting 6(z) = 1 and
obtaining from (10) that

Q1 = ()1 —NPXe =14+ @, k=0,1,---,9— 1.

Now ¢¥1(0)(1 — A) > 0 and clearly P[X; = 1] > 0 in equilibrium. Therefore
Q41 > Qi and Corollary 3.4.1 shows that this inequality remains true for gen-
eral 6(z).

When ¢1(z) = 1 — a + a2, A = 0 and 6(z) = 1, it is straightforward to deduce
Newell’s solution, namely (4), from (15).

4. The expected delay per vehicle. Winsten’s formula (3) relating E[D], the
expected delay per vehicle, to E[X,] will now be generalised. We follow Winsten
in first finding the expected amount of waiting done per cycle, but in other re-
spects the present derivation differs from his as he made explicit use of the
assumption that Y, = 0, 1.

If at time ¢t = k there are X vehicles waiting, we may, to a good approxima-
tion, say that the amount of waiting done during the interval k — 3 < ¢ < k 4 3
is X . Therefore the expected amount of waiting done per cycle, E[W] say,
is given by E[W] = D X" E[X,]. From (10)

EXiu] = BIXi + Qull —a— A+ 6(1)] — (1 —a—2N),

16
( ) k=0717"'yg_17



386 J. N. DARROCH

and during the red phase we have
(17) E[Xk+1]=E[Xk]+a’ k=g,g+1,"‘,g+7’—1.
Using (16) and (17) we find that

g—1

(18)  EW]=(g+nEX,)]—[1 —a—-N+ a’(l)lglk@, +4
where
(19) A=39(g—-1DA—-a—7 + 30+ Dea.

Now differentiate (9) and put z = 1 to obtain the following linear relation
between E[X,] and > kQe .

lg — (g + r)a — gNE[X,]

20) N , g—1
( =[1—a_)\][l—a—?\-i‘e(l)]kZ,:lek'i-B
where

B=36"(1) +20(1)1 —a—2) =2+ N1 —a—1)
(21) — 2 — 1 (DIK — 3lg"(1 — M) (1 — A — 20)
— (1 = N) + (¢" = ) + (g + (e’ — ¥ (V)]
Substitute from (20) into (18) to obtain
(22) EW]=1[(1—-2N/(1—a—-MNEX]+ A4+ B/(1=a—N\).
Clearly in equilibrium we have E[W] = E[D]E [ZZ:S“I Y] and consequently
(23) E[D] = EW]/(g + r)e

5. Inequalities for the expected queue length and the expected delay. Formulae
(20), (22) and (30) show that inequalities for E[X,] and E[D] can be found by
first finding inequalities for ) kQs , and we now do this.

TuroreM 5.1. Let K denote the integral part of K (defined by (11)), and let
q= P[Yk,n = 0], P = P[Yk'n = ].] Then

g—1
o) Mg+ DK — 3¢1(g = DO0) +rp(1 = 2)) + ¢ +1] < 2 k@4
<3K'(2-K —1)+ (- K - 1)(K-K).

ProoF. We have 0 < Q, < 1 and 2 i=s Q. = K. The supremum of Y kQ,
subject to these conditions is clearly obtained by putting
QO — Ql _ e = Qg—K'—? = O’ Qg—K'—l = K —_ K,,

Qg—K' = Qy—K’+l = = Qg—l = 1;

and these values produce the upper bound in (24).
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To derive the lower bound we make use of the three following additional
inequalities for the @ .

(25) Q<< <Qu.
(26) Q <q.
(27) Q@ < ¢'[6(0) + rp:i(1 — M)

We proved (25) in Corollary 3.4.2. The relation @, = ¢'Q, gives (26).
To obtain (27), first equate coefficients of 2' in (9) to give

(28) (1 = Ng"PIX, = 1] = @ — Q[6(0) + rp:(1 — N)].
When we combine P[X, = 1] <1 — Q, = 1 — Qg " with (28) we have
(29) @ < (1 =Ng™ + Ql6(0) + rpi(1 =N — (1 = N)gl.

Now recall (7) which tells us that the coefficient of €, in (29) is positive, and
apply (26) to yield (27). To obtain the infimum of Y kQ: subject to (25),
(26) and (27), put

Q = ¢, Q@ = ¢'[6(0) + rpi(1 — N)]
Q=@ = =Q ={K —17qT1+60)+ r;:(1 —N1}/(g — 2).

These values produce the lower bound in (24). (We assume that these values
are such that @, = @ = @Q., since this is invariably the case. If it is not the
case, the appropriate adjustments are obvious and result in a slight improve-
ment in the lower bound for Y kQ; .)

The bounds for _kQ, given in Theorem 5.1 can be improved by using various
additional inequalities relation Qo , @:, - - -, @,_1 (obtained, for instance, from
P[X, = 2] > 0). However these improvements are not sufficiently substantial
to be worth including here.

Whereas the actual value of ) _kQ depends on g, r, \, 6(z) and yy(z), the
bounds given in Theorem 5.1 virtually depend only on g and K (the second
term in the lower bound is usually small). Therefore, to illustrate their use in
finding bounds for E[X,] and E[D] we consider a few typical values of g and K
in conjunction with the model studied by Winsten and Newell, defined by

TABLE 1
Bounds for E[X,], E[D) wheng = r,\ = 0,0(2) = 1,$12) =1 — a + az

o

g -
.20 .40 .49
10 0, .153) (0, .980) (9.76, 11.60)
(3.44, 3.92) (4.58, 6.63) (24.92, 28.59)
20 0, .167) (0, .990) (7.86, 12.20)

(6.56, 7.08) (8.75, 10.81) (26.02, 34.69)
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AN=0,0(z) = 1,¢1(2) =1 — a + az. We further suppose that g = r. In Table
1, two values of g are combined with three values of o (which, if the unit of time
is taken as 2 seconds, correspond respectively to 360, 720 and 882 vehicles per
hour) and the six values of K range from .391 to 15. In four of the six entries,
substitution of the lower bound for > kQx in (20) gives a negative lower bound
for L[X,] and this was replaced by zero in deriving the lower bound for E[D].

Newell derived three asymptotic formulae for E[X,], the first of which ([3],
formula (3.6)) is appropriate for low traffic intensities and is consistent with the
bounds in the table for the two entries with « = .20. His formula (5.6) is appro-
priate for the other four entries and is consistent with them. His third formula,
which appears in two places ((5.3) and (5.5)), gives values of E[X,] which lie
above the upper bounds for all six entries in the table.

Finally we compare Table 1 with Table 2 which gives the bounds for E[X,]
and E[D] corresponding to the model defined by ¢ = r;A = 0, 0(2) = 1, $1(z) =
¢**. This model was the basis of Webster’s Monte-Carlo Study [6]. We note
that when the traffic intensity (which may be defined as 2«, or, more generally,
as (g + r)a/g(1 — X)) is near to 1, E[X,] and E[D] depend crucially on y1(z).

TABLE 2
Bounds for E[X,], E[D] when g = r, X\ = 0,0(z) = 1, $1(2z) = ex=D

a

g
20 40 49

10 (0, .195) (.237, 1.647) (21.53, 23.37)

(3.65, 4.13) (6.25, 8.30) (48.94, 52.61)

20 (0, .208) (0, 1.657) (20.63, 24.97)

(6.77,7.29) (10.42, 12.48) (50.04, 58.71)
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