ON SEQUENTIAL CONTROL PROCESSES!

By Cyrus DERMAN
Columbia University

1. Introduction. Consider a dynamic system which at times¢ = 0, 1, - - - is ob-
served to be in one of L + 1 states 0, - - - , L. After each observation the system
is “controlled’’ by making one of K decisionsd, , --- ,dx . Let {Y},t=0,1, ---,
denote the sequence of observed states and {Agd, ¢t = 0, 1, - - - , the sequence of
decisions. We shall assume that

P(Y:in =.7| Yo, 8, -, Yi=14A =d) = g:5(k),
t=0;1;"'; j=0;"'7L; k=1)"'7K
where the ¢:;(k)’s are non-negative numbers satisfying
L
JZ_;Q-:(’C)=1, t=0,---,L; k=1,---,K.
A rule for making the successive decisions can be summarized in the form of a
sequence of non-negative functions
D(Yo, Do, -+, A, YY), t=0,1,---; k=1,---,K,
where in every case Dt Di = 1. We set

P(Ar=d | Yo, 00, , A1, Y:) = Die(Yo, 00, , A1, YY)

fort=0,1---;k =1, ---, K. Thus, given any rule R for making the successive
decisions, the sequence {Y,},¢ = 0, 1, - - -, is a stochastic process possessing a
finite state space 0, - - - , L with its probability measure dependent upon the way
the rule brings into play the conditional probabilities ¢:j(k). In particular, if
the rule R is of the form

Dk(YOyAO;"',Al—I,Yt=7:)=D|’k, t=0’1’~-.; 1:=0’...’L’

where D 1Dy = 1,% = 0, ---, L, then {¥}} is a finite state Markov chain
with stationary transition probabilities

K
(11) Pij = ;D‘kqii(k); 1 = 0; Tty L; .7 = 0, ) L.

Let C denote the class of all possible rules, C’, the above class of randomized
stationary type rules, and C”, the finite sub-class of €’ for which the Dy’s are
either O or 1.
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For every R ¢ C and any initial state Y, = ¢, we consider the K(L + 1) com-
ponent vectors

(I’g(i):‘{xl'm,"",xn,x}, T=1,2---,

where
T
e = (T + 1)“‘2;1)(}’, =7, A =dip | Yo = 1),

j=0,---,L;k=1,---,K.

Let () = lims.,,®7(¢) whenever the limit exists. This will be the case when
R & ¢’ (See Chung [3], p. 32.). At any rate, denote by H () the set of limit points
of {#7(4)} as T — . Let

H@) = UgecHr(3), H'(D) = UgeoHz(7), an;i H”(5) = UpgeerHz(7);

and let A’(z) denote the closure of the convex hull of H'(z), and H” () the convex
hull of H”(%). One of the main results of this paper is

THEOREM 1.

(a) H' (i) = H”(i) D H(7).

(b) If the Markov chain corresponding to R is irreducible for every R & C”, then
A”(i) = H@#) = Hz) = Ul H(s).

This result is an extension of a theorem proved by Derman [7]. It is of interest
when dealing with the determination of optimal rules. For if the criterion to be
optimized is a function of the limit points of {®7(%)}, then the theorem is useful
in reducing the problem to a consideration of rules in class €', C”, or an initial
randomized selection of such rules. When consideration is limited to rules in
¢’ or C”, methods of functional equations, linear programming, and Markov
chains (see e.g. Bellman [1], [2], Blackwell [3], Derman [5], [6], Freimar [8],
Howard [9], Klein [11], Manne [13]) are applicable.

Our other result is a strong law. Suppose Y, = 1 with probability 1. Define

Zgjk = 1, if Yg bl j, At = dk
=0, otherwise.

Let &7 (¢) be the vectors with the components
T
"iTik=(T+l)_ltZoZUk; j=07“"L; k=1)“'7K'

For a fixed R ¢ C denote by « a sample sequence of the joint process {Y,, AJt=
0,1, --- . Let U"(%, w) be the set of limit points of &7 () as T — .

TaEOREM 2. For each R ¢ C, P(U®(i, w) € H”) = 1, where H” is the convex
hull of Ui H”(j).

This theorem is also of some use in finding optimal rules when the criterion
is in terms of sample frequencies rather than expected frequencies as in
Theorem 1.
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2. Proof of Theorem 1. The proof of part (b) follows that in [7] and will not

be given here.
Let

f@z(2)) = ’7;% ;wjerjk )

where {wi},7 =0, --- ,L;k =1, --- , K, are any given numbers. The following
was proven in [5].
LemMa 1. There exists an R* € C” such that
f(@%*(4)) = ming.c lim supre. f(®7(7)).

We shall say a state 7 is recurrent with respect to the class €’ if for every j
there is a rule R(j) € C’ such that P(Y, = i for some ¢ > 0| ¥y = j) = 1 when
rule R(7) is used. We shall prove

Lemma 2. If 4 s recurrent with respect to C', then H(¢) < H'(3).

Proor. We prove this in two steps. Let C* be the class of rules R for which
limz.,., ®5(%) exists; let H*(¢) = UrcerHz(¢). We shall first show that H*(i)C
H'(3). Suppose, to the contrary, that there exists a rule R £ C* such that

limr., ®5(7) = ®°(5) = 2 = (2m, -+, 2:x) 2 H'(4).
It is a well-known property of convex sets (see Karlin [10] p. 397) that there exist

numbers wo, , -+ + , Wrx such that
K

L K L
(2.1) Z D wazin < Z D Wik
7=0 k=1 3=0 k=1

forall z = (o1, - - , 21x) € H (). However, by Lemma 1, there exists a rule
R* & C” such that f(®"*()) < f(®%(3)), a contradiction of (2.1), proving the
assertion.

Thus having shown that H*({) < H'(3), we now show that for any R & C
with z = (2a, -+ , 2ux) € H(3) a limit point of {®7{(7)}, we can construct a
sequence of rules R, e C*,» = 1, --- , such that lim,..,,®"*(¢) = 2. Since H'()
is closed and H*(:) < H'(¢) this implies that ze H'(3). Let Ty, Ts, --- be
such that lim,.., ®%,(¢) = z. We construct R, as follows. Use rule R until ¢ = T, ;
then use, as if starting from ¢ = 0, rule R(j) (if Y7, = j,5 = 0, - -+, L) until
¢ is reached for the first time after ¢ = ¢,. (We can assume that under R(j),
P(Y,=iforsomet > 0| Y, =7) = 1 because of the hypothesis on the lemma.)
Then revert, as if starting from ¢ = 0, to the use of rule R for T, units of time,
- - -, ete. Let ;; denote the mean first passage time from j to ¢ using R(j) and
let M = max;{5;}. By well-known results from finite state Markov chain
theory, M < . Since R, generates a renewal type process it is easily seen by
standard methods that R, ¢ C* and

1 Tv . . s
P =i A = ] Vo= ) s

(2.2) L (
éT{ZP(Yt =j,A =dp| Yo =1) +M}

t=1
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forj =0,---L; k = 1, --- K where z{; is the (j, k)th coordinate of ®"*(z).
On letting » — o, it follows from (2.2) that lim,.,®"%(7) = 2, which was to

be proved.
LeEMMA 3. There exists an R** & C” such that

f(@%(3)) = maxgcc lim suproe f(®7(3)).

Proor. First suppose that ¢ is recurrent with respect to C’. Since f is a linear
function there exists an extreme point 2, ¢ H'(7) for which max,.z-« f(z) = f().
Since x, is an extreme point of H'(¢) there exists a rule Ry ¢ C' such that
®"(7) = 2. Let R be an arbitrary rule in C, and let T;, T,, - - - be such that
lim,., f(®7,(7)) = lim supr..f(®7(7)) and lim,,,®7, (i) = 2. By Lemma
2, x £ H' (7). Therefore, by the continuity of f, we have

lim $UProw f(#7 (7)) = limew f(#7,(0)) = f(z) E f(z0) = f(@%(7)).

Now suppose ¢ is not recurrent with respect to C’. Let us then “artificially”’
adjoin the decision dg,; to the possible decisions such that ¢; (K + 1) = 1,
j=0,---,L and {—wjxqu},j =0, - -- L, are arbitrarily large. With the ad-
joined decision, % is recurrent with respect to C’; however, with the w,xy’s so
chosen, the Ry ¢ C’ as given above cannot have the property that A, = dgy, for
any state at any time ¢. Thus R, maximizes lim supr..., f(®7 (7)) over the original
decision possibilities d; , - - - , dx ; that is, we have shown there is a rule Ry & C’
such that

f(q’no(i)) = mMaxg.c lim supr.. (®7(7)).
From Lemma 1 there exists a rule R** ¢ C” such that
F(@%°(3)) = maxgeclim infy,., f(®F(i))
= lim infr. f(®5°(7)) = limp., f(®F°(2)) = f(@%(3));
hence f(®*"" (7)) = f(®™(¢)) and Lemma 3 is proved.

Lemmas 1 and 3 imply that for every z ¢ H(7) and any linear function f there
exists a rule R, ¢ C” such that

(2.3) f(2) £ f(@™(0)).

However, this is enough to imply part (a) of Theorem 1. For if z & H(¢) but
22 H” (%), then there exists a linear function f such that f(z) > f(z) for all
x € H”(¢). This is a contradiction of (2.3). Thus H(¢) < H” (7). The same argu-
ment can be made to show that if z e H'(Z) then z & H”(i) since any vector
in A’(%) can be expressed as a linear combination of vectors in H '(3). Thus
H'(i) ¢ H”(:). Trivially H'(z) D H”"({), since H'() D H”(4). Therefore,
H ) = H"(%).

3. Corollaries of Theorem 1. With respect to finding optimal rules the results
of Section 2 have some immediate implications.
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COROLLARY 1. There exist rules R* £ C” and R** & C” such that
f(@%(4)) = ming.c lim supr.., f(®7)7)), i=0,---, L,
and
f@"°(4)) = maxgec lim supr.. f(®7(3)), $=0,---,L.

This corollary asserts that the same rule holds for all initial states Y, = ¢. The
proof of this follows from Lemmas 1 and 3 together with
LemMMa 4. Suppose R;eC', i = 0, --- , L, satisfy

f(@%(4)) = mingeer (max) f(®%(1)), i=0,1,---,L.

Denote by D; the ith row of the matriz characterizing R; ;5 = 0, --- , L;then R* £ C’,
defined as the rule characterized by the matriz D* having D: for its ith
row, i = 0, --- , L, satisfies f(®% (2)) = f(®*(3)),7 =0, ---, L.

Proor. Let p.; be given by (1.1) for the rule R*. Note that

@) =1 (3 p™)

= jz_%ps,f(@“‘(j)) = J;0p.-if(@"‘(j))-
On iterating we get
F@™ (W) = 2 pIE@M M), tz1,

where p!? is the t-step transition probability under R*. However, the right hand
side is f(®"°(¢)), which proves the lemma.

CoROLLARY 2. If g is d concave (convex) function on K(L + 1)-Euclidean space,
then there exists a rule Ry& C” such that

g(®*°(¢) = ming.c (max) im supr.. g(®7(3)).

Using part (a), the proof of Corollary 2 is a matter of details keeping in mind
that the minimum (maximum) of a concave (convex) function over a closed
bounded convex set is obtained at an extreme point.

CoROLLARY 3. If the Markov chain corresponding to R is irreducible for every
R eC”, and if g 7s any continuous function on K(L + 1)-Euclidean space, then
there exists a rule Roe C' such that

g(®™(2) = ming.c (max) lim supr., g(®7(%)).
The corollary is a consequence of part (b) of Theorem 1.

4. A Counter-example. The question arises whether we can assert that
H(i) = H'({) under weaker conditions than the irreducibility condition of
Theorem 1. An example was given in [7] to show that in general it is not true.
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However, -one may conjecture that it is true under the assumption that ¢ is
recurrent with respect to C”. The following example proves the contrary.
Suppose we have states 0, 1, 2 and decisions d; and d; such that

go(1) =0, gu(l) =1, gu(l) =0, (2) =0, qu(2) =1, gu(2) = 0;
(1) =0, gu(l) =1, (1) =0, g(2) =0, qu(2) =0, gu(2) = 1;
g0(1) =0, gu(1) =0, gu(l) =1, ¢0(2) =1, gu(2) =0, ¢=(2) = 0.

In words, whenever the system is in state 0 a transition will take place to state 1
irrespective of which decision is made; when the system is in state 1, it remains
there if decision d, is made and it changes to state 2 if decision d; is made; when-
ever the system is in state 2 it remains in state 2 or proceeds to state 0 according
to whether decision d, or d, is made. Here state 0 is recurrent with respect to C".
Let .

T
wro; = (T + 1)‘IZ%P(Y,=_7‘|Y0=O), j=0,1,2.
t=

When R & C', limz.,., m70; exists. Let 7(0) = limz.. (w700, Tro1 , Tre2), actually
7(0) = D i limp,,®7(0) = limr., ) i ®%(0). However, it follows from
well-known results in Markov chain theory that under any rule R ¢ €, the only
possible vectors w(0) are of the form »(0) = (0, 1, 0), (0, 0, 1), or (a, b, ¢)
wherea > 0,b > 0,c > 0and @ + b 4+ ¢ = 1. The vector of the first formwill
occur if Dy = 1; the second, if Dy < 1and Dy = 1; the third, if Dy; < 1,
Dy < 1.

However, consider the rule R ¢ ¢’ as follows. Given that ¥, = 0,let Ay =1
or 2. Then, of course, ¥; = 1 with probability 1. Let P (A, = 1 Y, = 0,
Vi=1-,Y, =1) =e®,P(A,=1|Y,=2) = 1.Then P(Y, = 0|
Yo=0) =0,t>0,and P(Y, =1|Y, =0) = exp[—% D2t (1) ] > ¢ as
t — . Hence, using B, 7(0) = (0, ¢ ', 1 — ¢') which is not possible under
any rule in C’. It follows, that *(0) is not a member of H'(0).

6. Proof of Theorem 2. Before proceeding to the proof of Theorem 2 we shall
need to prove a preliminary result.
LemMA 5. If R** £ C” is as in Corollary 1 to Theorem 1, then

lim SUpz.. SUP;,zec f(®7(5)) = max: {f(®*(3))}.

Proor. We prove this under the assumption that every state is recurrent with
respect to the class C". The device of adjoining additional “artificial” decisions
with arbitrarily large values of —wj’s associated with the adjoined decisions
will apply as in the proof of Lemma 3. Now suppose the lemma, is not true. Then
there exist subsequences {7}, {R.}, {Z,}, v = 1,2, - - - | such that

lim, .o f(®75(3,)) = 6 > max. {f(@"(1))}.

Construct, as in the proof of Lemma 2, the sequence of rules {R,} asfollows. Use
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rule R, until ¢ = T, ; then making use of the recurrency assumption use the
appropriate rule in ¢’ until ¥, = 1, for the first time after T', ; then, as if starting
from ¢t = 0, revert to the use of R, ; - - - , etc. From renewal type arguments, it
follows that limz..®%°(s,) = q)””(z,,) ex1sts and that lim,.. f(®%(5,)) = 0.
However, this means that

F@™(5,)) > max: {f(@" (1))}

for some v, which is a contradiction of Corollary 1.

To prove Theorem 2 let R be an arbitrary rule in C. Suppose that the theorem
does not hold. Then there exists a sphere S with positive radius such that
SN H” = ¢, thenullset, and P(U*(3, ) N S % ¢) > 0.This is so since H: ,
the complement of H”, can be covered by a denumerable number of such spheres
S,,v=1,---,and

P(U®G, w) N He # ¢) < ;P(Uﬂ(i, w) NS, &= ¢).

H” is a closed and bounded convex set. S is convex. Since they are disjoint the
two sets can be separated by a hyper-plane; i.e. there exists a set of numbers
Wy , - - , Wpx such that

(5.1) f(r) < f(s)
forallr = (rq, -+, rx) € H” and s = (su, * -, Six) € S. Define g, = w,
fY =jA=d,j=0,---,L;k=1,---,K;t= 0,1, --- . Note that
R T
(5.2) (T+1)7 200 = f(&2(3))-
For a fixed N let
wN
w, = Z g, v=1"")[T/N]
t=(v—1)N+1
and
T
W = > ge, if [T/N] < T/N
t=[T/NIN+1
=0, if [T/N]= T/N.

Clearly, [W,|,» = 1, ---, [T/N], and |W'| are bounded and
E(WvIWI,”’, v—l)

N

< max; Z Zwﬂc > P(Y,=j, A = di| Xy = 1)

7=0 k=1 t=(v—1)N+1
K N
(5.3) < Sup;,rec ZO klejk ,Z; P(Y,=j,A =di| Yo = 9)
=R -

Supq,rec Nf(@g(z))
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By Lemma 5, given any ¢ > 0 there exists an N such that
(54) sups,zec Nf(@3(1)) = N{f(@"" (%)) + ¢

where 7, is the state at which max; f(®* (z)) is obtained. However, by a strong
law of large numbers for dependent random variables (Lo&ve [12], p. 387) we

have
[T/N]

limzo [T/NT™ 2, (Wo — E(W, | Wy, -+, Wou)) =0

v=1

with probability 1. Thus, from (5.3) and (5.4) we have

[T/N]

(5.5) lim sup [T/N]™* Zl) W, < N{f(@""(5)) + ¢

with probability 1.
But then,

r (7/N]
(5.6) lim suprae T D g: = lim suppw{ > W, + W'}
t=1 v=1
(7/N]

< limsuprao T D, W, 4+ lim supr,, W'/T

v=1
[T/N]

= lim supre T >, W,
=1
[T/N]
< N'lim supr.. [T/N] 2 W,
=1
< f(®%"(d0)) + ¢

with probability 1. Since e can be arbitrarily small, we have from (5.2) and
(5.6)

(5.7) lim Supz.. f(87(3)) < {f(@"" (%))}

with probability 1. However, in order that, for any w, a limit point & of {®7(7)}
be a member of S we must have from (5.1)

f(&8) > f@" (%)),
since ®*""(3,) € A”. Thus, by (5.7)
P(SN UG, w) # ¢) < P{lim supr.o f($7(:)) > f(@*"(40))} = 0,
a contradiction proving the theorem.
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