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1. Summary. In this paper we have investigated the effects on the operating
characteristics of a test for the scale parameter of the exponential distribution on
the assumption that the sample is from a ‘“‘complete’ exponential population
when in reality it is known to have come from a truncated exponential popula-
tion. The results derived are valid for samples of any size.

2. Introduction. In many physical situations, for example, in problems of
life testing (see [2]), the exponential distribution is proposed as a useful statistical
model. But often the assumption that a random variable X can take on values
on (0, ») is not a realistic one. In such cases our inference might be more use-
fully based on the model of a truncated exponential distribution. In this note
we shall study the operating characteristics of a test appropriate for the scale
parameter of the exponential distribution when in reality the sample actually
comes from a truncated population.

In studying this we shall follow the same line as has been done by Aggarwal
and Guttman [1] in case of the truncated normal distribution. In their paper
Aggarwal and Guttman considered a “symmetrically truncated’’ normal distribu-
tion as the “real” model alternative to the usual normal distribution and studied
the “loss in power” due to wrong selection of model.

The probability density function (p.d.f.) of the exponential distribution is

1) f(x) = 076", for0 < X < ,
= 0, otherwise, § > 0.

If the population is a truncated one, it is said to be truncated to the right with
its terminus point x, if its p.d.f. is given by

(2) f(@) = koe™’ for0 £ X £ a0,
=0 otherwise,
where
(3) K= (1 — ).
3. Distribution of sample means. Let X;, X,, ---, X, be a random sample

of size n from a population with the p.d.f. (2). We shall try to find the distribu-
tion of
X = n_l Z X i
j=1
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210 A. P. BASU
Now the characteristic function of a random variable X having density f*(z) is
given by
(4) 0" (t;2) = k{1 — exp — (wo/0)(1 — 46£)}/(1 — i6t).
Therefore, the characteristic function ¢*(¢; ,) of thesum ¥, = X; + X, + ---
-+ X, is given by
(5) P (tyn) = 2 be™(1 — ior)™",
r=0
where

b, = (_1)r <:'/> kne—rrolo'

We are now to find the distribution S*(y,) of ¥, . By the inversion formula

—1ty,
— e n

* _ 1 wl ¥/,
8 () = o [ P Gy d
(6)

r=0

= b,[ 1-e™ —° ne'.'(""/o)(l — i7) " dr,
0 r
where » = t@ and Z, = Y,/6. '
Now the characteristic function of the Gamma distribution
ol oy e
Guie) = [ L i
(z) , Ty ¢ Y W

is given by ¢,(7) = (1 — 7)™ ". The integrand of the rth term of (6) is seen to be

[(1 = &) firlpa(r)e" ™ =[(1 — 6) irIh(7),

where M(7) = ¢ ™Py,.(7) is obviously the characteristic function correspond-
ing to the distribution G.(z, — rzo/6). Hence the distribution of Y, is given by

@) (1) = 366l (vn = ran)/0),

where G,(y» — r20) = 0 for y, < rxp.
From (7) the distribution of X follows. Let it be Fx (& | 0).

When the X’s follow (1), (j = 1, 2, ---, n), nX/8 follows the gamma dis-
tribution with parameter n and the distribution of X is given by

(8) AF.(8]0) = fu(Z| 6) dE = (1/T(n))e "°(ng/0)" " d(ni/9).
It is clear that (8) gives the first term in the expansion (7) multiplied by k™ ".

4. Tests of hypothesis under truncation. Given a sample of size n from either
(1) or (2), to test the one-sided hypothesis on the scale parameter

(9) H:0=20,, AltH:6< 6
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we consider the tests Ty, T : Reject H if X < w; (¢ = 1, 2), accept otherwise;
where

(10) fowlfn(iloo) iz = fo”’f:(moo) i = a

and « is the stipulated size of the critical region. T} is the uniformly most power-

TABLE I
Values of o’ and L8 , xo) expressed as a percentage of « = 0.05
1 2 3 4 5
n.
o' —L o —L o -L o —L o —L
o = (1).2 0578 | 15.6 | .0668 | 33.6 | .0772 | 54.4 | .0893 | 78.6 | .1033 | 106.6
o = U.
’;° = g'g .0616 | 23.2 | .0760 | 52.0 | .0037 | 87.4 | .1155 | 131.0 | .1424 | 184.4
o = O.
TABLE II
Lower 100a% points of fn(z|6)
0 a
o ° " 005 010 025 05 10
1.0 0.5 1 .0023 .0045 .0114 .0227 .0454
2 .0145 .0290 .0494 .0749 L1115
3 .0444 .0608 .0870 .1139 .1513
4 .0695 .0848 1124 .1402 1772
5 .0903 .1056 .1342 .1603 .1945
5.0 3.0 1 .0128 .0256 .0639 .1278 .2557
2 .0766 .1533 .2768 .4216 .6220
3 .2451 .3457 ATT4 .6270 .8372
4 .3806 4754 .6264 7769 .9715
5 .4933 .5834 7344 .8805 1.0685
10.0 5.0 1 .0227 .0454 .1136 .2272 .4543
2 .1452 .2903 .4942 .7494 1.1154
3 .4440 .6077 .8701 1.1389 1.5126
4 .6955 .8475 1.1235 1.4016 1.7716
5 .9029 1.0561 1.3419 1.6034 1.9434
25.0 15.0 1 .0639 .1279 .3196 .6393 1.2785
2 .3832 7664 1.3839 2.1079 3.1098
3 1.2255 1.7285 2.3868 3.1352 4.1859
4 1.9032 2.3772 3.1318 3.8847 4.8577
5 2.4666 2.9168 3.6719 4.4024 5.3424
50.0 30.0 1 .1279 .2557 .6393 1.2785 2.5570
2 7664 1.5328 2.7678 4.2158 6.2195
3 2.4511 3.4570 4.7736 6.2704 8.3718
4 3.8064 4.7544 6.2637 7.7694 9.7153
5 4.9332 5.8337 7.3439 8.8047  10.6848
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ful (UMP) test of H if X follows (1) and will be called the usual test. T is the
UMP test of H if X follows (2) and w; is a function of z, , the point of truncation.
It is useful to define three power functions,

Puo,z0) = [ $:(a10) dz

(11)
= Power of usual test (71) when X is untruncated,
wy
P(6, xy) = 2(Z|6) dz
azy  FO® [ o
= Power of usual test (7:) when X truncated,
and
P00 = [ fi(210) dz
(0, To) = w(Z|0) dZ
(13) Yk

= Power of test (7:) when X is truncated.

If in fact X is truncated but the experimenter does not know this and uses the
usual test, the actual size of the test differs from «. It is, of course, P(6p, xo)

which may be labelled o'.
Let
(14) E(6, 20) = Pu(6, 30) — P(6, ).

E(0, xo) is the “error” incurred if the usual procedure is followed while sampling
is actually from a truncated distribution. For 8 = 6y, E(6, 20) = o — . In

TABLE III
Values of P.(8, xo), P9, o), P(0, xo) for « = 0.05 and 8 < 6

G| azir | wessemso oz | 3ImG |ncw
”n

0 0.2 0.4 0.5 1.0 15 2.0 1.0 3.0 20 | 130 25.0
1 P, |(.1222 |.0625 |.2699 |.1448 |.0995 |.0750 |.2301 |.0833 |.3255 |.0577 .0600

P {.1230 |.0681 |.2699 |.1458 |.1032 |.0817 |.2301 (.0864 |.3255 |.0675 .0694

P, |.1075 |.0588 |.2247 |.1199 |.0841 |.0662 |.2024 |.0747 |.2730 {.0548 .0566
2 P, |.2192 |.0724 |.6214 |.2834 |.1564 [.0988 |.5230 {.1171 {.7382 |.0633 .0673

P |.2222 |.0859 |.6215 |.2873 [.1682 |.1173 |.5230 |.1259 [.7382 |.0868 .0900

P, |.1758 |.0663 |.5024 |.2096 |.1180 |.0801 |.4415 |.0976 |.6223 |.0595 .0625
3 P, |.3321 |.0836 |.8646 |.4404 |.2236 |.1248 |.7710 |.1560 |.9422 |.0700 .0765

P |.3389 |.1081 |.8647 |.4494 |.2493 |.1614 |.7711 |.1740 |.9422 |.1124 .1183

P, [.2501 |.0720 |.7248 |.2972 |.1481 |.0910 |.6633 |.1205 |.8479 |.0602 .0644
4 P, (.4431 |.0942 |.9677 |.5833 |.2916 |.1512 [.9079 |.1951 |.9912 |.0753 .0841

P |.4552 |.1327 |.9679 |.5993 |.3372 {.2130 |.9081 |.2256 |.9912 |.1417 .1504

P, |.3173 |.0759 |.8672 |.3872 |.1808 |.1028 |.8101 |.1392 {.9505 |.0628 .0680
5 P, |.5444 |.1032 [.9912 |.7008 |.3579 |.1764 [.9673 |.2334 |.9990 |.0804 .0913

P |.5631 |.1584 |.9914 [.7248 |.4291 |.2705 (.9675 |.2799 (.9990 |.1771 .1887

P, |(.3391 |.0815 [.9382 |.4646 |.2088 |.1119 [.9014 |.1596 {.9849 |.0654 .0701
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Table I we have tabulated a few values of o’ for different sample sizes and z =
1.0, 5.0 when a = .05.

Table II gives the significance points for the test T for different values of =,
a and z,. Thus, if sampling is from a truncated exponential distribution, T
gives the correct test of (9) and Table II gives the correct significance points
for this problem. Next we prove the following lemma useful in reducing subse-
quent computational labor.

LeMMA. Given n and triples (x0, 60, 6), 6 < 6o, (a) P(0, xo) s a constant if
(for each combination of xo, 6 and 6) both 6,/0 and z,/6 are constants; and (b)
P,(0, zo) and P.(8, xo) are constants if 6,/0 is a constant.

Proor. (a) From (8) and (10), for fixed n, nw/6 = m (say, where m is a
constant). Therefore,

(15)  P(6,m) = ) b,Ga (”""—"f’i") = 2 b.Ga ("‘—"" — r’fﬂ).
r=0 0 r=0 0 0 .
From (15) the result follows. (b) can be proved similarly.

A-few typical values of P,(6, x0), P(8, zo) and P.(6, z,) have been computed
for different values of § < 6, and the five terminus points z, = 1.0, 5.0, 10.0,
25.0 and 50.0 in Table III for « = 0.05 and n = 1(1)5. The quantities P.(6, zo),
P(6, o) and P,.(6, z,) were computed systematically with the help of Pearson’s
Tables of the incomplete gamma function [3].

5. Conclusion. In Table I, it is found that o' > o everywhere whereas in
case of Aggarwal and Guttman [1] &' < a. In general, it is noted that

P(0, o) = Pu.(6, x0) = P.(6, 20).

This can also be shown directly. This difference between our case and that of
Aggarwal and Guttman is because they consider alternatives to the right
(8 > 6,) while we consider alternatives to the left (6 < 6,). We also note that
serious errors occur both in the power and size of the tests especially when the
sample size is large. So one must be very careful on deciding the type of trunca-
tion to be used in a particular situation.

The computational procedure, though tedious for large n, is straightforward
and can be carried out systematically for any value of n. However, in this paper
we consider only values of n up to five as the general tendency is quite evident
even in such small samples.
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