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1. Introduction and summary. This paper is concerned with the problem of
testing the independence of two random variables X, Y on the basis of a random
sample, (X1, Y1), (X2, Y3), -+, (X, Yx). The joint distribution function H
and, consequently, the marginal distribution functions F and G are assumed to
be absolutely continuous. The hypothesis to be tested may be stated as H(z,y) =
F(z)G(y).

The usual parametric test of this hypothesis is based on the sample correlation
coefficient. Several nonparametric tests have been proposed and studied by
Kendall [11], Hoeffding [8], [9], Blomqvist [1], and others. Konijn [13] has in-
vestigated the asymptotic power properties of some of these tests.

The class of rank tests for independence to be considered in this paper is
based on the test statistics of the form

N
(1.1) Ty = zr‘g Exw B aiZinriZna;
where {Exy.:}, {Ex.i},% = 1,2, - - -, N, are two sets of constants satisfying certain
restrictions to be stated below, and Zy,, = 1 (Z,f,,.,. = 1) when X(Y;) is the
rith (sith) smallest of the X’s (Y’s) and Zy,, = 0 (Zy..; = 0) otherwise.

By taking EN,,‘.(E’;,,.‘.) to be the expected value of the rith (sith) standard
normal order statistic from a sample of size N, we get the normal scores test
statistic which belongs to the class of c¢;-statistics considered by Fisher and
Yates [4], Hoeffding [10] and Terry [17]. If we put Ex,, = r: and Ey,, = si,
the resulting test statistic is equivalent to the Spearman rank correlation statistic.

The normal scores test is shown to be (a) the locally most powerful rank test
and (b) asymptotically as efficient as the parametric correlation coefficient
®-test for the alternatives (4.1) and (4.2) when the underlying distributions
are normal. It is at least as efficient as the ®-test when the alternative belongs
to the class (4.1) and when H satisfies the restrictions stated in Theorem 3.

Tables 1 and 2 give the exact null distribution and some critical values of the
normal scores statistic for N < 6. Table 2 provides a comparison of the {-approxi-
mation with the exact distribution.

2. Assumptions and notation. Let (Xi, Y1), (X», Y3), -+, (Xw, Y») be N
mutually independent pairs of random variables with continuous joint distri-
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bution function H. Let F and G be the marginal distribution functions of X and
Y, respectively.

Let Fy(z) = (number of X; < z)/N, Gy(y) = (number of ¥ = y)/N and
Hy(z,y) = [number of (X, Y:) = (z, y)I/N.

The following representation of T is equivalent to (1.1):

(21) To= [ [ JulFu (@ EalGa )] dnta ),

where Jy(i/N) = Ey.;and Ly(i/N) = En:.
Let Iy be the interval in which 0 < Fy(z) < 1 and I + be the one in which
0 < Gx(y) < 1. The symbols K and o, have the same meaning as in [2].

3. Asymptotic normality.

TurorewM 1. If :

(1) J(u) = limwswJx(u) and L(u) = limyoe Ly (u) extst for all 0 < u < 1
and are not constant,

(2) fquXIﬁv{JN[FN(x)]LN[GN(Z/)] — J[Fn(z)ILIGN(y)]} dHy(z, y) = o,,(N'*),

(3) Ju(1) = o(N'), Ln(1) = o(N%),

(4) T (w)] < Klu(1 — )]0 < a < &, /' (w)] = K[u(1 — w7, 7 ()] =
Klu(l — w)] 7, :
where J and J” denote the first and second derivatives of J, respectively,

(5) L satisfies the same conditions in (4), then

: Tw —pn ] ‘ —z2/2
(3.1) limyoe P| X— < t| = (27) e dx
ON —o0
uniformly with respect to F, G and H, provided ox # 0; where
(32) = [ [ JP@ILGEW) dH (=)
and

Noy = Var {J[F(X)]L[G(Y)]
@+ [ [ ) — P@WIF@ILG0) A (w0)

+ [ [ 1o 0) = GoIF@ILEW) 0},

where ¢x(w) = 1 (¢y(v) = 1) if X < u (Y = v) and is zero otherwise.

Proo¥. Jx(Fx)Ly(Gy) can be written as [Jx(Fy)Ly(Gy) — J(Fy)L(Gw)] +
J(Fy)L(Gy) and using Taylor’s expansion, we can express J(Fyx)L(Gy) as
J(F)L(Q) + (Fy — F)J'(F)L(G) + (Gv — Q)J(F)L'(G) + (3)(Fy — F)J”
[0Fy + (1 — 0)FILI0Gy + (1 — 6)G] + (3)(Gv — @)J[6Fx + (1 — 6)FIL”
[0Gx + (1 — 8)G] + (F — F)(Gy — G)J'I6Fx + (1 — O)FIL'0Gy + (1 — 6)G],
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where 0 < 6 < 1. Finally, noting that dHy can be written as d(Hy — H) + dH,
we have

3 8
(3.4) Ty = Z; A + Z By,

i=1

where

A = L’ L) J(PYL(G) dHy

A= [ ] [ _(Fw = D (DLG) dH,

Asw = f_w f_w (Gy — GYJ(F)L' (@) dH,

Bu = [ [ (Fu= PII(PLO® aty — W),

Bu = [ [ (Gy— QIDLIG) dty — 1),

B = [[ By — FYI"I0Fy + (1 — 0)FILIOGY + (1 — 0)G)dHy,
INXIN

Buw = [[ Gy~ @Wl6Fy + (1 — 0)FIL"0G + (1 — 6)G)dHy,
INXIN

Bu = [[ . (Fx= F)(Gw = @0Fy + (1 = O)FIL10Gy + (1 = 0)6) dHly

Bw=—[[ UDL@ + (Fx~ ) (DL@)
RXR—INXIN

+ (Gv — @)J(F)L'(@)) dH ,

Bu= [ IMENLM(G) ay,

XB—INXIN
Bov = [ W(Fu)La(@h) — J(Fu)L(G)) .
INXIN

We shall show that 514 v , when properly normalized, has a limiting normal
distribution. The By terms are shown to be 0,(N ) in Section 5.
Using the elementary inequality

(3.5) labl < |a|'/r + [b]"/s, r>1, 1/r+ 1/s =1,

it can be shown that Y 4.y is the average of N independent, identically
distributed random variables, each having mean uy and finite third moment.
Hence, (3.1) follows from the Berry-Esseen theorem ([14] pp. 282-288).
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Assumption (4) is more restrictive than the corresponding one imposed by
Chernoff and Savage in [2]. Nevertheless, if we considerJ = F, these conditions
are satisfied by several distribution functions F, such as, normal, exponential,
logistic and uniform. The inverse of the Cauchy distribution function does not
satisfy Assumption (4) in this paper, nor does it satisfy the one in [2] where
a = (%) — b is restricted to the interval (0, %). The inverse of the distribution
function F for which F(z) behaves like 1 — z* as z approaches +« satisfies
Assumption (4) in [2] but not the one in this paper.

Theorem 2 which is an extension of Theorem 2 in [2], shows that Assumptions
(1) to (3) in Theorem 1 are likely to be satisfied when we deal with the inverse
functions of distribution functions.

Tueorem 2. If Jy(i/N) and Ly(i/N) are the expectations of the ith order
statistic of samples of size N from populations whose cumulative distribution func-
tions are the inverse functions of J and L respectively and if Assumptions (4) and
(5) of Theorem 1 are satisfied, then

(3.6) limy,wdn(u) = J(u), limy,o Ly(u) = L(u), 0<u<l,
(3.7) Jn(1) = o(NY),  Lw(1) = o(N?),
38)  [[ | UnFIn(Gy) — T(E0L(G] dHy = o).

Proor. Equation (3.6) is well known and (3.7) follows immediately from the
result in [2] that [Jx(1)] < KN® and the assumption that 0 < a < §.

To prove (38), we write JN(FN)LN(GN) - J(FN)L(GN) as JN(FN)[LN(sz)
— L(GW)] + La(Gn)Wn(Fx)] — J(Fx)] — [In(Fx) — J(Fo)lLy(Gy) — L(Gw)].
The result follows from (7.24) and (7.25) in [2].

4. The normal scores test. Before investigating the power properties of this
test, it is necessary to specify the alternatives to be considered. As Konijn
remarks in [13], it appears difficult to formulate a class of alternatives which is
reasonably wide and reasonably easy to handle mathematically.

We shall consider the class of alternatives under which X and Y are given by

(4.1) X=01-0U+ 6z, Y=010-0)V+06zZ

where 0 < 0 < 1and U, V, Z are independent random variables. The hypothesis
to be tested is that 6§ = 0.
This class is similar to that considered by Konijn in [13] under which

(4.2) X=MNU+NV, Y=»xNU+N\N

where the \’s are real numbers, U and V are independently distributed. The
hypothesis for this model states that A, = Ay = 1, A2 = X3 = 0.

It is easy to show that the normal scores test is the locally most powerful rank
test against the alternatives of the form (4.1) and (4.2) with the variables
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involved being normally distributed or the alternative that X and Y have a
bivariate normal distribution with correlation coefficient p.

4.1. Comparison with the correlation coefficient ®-test. Throughout this section
and the following section, unless otherwise stated, the alternatives are assumed
to be of the form (4.1).

Theorem 1 establishes the asymptotic normality of the normal scores statistic.
Now we proceed to find the variance of the statistic 7» under the hypothesis of
independence. Under H, we have

/ f [6x(z) — F(2)W'IF(2)ILIG(y) Iz, y) dz dy
= —E{LIGo(Y)} {JIFo(X)] — Bo{JIFo(X)1} },

where the functions with subscript 0 are computed under H. A similar expression
can be obtained for [ [[¢y(y) — G(y)IFo(z)IL'[Go(y)k(z, y) dz dy.
From (3.3) and (4.1.1), we have

N Vary(Ty) = Var{J[Fo(X)IL[Go(Y)]}
— Eo{ LIGy(Y)]} VarolJ[Fo(X)]} — Es{/[Fo(X)]} Var{LIGo(Y)]}.

Moreover, it is easy to see that if we are dealing with a sequence of alternatives
of the forms (4.1) or (4.2) or the bivariate normal form which converges to the
hypothesis as N — o, then

(4.1.3) limy,, Vary(Tx)/Vare(Ty) = 1.

In dealing with the normal scores statistic 9y , we replaceJ and L by Jo = &7,
the inverse of the standard normal distribution function and get

(4.1.1)

(4.1.2)

(4.14) B@) = [[ JIF@WIG) Az, y) dz dy
and
(4.1.5) Vary(9y) = 1/N.

In this section, the normal scores test will be compared with the parametric
test, ®, based on the sample correlation coefficient,

N _ _ N _ N _ ti
(416)  Ry=2 (Xi = X)(¥: - ¥) [E (X = X)) (Ya= Y)”] :
= =1 1=l
Cramér ([3], pp. 359-366) shows that
(4.1.7) E(Ry) = p+ O(N)
where p is the correlation coefficient of X and Y and

(4.1.8) Varo(Ry) = 1/N.
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Under (4.1) with U, V, Z being independent normal variables, we have
(4.1.9) E(9y) = p.

Hence, the Pitman efficiency of the 9i-test with respect to the ®-test in this
case is unity. (

This conclusion holds whenever the marginal distributions of X and Y are
normal. In particular, it holds when the alternatives are of the form (4.2) with
U, V being independent normal variables or when X and Y have a bivariate
normal distribution with correlation coefficient p.

TuroreM 3. Under (4.1), let fy, go and fo be the density functions of U, V and
Z, respectively. Let fo and go denote the marginal density functions of X and Y, and
he their joint density function. If

(1) U, V and Z have finite fourth moments, .

(2) fo, go and f are positive and continuous on (— o, ),

(8) fo and go are twice differentiable on (—, ),

@ L a0 oo = [ & (TUFAAGh () a2, 1) Yoo i dy
fori =1, 2.and uy(8) = E(Iy) given by (4.1.4),

then the asymptotic efficiency of the normal scores test with respect to the correlation
coeffictent test vs given by

(4110) eq.q(Fo, Go, F5) = { [ Tar@) i) de [ TiGw)w) dy} .

Proor. We first note that

do| _go. dp| _
(4.1.11) Bl = 0; 71 2,
also,
(4112) (;io,mw) oo = O,
and

(4113) a0 ooa = 2 [ TR () da [ TiGo(w)1g3(w) dy.

Applying an extension of Pitman’s theorem due to Noether [15], we get
(4.1.10).

It should be noted that if Fo = Go, eq,a(Fo, Go, F?) is the square of the
corresponding 2-sample efficiency.

Chernoff and Savage have shown in [2] that [Jo[Fo(x)]fs(z) dz = 1 and it is
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equal to 1 only if Fo = ®. Hence, eq,q(Fo, Go, F5) = 1 and the equality holds
only if Fy and Gy are &.

Under (4.2) with U and V having the same distribution function Fy, we can
apply another extension of Pitman’s theorem due to Konijn [13], and get

(4118) ena(P) = { [ sliF@11(o) o [ AP da)

Regarding « as a function of J, as in [2], we can write

(4115)  eqq(Fo) = {xJogo(Jo) a7, [¢(Jo) / (i‘lﬁ)] dJo}z.

Sub]ect to the restrictions that Fo has mean 0 and variance 1, [ [z(Jo)J ogo(J 0)
[dz/dJ3le(Js) dJo dJs does not attain its minimum at the point z(Jo) = Jo, i.e.,
when z is the identity function ([5]), pp. 528-552). Consequently, em,m(Fo)
need not be =1 for all Fy.

4.2. Comparison with the rank correlation test. The rank correlation test is
based on the statistic

(421)  Tor = (1Z/NV = DIZ (R — 3V + D)(S: = 3V + 1))

where R; and S; are the ranks of X; and Y,, respectively. Except for some
constants, Ty is the same as

(422)  Wa = [[ TPV UlGa ()] dHu(z, y) = %;Rf S;

when Jx(7/N) = i/N.
Since J is the identity in this case, we have

(423) By = [[ F@)6() aiz, )
and
(4.24) Varo(Wy) = 1/(144N).

In this section it is not necessary to assume the finiteness of the fourth moments
of U, V and Z. However, we still have to assume that Z has finite second moment.
So, without any loss of generality, let Z have zero mean and unit variance. The
following computations are made under assumptions (2), (3) and (4) of Theorem
3.

Let vx(0) denote E(Wy) under (4.1). Then, under the above assumptions,
we have

(4.25) ;—0 [vx(8)]le—o = O,
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and
(42:6) & @)l = 2 [ i) o [ Ghw) .

Hence, the Pitman efficiency of the rank correlation test with respect to the

normal scores test is
2

12 ffﬁ(:v) dxfyﬁ(y)dy
[TiF@)5i) o [ TGo(w)ohw) dy

(4.2.7) eW.E)Z(F()y GO; F:) =q

which for Fy = Gy = F is the square of the expression for ey, (F) in the 2-sample
problem obtained by Hodges and Lehmann in [7].

4.3. Exact null distribution. Assume that X; < X, < --- < Xy. Then, the
normal scores statistic can be written as

N
(4.3.1) mN = N—l_zl (EZN,i)(EZN.a.')‘ﬁN,a.' ]

where ¢x,, = 1if Y, has rank s, among the Y’s and it is zero otherwise.
In carrying out the test, we reject H if 9y is too large or too small or if its
absolute value is too large, according to the alternative under consideration.
The computations for Table 1 are based on the following:

1 < 1
(4.3.2) P{E’ZN = ]_V ; (EZN,i)(EZN,"-) ‘H} = m,
where (s1, s2, - -+, Sy) is a permutation of (1,2, ---, N), and

(4.3.3) ' EZy: = —EZyy11-i

Wlth EZN,(N+1)/2 =0 WhEIl N iS Odd.

The values EZy ; used in the computations are obtained from Table 28 in [6].
For N > 6, it is advisable to use more accurate values of EZy,; which can be
found in [16].

For N > 6, the distinct values that the statistic can take on are too numerous
to compute without the aid of an electric computer. An approximation to the
exact null distribution is, therefore, desirable. Terry has pointed out in [17] that
the ¢-distribution with N — 2 degrees of freedom provides a good approximation
to the null distribution of (N — 2)}/(1 — )}, where, in our case,

N N
(4.3.4) r = Z} (EZy :)(EZy.,,) El (EZy.:)"
An idea of the accuracy of this approximation is obtained from Table 2. For

N = 6, the third column of the table gives the approximate values obtained
from the ¢-tables.



TABLE 1
Exact null distribution of Ny
P, = N! P{Jy = c}

c P, c P, c P, c P,
N =2 N=6 2.273188 96 .980468 235
.636192 1 4.116514 1 2.269953 98 .933757 239
N =3 3.953298 2 2.173593 102 .924993 243
1.431432 1 3.922914 4 2.123064 106 .883228 247
715716 3 3.729314 5 2.095428 110 .855592 251
N =14 3.725889 7 2.017453 118 .824328 253
2.294100 1 3.581938 11 1.998188 122 .806133 257
1.941264 2 3.562673 13 1.958553 124 .786868 261
1.758276 4 3.532289 15 1.921093 128 777617 265
1.222452 5 3.404178 17 1.879328 132 .740157 269
.970632 9 3.335264 18 1.848064 133 727968 273
.535824 11 3.257289 22 1.823853 137 .681257 277
0.0 13 3.210578 24 1.773717 141 .661992 279
N=35 3.191313 28 1.764953 143 .658757 283
3.195188 1 3.172048 29 1.704993 147 .511868 291
2.950163 3 3.063689 33 1.685728 149 .472233 293
2.748964 5 3.016978 35 1.646093 157 .465157 297
2.503939 7 3.013553 37 1.626828 165 .452968 305
2.460113 9 2.982289 39 1.580117 169 .406257 309
2.302740 10 2.916313 43 1.567928 171 .386992 313
2.215088 11 2.866664 47 1.548853 175 .328092 317
2.173279 15 2.839218 51 1.452493 179 .309897 319
1.842619 17 2.788689 53 1.374328 183 .309017 321
1.727055 21 2.691842 54 1.371093 187 .278633 323
1.683229 25 2.663813 58 1.351828 191 .259368 331
1.396395 27 2.591664 60 1.333633 193 .240103 333
1.352569 31 2.544953 64 1.305117 197 .236868 337
1.107544 35 2.525688 68 1.274733 201 .212657 341
1.021909 39 2.498242 70 1.255468 205 .199408 342
.906345 41 2.486053 74 1.246217 207 .140508 346
.862519 43 2.467858 75 1.177493 211 .081608 348
.575685 47 2.398064 79 1.158228 215 .062343 352
.531859 51 2.388813 83 1.118593 219 .034897 356
.446224 53 2.351353 87 1.111517 223 .015632 360
.245025 57 2.304642 88 1.099328 227
.201199 59 2.292453 92 1.039368 231
0.0 - 61
TABLE 2
Critical values of Ny
P; = P{Jqy = ¢}
N . Approximation
c Pc ‘ c Pc to P;
N =4 N=25
2.294100 .041667 2.215088 .091667
1.941264 .083333 2.173279 .125000
N=2¢6
N=35 3.725889 .009722 .006544
3.195188 .008333 3.335264 .025000 .025306
2.950163 .025000 3.016978 .048611 .048745
2.748964 .041667 3.013553 .051389 .049046
2.503939 .058333 2.498242 .097222 .100719
2.486053 .102778 .102127

146
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6. Higher order terms. In the proof that the By terms are o,(N?), the
following result is used throughout.

Let Sye = {:F(z)[1 — F(z)] > (1.)/N} and Sy = {y:G(y)[l — G(y)] >
(n¢)/N}. Then, for any ¢ > 0, we can choose 7. independently of F, G and N
such that

(5.1) P{X:e8y,,YieSy,,i=1,2 -, N} 21—

The asymptotic negligibility of B,y and Bsy follows immediately from As-
sumptions (1), (2) and (3) of Theorem 1. One can show that Bey is 0,(N*)
by applying (5.1), Assumptions (4) and (5) of Theorem 1 and by observing
that |(4/N) — F(X:)|{F(X:)[1 — F(X:)]}™" is bounded in probability where
Xi<Xe< - < Xy.

Applying the basic inequality (3.5), we get the asymptotic negligibility of
Biy , Biy and Bsy as an extension of the results in [2].

However, to show that N*Byy —» 0, one cannot extend the method used in [2].
First we write N*B,y as

(5.2) N'Biy = Buy + Buw + Bun

where

b pd
Bux = [ [ N{(Fx — )T (F)L(G) d(Hx — H),

By = f f NYFy — F)J' (F)L(Q) dHy ,
RXR—[a,b]X[c.d]
Buy = ff NY(Fy — F)J' (F)L(Q®) dH.

RXR—[a,b]X[c.d]

We shall have the desired result if we can show that for N sufficiently large,

(5.3) P{|Bux| > ¢ < e
and for sufficiently small a, ¢ and sufficiently large b, d, the following hold:
(54) P{|Buxn| > ¢ <
(5.5) P{|Bun| > ¢ < e

The proof of (5.11) is similar to the proof of the Helley-Bray lemma ([14],
pp. 180-181). ‘

Let ¢ (z,y) = N'[Fx(z) — F(z)W'[F(2)ILIG(y)]. We approximate ™ (z, y)
by simple functions as follows.

Divide [a, b] into ¢ = Tm1 < Tm2 < *** < Tmx,+1 = b, and [c, d] into ¢ =
Ym < Yme < *** < Ymi.41 = d such that supi(Tmiys — ZTme) — 0 and
SUPx(Ymie41 — Ymr) — 0 asm — oo,
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Define

km Im
g (@ y) = 24 20V @mist Ymirn) [P (2, y),

t=] j=sl

where I{P (2, y) = 1if Zni < 2 £ Tpip1 a0d Y ; < Y = Ym.j+1 and otherwise

it is zero. Then -
(5.6) |Buwr| £ Cunx + Crow + Cuax

where

Cun = fa b[ 6™ @,y) — 92", y)] dH»(x,y)l’

Crav = Lb];dyi”’(x,y) dHy(z,y) — Lbj;dgi”’(x,y) dH(x,y)l,

b pd .
Cun = | [ [ 0"@0) - 60 dH v

Since N? sup_wcocw |Fy(z) — F (z)| has a nondegenerate limiting distribution
[12], it follows that for any ¢ > 0, there exists a K such that
(5.7) P{N}|F,(z) — F(z)] <K} 21—«

Hence, with probability greater than 1 — ¢ ¢’ (2, y) is bounded on
[a, b] X lc, d], and it follows that Ciy —» O since Hy(z,y) — H(z, y) almost
surely.

It is not hard to show that E |Cyw| and E |Cisv| converge to 0 uniformly in
N asm — . Consequently, Cuxy and Cisy converge in probability to 0 uniformly
in N as m — o and (5.3) follows.

We can prove (5.4) by showing that

BBulsk  [[  Fa-pI? [1 + Q{V%F—)T

(5.8) 8y X8k —lab]X [e.d]
[¢(1 — )™ dH.
Since, on Sy, , F(1 — F) > K/N, we see that the above integral over the set

Sy, X Sx, is finite. Hence E |Byy| » 0asa,c | © and b, d T .
Furthermore, it is easy to show that

59  EBwl= [ [F0 - P60 - @
RXE~[a,b]X [e.d]
which converges to 0 as a,¢ | —«, b, d T « and (5.5) follows. Analogously, one
can show that Bay = 0,(N?).
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fessor E. L. Lehmann whose guidance and encouragement made this work
possible.
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