A LIMIT THEOREM FOR RANDOM INTERVAL SAMPLING OF A
STOCHASTIC PROCESS

By Ricuarp F. GEBHARD
United Aircraft Corporate Systems Center

1. Introduction and summary. A time series is the realization of a stochastic
process. An estimate of the process average can be taken as the equally weighted
average of observed values taken from the time series. Normally, the sequence
of observations consists of observations taken at equal intervals of time. In
certain applications, it is more appropriate to consider a sequence of observations
spaced by intervals which are randomly and independently chosen from an ex-
ponential distribution.

Let [z, t € T] be a real stochastic process that takes on values in a space X,
T being restricted to the real line. Let @ be a space of points w, Fr = 8(x.,te T)
be the Borel field of w-sets generated by the class of sets of the form [z,(w) ¢ 4]
where t ¢ T and A is any Borel set, P be the probability measure of Fr-sets, o
be the Borel field of X-sets and for every real ¢, z:(-) be a function from Q to X
such that [r.(w) € A] is an Fr-set for A ¢ a. Assume that the process satisfies,
for all t ¢ T, the conditions

(1.1) E{xz}
(1.2) E{(z. — &'} = varz exists and is independent of ¢

E{(z: — Z)(%ey, — T)}

Z exists and is independent of ¢

(13) r(7) var x depends only on 7 and
' r(7) is harmonizable.
A stochastic process satisfying Conditions (1.1) to (1.3) is often referred to as
being stationary in the wide sense [2].

(14) lim,,, 77(7) — 0.

Let {£ be a measurable space of mutually independent random variables £;
identically distributed with probability p of having value 1 and (1 — p) of
having value 0, all independent of the z,-process.

The sample space @ contains all possible realizations of the stochastic process.
Given a scheme for observing the values of z; in time and some form of estimate
of process mean from the observed values, expected values of such an estimate
and of its square can be determined. A measure of the efficiency of the sampling
scheme may be defined as the ratio of the variance of the estimator to that
which would be obtained if the observations taken were independent of each
other. The limit in probability of this measure of sampling efficiency for observa-
tions spaced by exponentially distributed mutually independent intervals is ob-
tained simply in terms of the mean observation rate and the spectral density com-
ponent at zero frequency. The limit theorem considered is a weak version. By
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augmenting Condition (1.4) with relations between sample size N, mean ob-
servation rate \, length of time series 7' and sufficiently rapid decay of »(7) with
7, sharper probability statements can be made.

2. A limit theorem. Let z;(w) be any particular realization of the stochastic
process. Let a sequence of samples of the realization taken at equal intervals of
time (At, 24t, - - - , M At), with time reckoned from an origin ¢ = 0, be designated
by the random sequence A, : (21, 2, - - -, zx). Consider the sequence of mutually
independent random variables A, : (&, &, -+, £ux). Form the sequence A4; :
(&1, &2, -, Emxu). From sequence A3, a point estimate of process mean
is formed as

(21) = {Z: & x,}/N

where N = DI, £ is an integer. Clearly, the expected value of 7 with respect
to z over the Q-space is . Noting that & = £ for all 7 and that the process has
wide-sense stationarity, the variance of # with respect to x over the Q-space
is simply

M
varg () = (varz)/N + 2 (var z) ;')/krl'k+1/N2 with

(2.2) M—k
Yo = 2 Eifiek -
Jj=1
Defining Ry(7#) to be the ratio of varg (##:) to the variance which would be
obtained for mutually uncorrelated z,’s, we obtain

M
(2.3) Ry(h) =1 + 2ki=)lykr1,k+1/N.

This is a measure of the efficiency of the sampling scheme in forming the estimate
of the mean of a stochastic process in the manner described by Equation (2.1).

THEOREM. Given a real stochastic process {x; , t € T} satisfying conditions (1.1)
through (1.4) and a sequence of observations spaced by time intervals chosen ran-
domly and independently from an exponential distribution, then imy..., E¢{ Ry (1)}
— {1 + 2:¢(0)} — 0 in probability where y(0) = [§ r(7) dr and \ is the mean
observation rate.

Proor. Setting the p associated with the &-space equal to AA¢ and allowing
At to approach zero transforms the sequence 4; into the desired sequence of
randomly spaced observations. For fixed N, taking expectations over the &-space
yields ‘

(24) Eim) = (M — k)p’

and further
EdRy(m)} = 1 + (ZMMp)/N)k;lr(kAt)At

(2.5) M
— (22¥/N) kZI r(kAt) (KAL) At.
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M is distributed according to the negative binomial as the conditional distribu-
tion on the hypothesis of N. Invoking the law of large numbers,

(2.6) limy-., (Mp/N — 1) — 0 in probability.

Considering the three terms of (2.5) upon taking limits as N — « and At — 0,
we note that the first term remains intact, the second term reduces to 2\ [¢r(+) dr
and the third term reduces to zero by virtue of Condition (1.4) being satisfied.
By the Wiener-Khintchine Theorem [1], [3], the spectral density of the (z; — %)-
process evaluated at zero frequency, x(0) is equal to f or(r) dr. Since N
and At are not related, the order of taking limits is immaterial.
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