ASYMPTOTIC BEHAVIOR OF BAYES’ ESTIMATES!

By J. FaBius

M athematisch Centrum, Amsterdam

0. Summary. This paper extends some of the results obtained by Freedman
[2]. In Section 1 a class of prior distributions on the space of all substochastic
distributions on the positive integers is given, such that along almost all sample
sequences the corresponding posterior distributions of the expectations of all
bounded functions on the positive integers are asymptotically normal. Section
2 shows that most of Freedman’s results carry over to the case of distributions
on the closed unit interval.

1. The discrete case. Let (2, @) be a measurable space and let {X, ,n = 1} be
a sequence of measurable functions on it. As parameter space we use the space
L of all substochastic distributions A on the positive integers with the usual
weak star topology and we put A = {AeL| D i1 \(3) = 1}, the dense subset
of all proper probability distributions. We assume that there corresponds to
each A £ A a probability Px on @, under which {X,, n = 1} is a sequence of in-
dependent identically distributed random variables with common distribution
\. The symbol = will always denote an element of A and will serve as the ‘“true”
value of the unknown parameter .

Let £ denote the Borel o-field in L, and let x be a probability on £. The
topological carrier C(u) of u is defined to be the smallest compact set of u-
measure 1.

The measure p will serve as prior distribution. The resulting posterior dis-
tribution given {X1(w), -+ , Xa(w)} will be denoted by pn,. , and is defined by

LTI ) o @0
JATI N @)

for B¢ £ and nonvanishing denominator. Clearly, if defined, u,,. is a prob-
ability on £ and pn,. < p. If 7&C(u), then the P.-probability is one that
fino is defined and 7 < .., Where m,,, is the Bayes’ estimate for = given
{X1(w), -, Xa(w)}, defined by

(1.1) pnw(B) =

(12) i) = [ At (M), (i21).
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The following definition is a reformulation of Freedman’s Definition 2.

DeriniTioN 1.1. A probability u on £ s tailfree if and only if there exists an
integer N = 0 and a sequence {0, , k = 1} of independent random variables on
some probability space independent of (L, £, u), suchthat0 = 6, = 1 forallk = 1,
and such that the conditional distribution under p of {(1 — D i~y M(2)) AN + k),
k= 1} given Y11 A(5) on the set {\| D11 MN(3) < 1} coincides a.s. [u] with the
distribution of {6, [i=1 (1 — 6:), k& = 1}.

Freedman’s Theorem 7 implies that under certain regularity conditions on
the tailfree prior distribution u the posterior distribution given {X;(w), ---,
X.(w)} of any finite linear combination of the form WO M a;(N(5) — mn.0(7))
converges a.s. [P,] to the normal distribution with zero mean and variance
S ¥iair(d) — (D am(4)}? as n — . The following theorem specifies a
class of tailfree prior distributions for which the same conclusion holds for in-
finite linear combinations with bounded coefficients.

TaroreM 1.1. Let 7 £ A, and suppose that u is a tailfree prior distribution with
N = 0 and such that for every k = 1, 0, has a beta distribution with parameters
% and sy, , where

DDO0<m=R< »,(kz1);

(i) 0 < s = 71 + Seq1, (B = 1);

(iil) Domer /(1% + &) = oo.

Let {a;, 7 = 1} be a sequence of real numbers with |la|| = supia;| < . Then the
posterior distribution of n'Y ey a:(N(3E) — n,u(2)) given {Xi(w), - -+, Xn(w)}
converges a.s. [P.] to the mormal distribution with zero mean and variance
Seaair) — {2raam(@)}iasn — .

Before proving the theorem we collect in the following lemma a few well-
known facts concerning beta distributions, which we will use without further
comment.

LemMma 1.1. Suppose that, for every n = 1, Y, is a random variable with a beta

dustribution with parameters p, and g, . Then
EY, = pa/(Pn+ @n),  Var Yo = page/ (P + ¢2)*(pn + ga + 1).
If
liMpsw po/ (Pn + @2) =7 and liMpaen/(Pn + @a) = 1 < o,
then £(n*(Y, — EY,)) — N(0, ly(1 — v)) asn — .
Proor or TueoreM 1.1. Since Doy E6; = o by (iii), we have

Eg(1—oi)=11=11(1—14701)=0,

and hence J]im (1 — 6:) = 0 a.s. Consequently, u(A) = 1. Since obviously
C(r) = L, Formula (1.1) defines u,,, a.s. [P,] for all n = 1, and, since u,,. < u
a.s. [P.], it follows that

(1.3) tno(A) =1 as. [P
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For every n = 1, w e, let {6,,,(2), ¢ = 1} be a sequence of independent
random variables on a suitable probability space, such that, for every ¢ = 1,
0n,o(¢) has a beta distribution with parameters r; + ni(w) and s; + m,(w),
where

(1.4) n; = Zl I[x,~=i] , m; = 2; Iix;>q .
Jj= J=
Let
i—1
(1.5) pno(t) = 0,,,0,(1'),‘11 (1 = 6n,u(k)), (n,i =21, weq).
=1

Then the posterior distribution of {\(z), 7 = 1} given {X;(w), - - - , Xn(w)}
coincides a.s. [P,] with the distribution of {p,,.(7), 7 = 1}.

We now compute, for fixed n = 1 and w e Q, the means, variances and co-
variances of the random variables {p,,.(¢), ¢ = 1}, using (1.5), the independence
of the random variables {6,,,(¢), ¢ = 1}, and Lemma 1.1. We have

vy it ne) I s+ m(e) .

. - = R =1).
(16) Tava(i) i+ 81t n RS e T Sk - M) @ )
Putting

v 1+ niw) = s+ mp(w) + 1 .
(17) - mhal®) = it s A nA4 1 repn A+ Se + ma(w) + 17 iz 1),
we obtain
.2_r,-+n,~(w)+1/ R4 . .
Epn.w(i) = TI‘W Wn.w(z)ﬂ'n.w(i)y (1 = 1),
Epn.w(i)Pn,w(j) = W:a,,w(i)"':hw(j% (.7 > = 1)’
and hence by straightforward calculation,
(1.8) Var pn,0(2) = tn,o(2) + u’n.w(i); (z = 1),
(1.9) Covar(pn,o(), pn,u(4)) = 9n,u(4, §) + wa,u(3, 4), G>iz1),
where
. n—rit+st+n—nlw » .\ ,. o
n,0 = nyw niw ) = 1 )
b)) = PP S LI o) )l iz 1)
._7’1+81+’n+1/ o 7 . _ . .
un,w(z) - _Tm Wn,w(z)ﬂ'n,w(’l')(l pn,w(z)); (1 g 1)’
S _ _1 V4 . ’ . . .>
Vno(%,J) = T eI n Tnw(8)Tn,0(F) (G>iz 1),

waoiy ) = EERERE L s = pun), (5> iz ),
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with

i—1
N _ Tl + Spp1 — Sk > .
Pra() ;}1 (l (81 + ma(w) + 1)(rer1 + se1 + ma(w))/’ ¢z 1)

Keeping 7 = 1 fixed and letting n tend to infinity, we have, by the strong law
of large numbers.

Tn,w(i) = 7(5) a.s. |Pa
and, if 7(7) = 0,
ntrn.o(i) = 0 as. [P,

since the same is true for (r; + ni(w))/(r1 + s + n), while the product on the
right side of (1.6) is bounded by 1 and converges to 1 a.s. [P if w(¢) > 0. A
snmlar argument shows that, for ¢ = 1, = ,(¢) — w (%) a.8. [P,] and, if w(z) = 0,
ntrn o(i) — 0 as. [P asn — «. Th1s implies that, for every j > 7 = 1,

(1.10) Mo(f) > 7(2)(1 — w(2)) as. [P,]

and

(1.11) MWn,o(, ) = —w()7(j) as. [Pd

as n — o. Moreover, forj > ¢ = 1,

(1.12) MU, o(7) = 0 a.s. [P

and

(1.13) nMWn,o(7,J) >0 as. [P,]

as n — w, since either Y r; w(k) = 0 so that nr, w(1)Tn.o(¢) and

N ,0(2)7n,0(j) tend to zero as. [P] while 0 < (1 — puo(d)) = 1, or
Zk_nr(k) > 0, in which case
0 = n(l — pno(i))

=, ’n(?“k+1 + Sp41 — Sk) 0

<
= kgl (8k + mk(w) + 1)(7'k+1 + S+ mk(w)) -
Hence, by (1.8) through (1.13), for all ¢ = 1,

(1.14) Var (n”2 Z; a Pn,w(k)) -—>:;1 ai (k) — {kgl a W(k)}2 as. [P,]

as. [P,

asn — oo,
Since ||a|| < oo,

Var (; o p,,,woc)) _ Z 0t a(k) + wn o (k)

(1.15) 1—1
+23 %t D) + .l )
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for all n = 1, w & Q, where both infinite sums on the right converge absolutely.
Comparing (1.7) with (1.6), we see that m»,.(¢) is the Bayes’ estimate for
w(7) given {X;(w), - -, Xa(w)} resulting from the prior distribution we obtain
from u on replacing s; by s, + 1(k = 1). Hence

kle’,:,o,(lc) <1, (n=1weQ).
Hence, by (i) and (ii), forz = 1,

nkii ltn.a(R)] = (1 + R/"),c_ilr’é.w(k)
(1) 4

0

S (L4 B/m)(1 = X #hulk) = 3 x(k) as. [P

=i+1
asn — «, and

[ -1 0 -1
n Z Z [Vn,o(k, 1)| = Z Z ”Z.w(k)”';.w(l)
15 k=l 1=i41 k=1

(1.17)

)

§l=:.2+1 7r;,(,,(l) —>kZ w(k) as. [Pi

—i+1

as n — . In view of (1.3), substitution of @ = 1(k = 1) in (1.15) gives
0 o [—1

2 (tw(k) + tna(k)) + 22 2 (nu(h, ) + wnu(l, 1)) = 0 as. [P

for all n = 1. Since us,o(k) = 0 and wy,o(k, 1) =2 0foralln = 1,1 >k =1,
w & Q, it follows from (1.10), (1.11), (1.16) and (1.17) that

(1.18) nkZ Uno(k) =0 as. [P
=1
and z
) -1
(1.19) nka Wa,o(k, 1) =0 as. [P
=2 k=1

as n — «. Hence (1.15) through (1.19) imply

lim; e limae Var <ni D pn,w(k)) =0 as [P,

k—it1

Thus, by an obvious modification of Slutsky’s theorem (cf. Cramér [1], Section
20.6), our assertion will follow if we can show that, for all ¢ = 1,

7 7 7 2
(120) (233 an(onsl®) = o) > N (0, 3 ab k) {3 ar(i} )
k=1 k=1 k=1
a.s. [P,] as n — . In fact it suffices to show this for all 7 = 1 such that

kZ::i w(k) > 0,
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since the preceding computations imply that
limg« Var (n*Z @ (pn.o(k) — r;,w(k))) =0 as [P
k=1

if > eiw(k) =0.Fori=1, (1.20) follows from Lemma 1.1. Now suppose
that (1.20) holds for some ¢ such that D sy 7(k) > 0. Then, by (1.5),

41

n%k;l af/c(Pn,w(k) - W;,w(k)) = Git1 n%(on.w(i + 1) - Eon.w(i + 1))

(1= o)) 0t 35 (@ — s Bl + D) (o) — 5.0,
which, by the induction hypothesis, has the same limiting distribution, if any, as

s n (0G4 1) = Boan(G + 1)) 3 (k)

k=i+1

+n} z G — w (Pn,w(k) - W:t,w(k))-
= 2 ()
) =141
The two terms in this last expression are independent and, by Lemma 1.1 and
the induction hypothesis, a.s. [P,] asymptotically normal. Hence the sum of
these terms is a.s. [P,] asymptotically normal, and it is a matter of straightfor-
ward calculation to show that the limiting variance is given by (1.20) with ¢
replaced by ¢ + 1. Thus the proof is complete.

It is of some interest to note that Condition (iii), which was used to insure
that u(A) = 1, is in fact equivalent to this.

One might expect the conclusion of Theorem 1.1 to hold for a much wider
class of prior distributions than the one described in the theorem. However, the
method of the proof given here breaks down even in the comparatively simple
case where the 6; have a common distribution with a positive twice continuously
differentiable density on [0, 1].

2. The continuous case. We now turn to the case where the observable
random variables take their values in the closed unit interval I. Thus {X,,
n = 1} is a sequence of measurable functions on (2, @) to I, A is the space of
all probabilities on I, and we assume that there corresponds to each A ¢ A a
probability P, on @, under which {X,, n = 1} is a sequence of independent
identically distributed random variables with common distribution \. As usual,
we use the weak star topology in A, which in this case coincides with the topology
of complete convergence. Since A is compact in this topology, we will have no
need to consider any strictly substochastic measures on I. The Borel o-field in
A will be denoted by £.

LemMma 2.1. Let D be any countable dense subset of I. Then the sets

N\ dye) = (N eA|N0,d) — e = )\[0,d) = N[0,d] = NO,d] + ¢
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with A ¢ A, d ¢ D and ¢ > 0, form a subbase for the topology in A, and £ coincides
with the o-field £p tnduced in A by the functions X — A0, d] (d € D).

Proor. The first assertion follows from the definition of complete convergence.
To prove the second assertion we note that N(\, d, €) ¢ £pforall X e A, d e D,
e > 0, so that £, D £ (cf. Halmos [3], Theorem 51.C). On the other hand,
the functions A — A0, d] (d € D) are easily seen to be upper semicontinuous
and hence £-measurable. Thus £ D £p.

Let u be a probability on £ and let C(u) be its topological carrier, defined
as before. Again, u will serve as prior distribution, but here the definition
of the resulting posterior distribution given {Xi(w), - -+ Xa(w)} is much more
delicate than in the discrete case. We denote the product measurable space
(A X9 &Xa)by (& &), and we define a probability P, on it by

(2.1) P.BXA) = [B Py(A)p(dr), (Aeg, Beg).

We shall assume that @ coincides with the o-field induced in @ by {X,, n = 1}.
Then the right side of (2.1) is defined since the integrand is £-measurable.
For any @ = (A, ) ¢ & and any function £ on ©, we write

Ao =2 &) = &),
and, for any class @ of subsets of A or Q,

C={CXQ|Cee} or {AXC|Cec}

respectively.

DEFINITION 2.1. A function u.,.(B) on (@ X £) to I is a posterior distribution
given {Xl(w)) Tt Xﬂ(w)}7 if and only if

(i) for every w & Q, the function pa,o(:): B — pn,o(B) on £ is a probability,

(ii) for every B & £, the function pn,.(B): & — pn,o(B) on Qis (X1, -+ , Xa}-
measurable,

(iii) for every B € £,

un (B) = P,(BX Q| X, - ,X.) as [Pl

LEMMA 2.2. There always exists a posterior distribution given {Xi(w), -,

X, (w)}.

Proor. By Definition 2.1 the existence of such a posterior distribution is
equivalent to the existence of a mixed conditional distribution relative to b,
of X given {Xi, - -+, X.}, which is guaranteed, since by Lemma 2.1 the o-field
£ is induced by a countable family of random variables on the probability space
(@, @, P,) (cf. Lodve [4], 27.2.A).

Although the preceding lemma asserts the existence, it by no means asserts
uniqueness of posterior distributions. Usually there will be many different poste-
rior distributions, and, for each n = 1 the statistician will have to select a par-

ticular one.
We shall use the following notation. @, denotes the o-field induced in Q@ by
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{Xy, -+, Xa). 2. is the set of all permutations of the integers {1, - -- , n},
and 8, is the o-field of all symmetric sets in @, , i.e., a set A C Q is in @, if
andonly if 4 = [(Xy, -+, X») € 8] for some Borel set S in the closed n-dimen-
sional unit cube, and A ¢ 8, if and only if in addition ¢4 = A forall o e Y., ,
where o (X1, -+, Xa) e 8] = (KXo, -+ +, Xow) € 8]

Lemma 2.3. There always exists a posterior distribution pn,. given {Xi(w), -« -,
Xn(w)} which is tnvariant under all permutations of (X1, ---, Xa}.

Proor. Let B ¢ £, and let g be a bounded Borel function on the n-dimensional
closed unit cube. Then we have, indicating expectations relative to B, by E,,
and setting B = B X ,

EH(IEQ(XI » " Xn)) = E#{Iﬁﬁﬂ(g(fl y T Xﬂ) I ‘é)}
(I/nI)E,‘{Iﬁ”Z2 B9 Koy, Xotw) IE)}

(l/n!)EM(IrLZZ? 9 Xowy, -+, Xomy))
= (l/n')ﬁ,,{P“(E | gn)ﬂg g(Xd(l) A Xﬂ‘ﬂ))}

= BfP.(B|8)9(Xs, -+, X))
Hence '
P (®|@,) = P.(B|§,) as. [P,

for all B ¢ £. Consequently, the argument used in the proof of Lemma 2.2 shows
the existence of a posterior distribution u,,, given {Xi(w), -+, X.(w)} such
that, for every B ¢ £, the function u,,.(B):w — ps,.(B) is $,-measurable.

Next we single out a class of prior distributions which have a special structure,
similar to that of the tailfree prior distributions in the discrete case. First a few
auxiliary definitions and conventions.

DEFINITION 2.2. A tree of partitions is a sequence {T', , s = 0} of finite partitions
of I in nonempty disjoint intervals, such that

(1) To = {1},

(ii) Tsq17s a refinement of Ts(s = 0),

(ili) maxs.r, |J| — 0 as s — «, where |J| denotes the length of the interval J.

If {T,, s = 0} is a tree of partitions, we define T, = {J e T, | J < J'}
(s= 1, J ¢ T.y), and we denote the o-field induced in A by the functions
Ao NI (J eTs), by 3(s = 1). _

DEeFINITION 2.3. A probability u on £ s tatlfree if and only if there exists a tree
of partitions {T's , s = 0} and a family of nonnegative random variables {6, ,s = 1,
J & Ty} on some probability space independent of (A, £, u), such that

(1) ZJSTs,J' 03,-’ = 1) (8 g 1’ J, & T8—1)7

(ii) the families {6,,;, J & T}, (s = 1) are independent,

(iil) for every s = 1, the distribution of {N(J), J ¢ T} under u, coincides with
the distribution of {ps,s, J € Ty}, where poy = Lot sy, , with J, e T,, J, D J
forl =r =<s.
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Just as in the discrete case (cf. Freedman [2], Section 6), it is possible to give
an alternative definition of a description nature, using the notation

ny(w) = ,Z"f Izjen(w) forJclLweQn= 1.

DerFinNiTION 2.4. A probability p on £ s tailfree if and only if there exists a tree
of partitions {Ts, s = 0} and, for every n = 1, a posterior distribution pn,,.(B)
gwen {X1(w), -+, Xa(w)}, such that, for every s = 1, B & 3, , pn,o(B) depends
on weQ only through {n;, J & Ts}.

TraEOREM 2.1. Definitions 2.3 and 2.4 are equivalent.

Proor. Let u be tailfree according to Definition 2.3. For s = 1, we write

Co={z=(z;,JeT,) |2y = O,JeTs;J;xj= 1},
i.e., C, is the simplex in which the random vector {p,,s , J ¢ T} takes its values.
Taking C to be a Borel set in C, , we have then, for every nonnegative integer r
and all s = 1,

PN, JeTy) eC iy, J €Topr)

= B((\NJ),JeT,) e C|fis, JeTs) as. [Pl
and hence, since §, is the o-field induced in & by {7, , J ¢ Us_iT4}, by letting
r — o, we obtain
(23) Bu(MJ), JeTs) eC|8) = Bu((X(J), T e Ts) & C | iy, J £ T).

But this implies that u is tailfree according to Definition 2.4, by virtue of Lemma,
2.3 and the argument used in the proof of Lemma 2.2.

Now let u be tailfree according to Definition 2.4. Then (2.3) and hence also
(2.2) holds for all s = 1, » = 0 and all Borel sets C in C, . Thus, taking r = 1
and putting ¢’ = [(A(J), J ¢ T,) € C], we have for all y & Coy1, 2 & C, such
that z; = ZJ':T..,.:,J Yo, (J e Ty),

15,,[5\ & C; oy = nys , J, & Ts+1]P,‘I_ﬁJ = Nnks, J e Ts]
= PAeC; @y = nes, J e T)PJlw, = nyy, J & Topal.

(2.2)

Hence
fc' 9 RCHLSICY
= N {,',;I;I )\(J )M/J' w(d\) f I;,I )\(J)nz.l} (d)\)/[ H )\(J)"‘J w(dN)

provided the denominator on the right side does not vanish. If it does vanish,

then
IIA)™ = JIMD™ =0 as. [kl

J' eTsq1

Therefore the conditional expectation relative to u of []rer,,, AN(J')™" given
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3, is a.s. [u] proportional to []ser, N(J)™. But this is exactly Definition 2.3,
restated in terms of moments.

If uis a tailfree prior distribution, then (2.3) and Lemma 2.3 assert that there
exists a posterior distribution w,,. satisfying

24) mo(B) = [ TN} u@) /[ {I] A0} u(@n)
B JeT, A JeT,

for s = 1, B ¢ 3,, provided the denominator does not vanish. In the discrete
case, for any 7 ¢ A, (1.1) actually defined u,,,(B) for all B ¢ £ a.s. [P.], pro-
vided 7 &€ C(u). Here the requirement that = ¢ C(u) is not sufficient to insure
that (2.4) determines u,,, on £ a.s. [P,]. If, for any A € A, s = 1, A, denotes the
probability on T, defined by A(J) = A(J) (J € T;), and if m, is the distribu-
tion of A, under g, so that m,(C) = u(C") for any Borel set C in C, , then, for
any s = 1, the right side of (2.4) is well defined a.s. [P,] if =, € C(m,), the
topological carrier of m, in C, . Hence, if 7, ¢ C(m,) for all s = 1, then (2.4)
defines un,o(B) a.s. [P4] for B ¢ Us; 3, , and hence it determines u,,.(B) a.s.
|P,] for B £ £. From now on, we shall always assume that this is the case, and
we shall refer to u,,, determined by (2.4) as “the” posterior distribution given
{X1(w), -, Xa(w)}. ,

In order to give a definition of consistency similar to Freedman’s definition
for the discrete case, we introduce the weak star topology in the space of all
probability measures on £, so that a sequence {u,, n = 1} of such measures
converges to a probability u, on £ and only if

[ 500mm@) — [ 0@

as n — <, simultaneously for all continuous functions f on A.

DeriniTION 2.5. If 1 s a probability on £ and 7 € A, the pair (w, u) ¢s said to
be consistent if and only if, as n — o, a.8. [P;], un,o — 0 , the probability on £
which has all its mass concentrated at .

THEOREM 2.2. Let m ¢ A and let u be a tailfree prior distribution, such that m €
C(ms) for all s = 1. Then (m, u) is conststent.

Proor. We have to show that as n — « a.s. [P],

(25) [ 50 mat@) — s,

simultaneously for all continuous functions f on A. For any ¢ = 0, the function
#:(A) = [ 2°A(dz) is continuous on A by the very definition of the topology
in A. Since the family of functions {¢;, ¢ = 0} separates the points of A and con-
tains the constant function ¢, = 1, the algebra generated by these functions is
dense in the sense of the uniform norm in the space of all continuous functions
on A. Thus it suffices to prove that a.s. [P,]

(26) JATL 600} i) = T )

as n — oo, for all finite K and all nonnegative integers ;, - - - , ix .
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For any fixed K < 0,4, -+ ,ix = 0, and any ¢ > 0, there exists an s, = 0,
such that

(2.7) ]ﬁl ¢ (\) — H {Z AT < ¢,

uniformly for s = so, Ae A, zyeJ (JeT,). For any s = 1, .. restricted
to 3, may be regarded as the posterior distribution of A, glven {ns(w), J e T
resulting from the prior distribution m, on the Borel sets of C, . Thus, applying
Freedman’s results for the finite discrete case (cf. [2], Theorem 1), we obtain,
since m, ¢ C(m,), that a.s. [P,]

8 [[IZ #2O} uma@) T 1T aftni)}

k=1 JeK, k=1 JeT,

as n — oo. Together with (2.7) this gives: for every K < « and all 4;, -- -,
tx = 0, and for any ¢ > 0

f{chzk()\)}u(d?\) '—H¢zk(1r) < 2¢ as. [P,

and hence (2.6) follows if we let ¢ | 0 along a countable sequence, since the
set of K-tuples of nonnegative integers with K finite is countable.

The crucial point of the preceding proof is of course the fact that we can apply
Freedman’s results for the finite discrete case to ., restricted to 3, . This actu-
ally makes it possible to carry over all of Freedman’s results. Thus, under the
a,ssumptlons of Theorem 2.2 and suitable regularity conditions on m, , the poste-
rior distribution of {n*(A(J) — n”'n,(w)), J & T} is a.s. [Px] asymptotically
normal, and

(2.9)  lim supp.«

W (mn,o(J) — ns(w)/n) =0 as. [P
forall J ¢ T, as n — o, where

mruld) = [ ADama(@n), (JeT)

is the usual Bayes’ estimate for 7 (J).

In view of the results of Section 1 one might conjecture that also the posterior
distribution of [,g(z)\(dz) is a.s. [P,] asymptotically normal if ¢ is any con-
tinuous function on I and if u belongs to some special class of tailfree prior dis-
tributions. This however remains an open question.

The author wishes to express his gratitude to Professor D. Blackwell and
Professor D. A. Freedman for their interest and many helpful and challenging
discussions.
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