A BAYESIAN APPROACH TO SOME BEST POPULATION
PROBLEMS!

By IrwiNn GurtMaN AND GEORGE C. Triao
University of Wisconsin

1. Introduction and summary. There have been several papers recently in the
literature devoted to the subject of selecting a ‘“best” population—see for ex-
ample Gupta and Sobel (1962), Guttman (1961) and others. In these papers,
the problem was analyzed from the sampling theory point of view. Except for
some simple cases, this approach frequently leads to the problem of eliminating
nuisance parameters. And, unless rather strong assumptions about certain of
the parameters involved are made, the problem usually becomes intractable.
In this paper, we consider certain best population problems adopting a Bayesian
approach. As is well known, the modern Bayesian approach provides a logical
framework for decision making under uncertainty—Savage (1954), Luce and
Raiffa (1957), ete. Indeed, the adoption of this approach in the best population
problem leads to intuitively satisfactory decision procedures in the presence of
nuisance parameters. .

We consider a collection of % populations IIy, -« -, II;, - -+, IIx , where II;
is distributed with probability density function f(y | 6;) and 6; may be vector-
valued. Associated with the populations is a utility function U(6;). The best
population is defined to be the one with the largest value among the U( 6:). The
Bayesian statistical decision procedure for choosing the best population is of
course dictated by the principle of maximizing expected utility.

Now it usually is the case that the experimenter’s interest focuses on a spe-
cific criterion h; = g(6;) where g is known. For example, g(6;) might simply be
the mean or the reciprocal of the variance of the sth population, 7 = 1, --- , &.
It would then be natural for the experimenter to regard his utility function U
as a function of k;, ie., U = U(hy).

In this paper, we will be mainly concerned with the case in which the cri-
terion g(9) is defined as

ho= g(0) = f:f(y 10) dy,

for specified a; and a, . The interval (a; , az) is sometimes referred to as a toler-
ance interval and the quantity % is called the coverage of this interval. Con-
siderations of tolerance intervals and their coverages frequently arise in en-
gineering application [see for example Bowker and Lieberman (1959), and
Ostle (1963)]. For instance, in the manufacture of a certain type of rivet, the
product will only be of use if the diameter of the head of the rivet measures
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between certain specified limits. Or in the assembling of “stable” amplifiers,
certain of the electronic tubes used in the amplifier must have transconduc-
tances that lie within specified limits. Hence, it is important for the manufac-
turer of these products to know what percentage of the items produced meet
these required specifications. Suppose the manufacturer can choose among k
different processes to produce his product, and suppose further that his utility
of the sth population U(h;) = h; (that is, other considerations such as cost can
be ignored). Naturally, he will wish to choose that process which gives the larg-
est coverage to the specification interval. Of course, we are including the case
that one process be capable of % independent modifications. As an example, in
the manufacture of precision items on a lathe, there may be a choice of different
cutting tools, different coolants, and various speeds of rotation.

Our interest in this type of problem is also motivated by the fact that the
coverage criterion 4 as defined above is usually a complicated function of the
parameter(s) 6. One might thus be led to suspect that it would in general be
rather difficult to obtain optimal decision procedures for choosing the best
population. In fact, one of the present authors—Guttman (1961)—has consi-
dered this problem within the sampling theory framework for the cases that f
takes the form of a normal density and that of an exponential density. It is evi-
dent from this earlier work that one would indeed encounter considerable mathe-
matical difficulties unless certain specific assumptions about the scale parameters
of the populations were made. We shall demonstrate, however, that no such
difficulty exists in the Bayesian formulation and our analysis leads to results
which seem intuitively satisfactory.

In adopting a Bayesian approach, suppose we denote the prior distribution
of the parameters of the % populations under consideration as p(6;, - -, 6).
Then, for given independent samples from these populations, say (y1, -, Vi),
we can obtain the posterior distribution of these parameters. As we are interested
in (hy, ---, It), which are themselves functions of the parameters, we may,
in principle at least, determine their joint posterior distribution. This joint
posterior distribution summarizes all the relevant information about (h;, - -,
h).

We assume throughout this paper that the population parameters (6;, - - -,
6) are locally independent a priori. This means that in the region in which the
likelihood is appreciable, the joint distribution p(6;, ---, 6;) can be written
approximately as the product p;(6;) - -+ px(6:). Such an assumption will be
appropriate in situations where the prior distribution of the parameters is dif-
fuse and gently changing over a wide region—see for example the discussion in
Savage et al. (1962). It is clear that this independence assumption together
with the assumption about the independence of samples implies that the A’s
are locally independent a posteriori and hence can be analyzed individually.

In Sections 2 and 3, we assume that the utility function U(h;) is h; for all ,
and therefore analyze the problem by comparing the expected values of the
posterior distribution of the coverages. The populations involved are assumed to
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be (1) normal and (2) exponential. The posterior distributions and the moments
of the coverages for these populations are derived in Sections 4 and 5 where other
types of utility functions are discussed. In Section 6 we briefly discuss some
different types of best population problems.

2. The case of the normal density. In this and the following section, the cover-
age of a given interval (a; , a;) is taken as the utility function of the experimenter
for a particular population. The decision procedure is then simply to choose as
the best population the one with the largest posterior expectation of the cover-
age.

In this section, we assume that the £ populations are normally distributed.
The coverage criterion A is then

0O b= = [ g ew{ - - W

Consider a sample y = (41, -+, y») taken from one of the populations. The
use of n here denotes the size of a sample from a particular population; but we
hasten to point out that we do not assume that the sample sizes are common.
The likelihood function is

Upyo|y) = o " exp {—-21; Z; (yi — M)2}
(2.1) -
< ¢ " exp {—-21—2 {ns’ + n(g — u)z}}
g
where 7 and s’ are the maximum likelihood estimators of x and ¢” respectively.
Assume that we are in a situation where little is known a priori about the
values of (u, o). In other words, we are saying that the information we have
concerning (u, ¢) comes primarily from the sample. We may then adopt the
approach used by Jeffreys (1948), Savage (1962), and Box and Tiao (1962),
and assume that u and log o are independent and locally uniformly distributed a
priori. That is,

(2:2) p(u) = ki, p(logo) <k or p(s) « o
Using (2.2), the joint posterior distribution of (u, ¢) is:

(2.3) p(p, o |y) = pi(o|8)pa(n|o, )

where

(24a) pi(o]s) = 2T(3(n — 1))} (Gns") " V)™ exp { —ns’/207}
and
(2.4b) po(u | oy 7) = {n/270"}} exp {(—n/26) (g — 1)},

a result first given by Jeffreys (1948) (see page 121). We note from (2.3) that
the adoption of the prior distributions (2.2) amounts to saying that the joint
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posterior distribution of x and log ¢ is proportional to the likelihood function
(2.1), and therefore, can be regarded as ‘“being approximated’” by this likeli-
hood.

We now derive the posterior mean of & for a given population. From (2.3),
the a posteriori expectation of & is:

By = [ [ 4ol o|v) do du
(2.5) o
—_—ff Pri{a < X < as|u o}p(y, o|y) dodu
_000

where we have expressed % in the integrand as the conditional probability that
an observation X from a normal population falls in (a;, a2) for given (u, o),
while p(u, o | ¥) is the posterior distribution of (u, o) in (2.3). It is clear that this
expectation may be written as

(26) Ehly) = [ paly) d,
where
(27) p@ly) = [ [ @ |wo)plu o |y) dod

is the marginal posterior distribution of a “future’” observation X given an
initial sample y. For the normal case then, (2.7) is:

——— 2\ —in
(28) plzly) = I‘(%)I‘i;(%’:)”‘ 1)) [(n + 1)82]—% {1 + ((’Z + 1];)32}

which is seen to be related to the Student-¢ distribution, a result first derived
by Jeffreys (1948) (see page 126). Thus, we have the following remarkably
simple result for the posterior expectation:

(2.9) E(h|y) = Faa(t) — Faua(t)

where F is the cumulative distribution function of the Student-¢ variable with
(n — 1) degrees of freedom and

_n—l*al—g> _<n—1>’<a2—g>
(2.10) tl - <n + 1> < s ] t2 - n + 1 P .
Similarly, if @y = — «, we find that

(2.11) E(h|y) = Faau(ty).

We recall that here we are regarding the utility as the coverage. Thus, once
having computed these posterior expectations for each of the populations, the
experimenter arrives at a decision in accordance with the principle of maximizing
expected utility by simply choosing as the best population the one with the largest
value of these expectations.
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In the case where a; = — o (this will be called the one-sided case), we note
that if the sample sizes are the same for all samples, then this selection proce-
dure is equivalent to deciding that the best population is the one with the largest
value among the £ values of (a: — §)/s.

This is an intuitively pleasing result for the following reason. We are in-
terested in the best population, that is, for this case, the population which has
largest value of the coverage

h =gy o) = f_:z}ﬁexp{—%? (z — ,u)z}dx

(ag—p)lo 1 t2
= _L @y exp {— §} dt.

Since this is a monotone increasing function of the upper limit, say = (a2
— u)/a, the best population is then the one with the largest value of the k+’s.
It is intuitively evident that an estimate of r should be based on (a; — 7)/s
and hence, that the largest value of (a; — §)/s should be indicative of the best
population.

We now turn to sampling from the exponential distribution, employing simi-
lar analysis discussed in this section. ‘

3. The case of the exponential density. The probability density function of an
exponential population with arbitrary origin, say 7, has the form

1) fyln ) = o exp{—(y — n)/d}, y é n
=0 otherw1se,

where g can be regarded as a location parameter and o is, of course, a scale
parameter. The coverage h is

(3.2) h=g(no) = f:zf(y [n, o) dy.

Let a sample y of size n be taken from each of the k£ populations and denote the
smallest observation in a particular sample by y* . The likelihood function is
given by:

o "exp {—a ' 20 (i — )}

o "exp {—o [(n — L)w + n(yx — n)}

ln, o
(3.3) (m,oly)

where w = Y (y: — yx)/(n — 1). It is to be noted that the likelihood func-
tion (3.3) is a monotonic increasing function of 5 in the interval (— o, yx)
and vanishes outside this interval. As in Section 2, we assume that the prior
distributions for the location parameter 5 and log ¢ are locally uniform. The
joint posterior distribution of 9 and ¢ then takes the form:

(3.4) p(n, 0 |y) = pa(a | w)ps(n | o, y*)
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where
_ (1) _
(3.5a) pi(o | w) = &I‘(Tl—)—%_ o " exp {_(na—l)w}’ >0
and
(3.5b) pa(n | o, y*) = (n/s) exp {—(n/c) (y* — n)}, 7 < yx.

As in the preceding section, we base our decision procedure on the posterior
expectation of A,

(3.6) Bt ly) = [ wotn, o |y) dndo,

where R denotes the appropriate range of integration. Proceeding as in Section 2,
we first evaluate the marginal distribution of a future observation X. Using (8.1)
and (3.4), the joint distribution of (X, 4, ¢) is:

p(z,n,0|y) = f(x|n,e)p(noly)
_ n[(n — l)w](n—l) —(n+2)
(3.7) I'(n — 1)
1
e { =Ll — D+ nlye =) + G — )

if o > 0 and n < min (y*, ), and vanishes otherwise. Integrating out  and

o, we have that

p(z|y) = [n/(n + Dwlll + n(yx — z)/(n — Dw]™"  ifz < yx
=[n/(n + Dwll + (x — yx)/(n — Dw] "  ifz> yx.

Thus, the posterior expectation of h is:

(3.8)

(3.9) Bh|y) = f p(z|y) da.

For the one-sided case, that is a; = — « and a; = a, we find that
(310a)  E(h|y) = (n+ 1D + nlyx —a)/(n — Dw] ™™ ifyx>a
and
(3.10b) E(h|y) =1 — (n/(n + 11 + (@ — y»)/(n — Duw] "™
if yx < a.

We note that the above results are again intuitively pleasing. To begin with,
the coverage h for the one-sided case is easily seen to be a monotone nondecreas-
ing function of (@ — %)/o. Hence, the best population is that with the largest

value of (@ — 7)/o. It seems natural, therefore, that a selection procedure for
the best population should be based on (¢ — y*)/w. In the special case that the
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sample sizes are common, this leads us to choose that population which yields
the sample with the largest value of (¢ — y*)/w. The above reasoning is borne
out in expressions (3.10a) and (3.10b) since both are monotonic increasing func-
tions of (a — y*)/w.

In addition, we note that if y* > a, that is, no sample elements fall in the
interval of interest (— o, a), then this is a clear indication that the coverage
should be of a small magnitude. And in fact, examination of (3.10a) shows that
the posterior expectation is of smaller order than n™".

We remark that the two-sided case may be analysed in a similar way to the
above upon using expression (3.8).

4. Posterior distribution of the coverage for normal populations. In this and
the following section, we discuss the more general situation in which the experi-
menter’s utility is some function of A, say U(h). Such a situation may arise for
example when the experimenter wishes to take into consideration other factors
such as cost of sampling, amount of time needed in adjustment of equipment,
etc., in addition to 4 itself. When the experimenter is in such a situation, knowl-
edge of the posterior distribution of 4 may considerably simplify his subsequent
analysis in deciding which is the best population. For example, suppose that
U(h) is nearly linear in a certain region where the posterior distribution say
p(h | y) is sharply concentrated. Then, even though U(k) is not linear for all A
in [0, 1], still the posterior expectation of U (k) can, to a good degree of approxi-
mation, be determined simply by knowing the posterior expectation of .

Or, it may be that in the region in which the posterior distribution of A is
appreciable, U(h) can be very well represented by a polynomial function of h.
So in this case, the expectation of the utility can be evaluated using moments of
h. The distribution of » may also be of interest in its own right. For instance,
referring to the rivet example of Section 1, suppose that the break even point of a
process is accomplished if and only if the proportion of acceptable rivets is
greater than a known percentage, say 100y% . Suppose further that the manu-
facturer has already decided which is the best process, perhaps by the method
of Sections 2 and 3. He may still want to know for this “best”” process the prob-
ability of the coverage h exceeding y. In fact, if this probability is too low, the
manufacturer might wish to consider other alternatives. Similar examples could
be cited.

Now it is well known that the distribution of a bounded variable such as &
is completely determined by its moments. For a normal population, the rth
moment of & is

(4.1) E(h | &) = f_:[o Rp(u, o |y) do du

where h and p(u, o | y) are given respectively in (2.0) and (2.3).
Following the argument of Section 2, (4.1) may be written as

ag ag
(42) E(hTIY)=f f p(@r, -, 2 |y) doy - - da,
ay ay
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where

plo, -+, |y) = f/ I.1(27r0)*

(4.3) 1
- exp {‘2—;2 (2 — M} Py o | ) do di

which is the distribution of r future observations, given an initial sample y.
This distribution was derived by Raiffa and Schlaifer (1961), p. 345 and takes

the form:

p(xly"'7xrl}’)

(4'4) — k(nSZ)’}(n—2)[ns2 + Z Cij(xi — g)(x] — g)]—%(n+r—1)
Y
with
_I‘(%(n-l—r—l))( n)* o, 1
L ) ) A T A e
R T
Cij = P F 1 # .

Making the transformation

n—1\tz; — 7
w= () 2L,
n+1 s

we can write (4.2) as

m 1y = [t 11)]%7

(45) tg 1 Z dij vi Vi —}(n+r—1)
e [1+ } I
t1 t1 n —

1

where # and £ are given in (2.10) and d;; = ((n + 1)/n)ci; .

The rth moment (4.5) is seen to be a multivariate-¢ integral with (n — 1)
degrees of freedom and variance-covariance matrix {di;}”", see Dunnett and
Sobel (1954).

To determine the posterior distribution of & for a normal population, one may
proceed by making a suitable transformation in p(y, o | y). In what follows we
illustrate the determination of the posterior distribution of & for the one-sided

case.
For a normal population, the joint posterior distribution of u and ¢ is given

by (2.3). We now make the transformation

v = o.
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The absolute value of the Jacobian of the transformation is
(4.7) [J] = (27)% exp {(az — u)*/26%.
Using (4.6) and (4.7), and upon integrating over the range of », we find after
some simplification that the (marginal) posterior distribution of & is:

(4.8) p(hl|y) =k f:o T =) 1_ ) (t —e)" e at

where

b = 2'T(n — 1) exp {—im[n/(s + b°) — 1]}
B 20 T(3(n — 1))(1 + b?/s2)i»-D

m=3&"(h),b=¢ —a and c¢=nlbm/(s*+ b))

The integral in (4.8) is known as the Hhk,2(c) function, the properties and uses
of which are discussed in an extensive introduction by R. A. Fisher to the 1931
printing of the reports of the British Association for the Advancement of Science
(see Greenwood and Hartley, (1962) p. 38). Thus, making use of both a table
of the Hh,_(c) function, and those standard normal tables which would permit
accurate inverse interpolation to obtain the value of m, one would be able to

calculate the density p(h|y).

6. Posterior distribution of the coverage for exponential populations. In this
section we determine the moments and the posterior distribution of the coverage
h when sampling from the exponential population and when:

(i) b = [°_f(y|n, ¢) dy where f is given in (3.1), and

(ii) y* < a with y* denoting the smallest observation.

Paralleling the development in the previous section, and using the posterior
distribution of (%, ¢) in (3.4), the rth moment of & is

(51)  E(W|y) = l;o (;) (-1)’ (;?ﬁ) {1 + %“—:IL);)}_("—D.

For the posterior distribution of 4, we first note that when yx is less than “a”,
the coverage h is 1 — exp (—(a — 7)/s). We now make the transformation

(5.2) h=g(no)=1—exp{—(a—n)/d, v=o

The absolute value of the Jacobian of the transformation is |J| = v/(1 — &).
We find that the (marginal) posterior distribution of % is:

n—1 )
(53) plily) = 2 =D gy [7 e exp{—;—z - o} a
where a(h) = —(a — y*)/log (1 — h).

We note that for § — a > 0, the integral part of (5.3) is of course related to
the incomplete gamma integral, as may be seen by making the transformation
z = 1/v. For § — a < 0, the integral is no longer related to the incomplete
gamma, integral. However, if we again make the transformation 2 = 1/v, the
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resulting form for the integral together with the moderating factor (1 — h)"!
will insure the convergence of the density p(h | y) for all values of .

6. Some other best population problems. In previous sections, we have dis-
cussed the case where the criterion function & is the coverage of a certain given
interval. However, as explained in Section 1, the criterion function & = ¢(8)
may be chosen to suit the particular interest of the experimenter. In fact, as we
have seen, the coverage criterion is a rather complicated function of the popu-
lation parameters. In this section, we turn to some other best population prob-
lems, where the definition of “best” used, involves criterions which are simple
functions of either a location or a scale parameter of the population distribution.
Also, we restrict ourselves to the case where the utility can be taken as the
criterion itself.

We will first discuss the case where the & populations are normally distributed
and the best population is defined to be the one with the largest mean. This
problem has been considered from the sampling theory point of view by Bech-
hofer (1954). We will then discuss the same situation but where the best popu-
lation is now taken to be the one with the smallest variance. Here again, for
consideration of this problem from the sampling theory point of view, we refer
the reader to Gupta and Sobel (1962). We will then turn to the exponential
population and discuss this problem using similar criterions.

For normal populations, first suppose that » = g(u, ¢) = u. From the joint
posterior distribution of (u, o) given in (2.3), it is known (Jeffreys, 1948) that
the marginal posterior distribution of u is

N e =

where we again note that 7 and s are the maximum likelihood estimators of u
and o, respectively. From (6.1), it is easy to see that the quantity ¢, = (n —
1)¥(x — §)/s has the Student-¢ distribution with n — 1 degrees of freedom.

Clearly, the mean of the distribution in (6.1) is #. Since we have assumed
that the experimenter’s utility function is & itself, he will make the decision that
the best population is the one with the largest sample mean.

Now consider the normal case with & = g(u, ¢) = 1/0. Again from expres-
sion (2.3), we find that the posterior distribution of the quantity (ns)/s follows
the xn—1 distribution. It is then easy to verify that the posterior expectation of
his:

(6.2) E(h|y) = 2'T(3n)/n'T(3(n — 1))s.

Turning now to exponential populations—see expression (3.1), we now dis-
cuss the situation when b = ¢(9, ¢) = 4. This situation may arise, for example,
in the manufacture of certain electronic components. In some instances, the
life times of these parts minus a required minimum standard life time follow an
exponential population, with a location parameter » and a scale parameter o.
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When & such processes are available, then clearly the one with the largest (mini-
mum life time) 5 is desired. On the usual assumptions for the prior distributions
of 7 and c—see Section 3, it is easy to see that the joint posterior distribution of
7 and o takes the form given in expression (3.4). Integrating out o, the (margi-
nal) posterior distribution of 7 is

(6.3) p(nly) = nw {1 + n(yx — 1)/(n — Lyw}™", 7 < y*

where y* and w are as defined in Section 3. Thus, we find that the posterior
mean is

(6.4) Eh|y) =y — (n — L)w/n(n — 2).

We note that the quantity V = n(y*x — 5)/(n — 1)w is distributed as a beta
variable of the second kind with parameters (2, n — 2).

Lastly, for exponential populations, suppose now h = g(n, ¢) = 1/0. We
have from (3.5a) that the posterior distribution of (n — 1)w/c is a gamma
variable with parameter (n — 1). Hence the posterior mean of 4 is

(6.5) E(h|y) = 1/w.
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