CONFIDENCE REGION FOR A LINEAR RELATION
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1. Summary. The analysis of a linear relation is considered, when there are
replications and all the variables involved are subject to errors or fluctuations.
A test based on the F distribution is derived for testing the hypothesis that the
unknown relation is a given linear relation. From this test a joint confidence
region for the coefficients of the linear relation is derived. A confidence region
for the linear relation is then defined as the set of all points which belong to
hyperplanes not rejected by the test. The corresponding confidence coefficient
is not known exactly, but it is known to be greater than a previously chosen P.
In the non-degenerate case, the confidence region is a hyperboloid centered at
the centroid of the given points, and it has the property that a hyperplane is
not rejected by the test if and only if it is entirely contained in it. This confi-
dence region estimation procedure is compatible with the maximum likelihood
estimation of a linear relation, in the sense that the maximum likelihood hyper-
plane is contained in the confidence region for the linear relation, if this region
is not empty.

2. Introduction. The problem of finding confidence regions for the parameters
of a linear relation when all the variables are subject to error or fluctuations has
been considered recently by several authors. Thus, under the usual normal theory
assumptions, confidence regions have been derived by Wald (1940) and Bartleti
(1949) using the method of grouping; by Creasy (1956) assuming the ratio of
error variances is known a priori; and by Geary (1949) and Halperin (1961)
using instrumental variables or a priori weights. Moreover, confidence intervals
based on non-parametric methods have been given by Hemelrijk (1949) and
Theil (1950).

In experimental work it is usually possible to replicate the observations.
Replicated experiments can be analyzed without great difficulties, because we
can easily derive from them valid estimates of the experimental error. However,
none of the above mentioned authors considered replicated experiments in a
systematic manner; rather, they considered the models with replication only as
special cases of more general models. If no a priori knowledge about the ratio
of the error variances is assumed, the confidence regions obtained in this way
for the model with replications, using normal theory methods, are confidence
regions based on a priori weights. Clearly confidence regions based on a priori
weights are not the ideal confidence regions which we should try to find. More-
over, such confidence region procedures are not compatible with the maximum
likelihood estimator of the linear relation, in the sense that in particular cases
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the maximum likelihood estimate may be outside the corresponding confidence
region.

3. Notation and model. Let
(3.1) a+Br + - +B82° =0

be an unknown linear relation among the variables z', - -, z®. Superscripts
will, in general, be indexing symbols, not powers, in this paper. We shall assume
that the observed values do not satisfy (3.1) because all of them are subject
to errors or fluctuations. In matrix notation the linear relation is simply

(3.2) a+ 8x =0,
where 8 is the row vector (8, --- , B,) and, if the prime over a matrix denotes
transposition, x is the column vector (z', ---, 2?)’. Assume that we have ¢

treatments corresponding to ¢ points & on the hyperplane (3.2), and that, for
the treatment ¢ we have n; observed points

(3.3) xij=§i+€ij (i:]_’...’q;j=1’...’n..)

where &; is a column vector of p components which satisfies the linear relation
(3.2), and the errors or fluctuations e;; are column vectors with » components
which are independent and have a normal distribution with zero mean and
covariance matrix =. Let n = D_ n; be the total number of observed vectors

and let
(3.4) X = nit Zl Xqj
po

be the average of all the observed vectors corresponding to the treatment 7.
Then the sample covariance matrix is

(3.5) S = (n —_ q)_l ; (Xij - Xi) (Xij ol X.;)I.

In this paper we shall assume also that » — ¢ = p. This last assumption
assures us that S is, with probability 1, a positive definite matrix and has the
Wishart distribution with mean value = and v = n — ¢ degrees of freedom.

4. Joint confidence region for the coefficients o, 8. Consider the hypoth-
esis H: & = A, 8 = B, where A is a number and B is a row vector with ¢ com-
ponents. Under the hypothesis H, the true hyperplane is the hyperplane

(4.1) 4 4+ Bx = 0.
Consider the distances
(4.2) d: = (A + Bx:)/|B|

from the points x: to the hyperplane (4.1). Obviously, under the hypothesis
H, the random variables d; are independently and normally distributed with
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mean values equal to zero. The variance of d; is equal to

(4.3) or = o*/n,
where
(4.4) o' = B=B'/|B|’.

An unbiased estimator of ¢* is obviously
(4.5) s = BSB'/|IB|’,

where S is the sample covariance matrix (3.5). Note that S = v > z32;,
where the z; are v column vectors, independently and normally distributed,
with mean value 0 and covariance matrix X. Hence, s° = » ' ) v7, where
v; = Bz;/||B|| are independent random variables, normally distributed with
mean value 0 and variance o°. If » < p, there are always non null vectors B
such that Bz; = 0 for all §, and for such vectors B, we have s* = 0, which im-
plies that S is a singular matrix. In what follows, therefore, we shall assume that
» = p, in which case, with probability 1, S is a positive definite matrix and s* > 0.
Note that, if ¢ = p and n; = 2 for every 7, the condition » = p is satisfied.

Clearly, the quotient ¢ * ) n.di/s” has then an F-distribution with ¢ and »
degrees of freedom, and an F-test of the hypothesis H can be derived in the
usual way. More precisely, we shall not reject the hypothesis H, at the level of
significance P, if

(4.6) > n(A + Bx:)’/BSB’ < ¢F,

where F is the (1 — P)-point of the F-distribution with ¢ and » degrees of
freedom.

The set of values of A, B which satisfy this inequality is a confidence region
for the coefficients «, 3 with confidence coefficient P. Since the left hand member
of (4.6) is obtained from the expression (3.8) of [8] by substitution of S for
=, it follows that the values of A, B which minimize the left hand member of
(4.6) are the maximum likelihood estimates &, §. Therefore, the confidence
region for a, B is compatible with the maximum likelihood estimates &, § in the
sense that if it is not empty, it contains them. The sum of products for treat-
ments matrix is

(4.7) (SP) = > mi(x: — x.)(x: — x.)',

where x. is the centroid of the points x; with weights n; . Then, the condition
(4.6) can be written also as

(4.8) (4 + Bx.)’ + BMB' =< 0,
where
(4.9) M = [(SP) — ¢FS]/n.

It is clear that (4.6) or, equivalently (4.8), do not provide limits for the
p + 1 coefficients of the linear relation (3.1) but only for the ratios of p of them
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with respect to a (p -+ 1)th; it is also clear that this is all one really requires.
Similarly, as was pointed out in [8], the maximum likelihood estimators &, §
are also determined up to a scale factor.

6. Confidence region for a linear relation. We shall say that a re-
gion in the p-dimensional space is a confidence region for a linear relation,
with confidence coefficient greater than P, if it covers the true hyperplane with
a probability greater than P. Let R be the set of all points x in p-dimensional
space which belong to hyperplanes which are not rejected by the F-test at a
given level of significance 1 — P. Clearly R is a confidence region for the linear
relation with confidence coefficient greater than P, because it covers the true
hyperplane each time that it is not rejected by the F-test, which happens with
probability P, but it may cover also the true hyperplane even if it is rejected
by the F-test, as will be seen more clearly later. Moreover, since the maximum
likelihood coefficients minimize the left hand member of (4.6), it follows that,
if the confidence region is not empty, then it contains the maximum likelihood
hyperplane.

Turorem 1. (i) If the proper values of the matriz M are all positive, then the
confidence region R vs empty.

(ii) If all the proper values of M are positive with the only exception of one which
ts equal to zero, or one which is negative, then the confidence region is, respectively,
the maxvmum likelihood hyperplane or the hyperboloid

(5.1) x—x)M'x—x)+1=0.

(iii) If two or more of the proper values of M are negative or equal to zero, then

the confidence region s all the space.
Proor. Let x ¢ R, and let 4, B be solutions of (4.8) such that A + Bx = 0.

By substitution of A = —Bx in (4.8) we get
(5.2) BIM+ (x—x)(x—x) B =0

The set R is therefore the set of all points x such that the matrix M + (x —
x.)(x — x.) is not a positive definite matrix. Since M is a real, symmetric
matrix, there is an orthogonal matrix U such that UMU’ is a diagonal matrix,
whose diagonal elements are the proper values m;, ---, m, of M. Consider
the change of variables

y =U(x —x).

Then, in the new varlables, the region R is the set of all points y such that
the matrix UMU’ + yy’ is not a posﬂ;lve definite matrix. Equivalently, R is

the set of all points y = (41, - -+, y,)’ such that the determinant
I —n =y - =y,
pafnmor 0o

Yp 0 0 cee My — A
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vanishes for some A < 0. If we develop this determinant by the first row, we
have

D= (me—N) - (mp—Npi+ -
+ (m — ) - (Mpy — Ny + (Mg = N) -+ (mp — N).

Assume that the m: have been numbered in such a way that my = - -+ Z m,p.
We have several cases to consider.

(a) Assume that all the proper values are positive. Then, for any point y,
and for any A < 0, we have D > 0. Consequently, the region R is empty.

(b) Consider the case m, = 0, mp—1 > 0. Then, if A <0, we have mp, — A > 0
for all h and therefore there is no solution y. If A = 0, then we have simply
D = m --- mp1y> , and therefore the region is the hyperplane y, = 0.

(c) Consider the case m, < mpy = 0. If mp = My, the equation D = 0
with N = m, = m,_ is verified for any y, and therefore the region is all the
space. If, on the contrary, m, < m,_, for any A such that m, < N < mp_1,
the differences m, — A will all be different from zero and the equation D = 0
can be written as

(5.3)

2

2 2
Y1 Yp-1 - Yo —
(54) ml_)\+ +'m,p—1—)\+mp—)\+1 0.

When \ goes from m, to m,_;, the first member of this equation goes from
— to 4o if y,1 and y, are both different from zero. Hence, for any y with
non-vanishing components y,1 , ¥, there is a root in the interval m, < X < mp,
and therefore the region R contains all points y which do not lie on the hyper-
planes y,1 = 0, y, = 0. Consider now a point y of the hyperplane y, = 0. The
expression (5.3) vanishes then for A = m,, and therefore the hyperplane y, = 0
belongs also to the region R. Similarly, it can be shown that the hyperplane
Yp1 = 0 also belongs to the region R. Therefore, in the case m, < mp1 = 0,
the region R is all the space.

(d) Finally, consider the remaining case: mp, < 0 and all the other proper
values m; greater than zero. If , = 0, then the expression (5.3) vanishes for
A = m, , and therefore the hyperplane y, = 0 is contained in R. Consider now
the case y, # 0. Then, for A # m,; A < 0, the equation D = 0 can be written
as in (5.4). The first member of this equation is, in the interval —o = A < m,,
an increasing function of A which goes from 1 to -+, and therefore in that
interval there are no roots. In the interval m, < X = 0, the function goes from
— ® to the value corresponding to A = 0. A necessary and sufficient condition
in order that there is a root in this interval is that

vm 4+ o 4+ yr/mp+1 2 0.

This is a hyperboloid, whose center is at the origin, and whose boundary has
two sheets which are symmetric with respect to the hyperplane y, = 0, which
is totally contained in it. In matrix notation the above inequality may be written



CONFIDENCE REGION FOR A LINEAR RELATION 785

yUM7'Uy +1 =0,

and going back to the old variables, (5.1) follows immediately.

THEOREM 2. If the confidence region for the linear relation is the hyperboloid
(5.1), then a necessary and sufficient condition in order that a hyperplane be re-
Jected by the F-test, is that 7t is not covered by the region (5.1).

ProorF. According to the definition of the region R, the hyperboloid is the
region covered by all hyperplanes which are not rejected by the test. Conversely,
assume now that the hyperplane A + Bx = 0 is entirely contained in (5.1).
Let d be the minimum distance from the boundary of (5.1) to the hyperplane
A + Bx = 0, measured in the direction perpendicular to the hyperplane. Let xo
be the point on the boundary of (5.1) whose distance to that hyperplane is
precisely d. Then the normal to the boundary of R at x, is perpendicular to
A + Bx = 0, and therefore

(5.5) B = p(x, — x.)’ M.,
Since x, is on the boundary of R, we have
p B(xo—x)+1=0.
Multiplying (5.5) on the right by MB’ we have
BMB' = p(x, — x.)'B’,
and, eliminating p from the last two equations,
B(xo — x.)I’ + BMB' = 0.

Since x, is the point on the boundary of R whose distance from the hyperplane
A + Bx = 0 is the minimum distance d from that boundary to the hyperplane,
and x. is the center of the hyperboloid, we have

(A +Bx)" £ B(x — x)J

and therefore, (4.8) holds, that is, the hyperplane A + Bx = 0 is not rejected
by the test.

THEOREM 3.

(i) If the proper values of ST'(SP)S™* are all greater than qF, then the confi-
dence region for the linear relation is empty.

(ii) If the proper values of S™'(SP)S™ are all greater than qF, with the only
exception of one which vs equal to qF, or one which is smaller than gF, then the
confidence region is, respectively, the maximum likelihood hyperplane or the hyper-
boloid (5.1).

(iii) If two or more of the proper values of S—%( SP)S™* are equal or smaller
than gF, then the confidence region is all the space.

Proor. If I, - - -, I, are the proper values of the matrix S*(SP)S™*, then
the proper values of

M* = §7'MS™ = [STH(SP)S™! — ¢FI)/n
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are, obviously,
(5.6) mi = (I, — qF)/n.

Since, by the law of inertia (see for instance [3], p. 297), the matrices M and
M* have the same number of positive and negative proper values, the theorem
follows immediately from (5.6) and the previous theorem.

RemARK. Consider the new random vectors x; = S7%, . The centroid of the
points x; with weights n; is obviously equal to x* = S7’x., and the central
moment matrix of the system of points x; with weights n. is

Som(xf — xH(F —x¥) = sTH(sP)sTh

The points x; converge in probability to the points £ = X%, which lie
on the hyperplane o + 8%*x = 0. If the points & are well spread over this
hyperplane, that is, if they do not cluster around a flat of smaller dimension,
(a necessary condition for this is that ¢ = p) then the ellipsoid of inertia of the
points x; with weights n; will usually have one small axis and p — 1 large ones,
that is, the matrix ST'(SP)S™ will have one small proper value and p — 1
large ones, so that, for usual values of F, there will be one proper value smaller
than ¢F and p — 1 proper values greater than it, and, by the last theorem, the
confidence region will be a hyperboloid.

6. Homogeneous linear relation. We shall consider now the homogeneous
case in which it is known that the true hyperplane goes through the origin;
then ¢ = 0 and the linear relation is simply gx = 0. Consider the hypothesis
H that 3 = B, i.e., that the linear relation is Bx = 0, where B is a given row
vector. A test of this hypothesis can be derived from (4.6) by simply replacing
A by 0. In other words, we shall not reject the hypothesis H if

(6.1) B(SP)B'/BSB’ < ¢F,

where we define now the sums of products for treatments matrix (SP) not by
(4.7) but simply by

(6.2) (SP) = > nxx;.

The confidence region for the linear relation will be the set of all points x
which belong to hyperplanes not rejected by the test. Then, x will belong to
the confidence region if the minimum of BMB’ for all B’s subject to the condi-

tions

(6.3) Bx =0

(6.4) BB =1

is negative. By differentiation we have, if A and u are Lagrange multipliers,
(6.5) B(M — \I) + ux’ = 0.

If we consider (6.3) and (6.5) as a linear system of equations in the vari-



CONFIDENCE REGION FOR A LINEAR RELATION 787

ables B, u the condition for compatibility is that

0 x

x M-I
If we multiply (6.5) on the right by B’, we have A = BMB’. Therefore, the

region R is the set of all points x such that (6.6) has a non-positive root . Let

U be, as before, an orthogonal matrix such that UMU’ is a diagonal matrix.

Consider the change of variables y = Ux. Then, if m;, - - - , m, are the proper
values of M, the region R is the set of all points y for which the determinant

(6.6)

0 Y Ya e Y»
Y1 M — N 0
Yo 0 Mg — N - 0
Yp 0 0 cee My — A
vanishes for some non-positive A. Results similar to those of the previous sec-

tion can then be derived using the same methods, the only difference being that
instead of a hyperboloid (5.1) we have now a hypercone

(6.7) M 7%’ = 0.

Thus, for instance, the following theorem holds.

THEOREM.
(i) If the proper values ly, --- , l, of the matriz S™*(SP)S™ are all greater

than qF, then the confidence region is empty.

(i) If the proper values I, are all greater than qF, with the only exception of
one which is equal to or smaller than gF, the confidence region 1s, respectively, the
maximum likelihood hyperplane or the hypercone (6.7).

(iii) If two or more of the proper values I, are equal to or smaller than qF, then

the confidence region is all the space.
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