SIMULTANEOUS CONFIDENCE INTERVALS FOR CONTRASTS AMONG
MULTINOMIAL POPULATIONS!

By Leo A. GoopMAN
Unaversity of Chicago

1. Introduction and summary. In the present article, we shall present two
different methods for obtaining simultaneous confidence intervals for judging
contrasts among multinomial populations, and we shall compare the intervals
obtained by these methods with the simultaneous confidence intervals obtained
earlier by Gold [5] for all linear functions of multinomial probabilities. One of
the methods presented herein is particularly suited to the situation where all
contrasts among, say, I multinomial populations may be of interest, where each
population consists of, say, J classes. The other method presented herein is
suited to certain situations where a specific set of contrasts among these popu-
lations is of interest; e.g., where, for each of the 11(I — 1) pairs of populations,
the J contrasts between the corresponding probabilities associated with the
two populations in the pair are of interest. For judging all contrasts among
the I multinomial populations, the confidence intervals obtained with the first
method presented herein have the desirable property that they are shorter
than the corresponding intervals obtained with the method presented by Gold
[5]. For judging the 3I(I — 1)J pair-wise contrasts between the multinomial
populations, the confidence intervals obtained with the second method pre-
sented herein have the desirable property that they are shorter than the
corresponding intervals obtained with the first method, for the usual probability
levels.

In the present paper we shall also solve a problem first mentioned by Gold [5]
but left unsolved in the earlier article. Gold took note of the fact that, in the
usual analysis of variance context, the simultaneous confidence intervals ob-
tained by Scheffé [14] and by Tukey [15] for judging contrasts among the pa-
rameters have the desirable property that rejection of the homogeneity hy-
pothesis by the usual F or Studentized range test implies the existence of at
least one relevant contrast for which the corresponding confidence interval does
not cover zero (see, for example, [14], pp. 66-77). She also noted that a result
analogous to the Scheffé-Tukey result had not yet been obtained for her simul-
taneous confidence intervals, and she stated that the difficulty seemed to be that
the homogeneity test is based on a »’ statistic with (I — 1)(J — 1) degrees of
freedom in the case where I multinomial populations, each consisting of J
classes, are tested for homogeneity, whereas her confidence intervals were based
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upon the x* distribution with I(J — 1) degrees of freedom. In the present article,
one of the methods we shall present for obtaining simultaneous confidence inter-
vals for the contrasts among the I multinomial populations will be based upon
the %’ distribution with (I — 1)(J — 1) degrees of freedom, and these intervals
will have desirable properties somewhat analogous to those enjoyed in the
analysis of variance by the Scheffé confidence intervals and by the Tukey
confidence intervals. A modification of the usual test of the null hypothesis that
the I multinomial populations are homogeneous will be presented herein, and
we shall show that this modified test will lead to rejection of the null hypothesis
if and only if there is at least one contrast, of the kind presented herein, for
which the relevant confidence interval does not cover zero.

2. Contrasts among multinomial populations. Let II;; be the probability that
an observation in the ¢th multinomial population (+ = 1, 2, ---, I') will fall in
the jth class (j = 1,2, -+, J). Let D_j=1 II; = 1 for all <. We define a contrast
among the I multinomial populations to be a linear function of the II;,
>iicidli;, where the c;; are known constants subject to the condition that
> I 1ei; = 0 for all j. For example, the (I — 1)(J — 1) functions Ay = II;
— I (¢=2,8,--+,1;7 =2,3, --+,J) are contrasts among the I multinomial
populations. Note that the contrast II; — IIy can be written as — > 7 Ay ;
i.e., this contrast is a linear function of the A;;. More generally, all contrasts
are linear functions of the (I — 1)(J — 1) contrasts A;; (¢ = 2,3, ---, I;j =
2,3, --+,J), and all linear functions of these A;; are also contrasts.

In the special case where c; = ca for all 4, j, then .. jciIl; =
Y s Y j=a(cij — ¢€a)Ay = 0. For simplicity, we shall exclude this case from
our consideration and shall assume throughout that the c¢; are subject to the
condition that c¢; ¥ c; for some 7, 7. In other words, we shall assume herein
that the (I — 1)(J — 1) X 1 vector of constants ¢;; — ca (¢ = 2,3, --+, I;
j= 2,38, -+,J), the coefficients of the A;;, is a non-zero vector. '

Let n; be the number of observations from the sth multinomial population,
and let n;; denote the number of observations in the jth class in this population.
Then D _j—1ns; = n; . Denoting n,;/n; by pi; , the maximum likelihood estimators
of II; and A;; are pi; and d;; , respectively, where di; = p;; — p1; . Denoting the
contrast Y ; ¢:;1; by 6, the maximum likelihood estimator of 8is § = D i iCiiDis -
The variance of Pii is II;;(1 — II;)/n; = vi;, the variance of d;is vi; + »; , and
the variance of § is

4 (0) = ZI—I n; { -:J"l Cwnu - [ _u—l Cij. u] }

These three variances can be estimated consistently by »:;(1 — pi)/n: = ¢4,
gii + 91, and

I J J
S(9) = ; nzl[; Cipis — (; cipii)’l,

respectively. In presenting asymptotic results, we assume that n.,/n — p; > 0
as ) i-1M; = n — o, When the ¢;; have been specified a prior, it is well known
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that as n — o the probability will approach 1 — « that
§— 8(0)Z. <6 <6+ 8(6)Z,

here Z, is the 100(1 — %a)th percentile of the unit normal distribution. When
the c¢,;; have not been specified a priori, the following theorem can be applied:

THEOREM 1. Asn — o, the probability will approach 1 — a that simultaneously
for all functions 0

6 — SO)L =0 =<6+ SH)L.

Here the functions 6 are subject to the condition that ¥ i-jcy = 0 for all j,
and L is the positive square root of the 100(1 — a)th percentile of the x* distri-
bution with (I — 1)(J — 1) degrees of freedom.

Proor. The variance of d;; was given earlier herein, and the covariance between
ds; and dyi can be calculated from

C(dij, dw) = —Hllgni’ — Mdlung, for h = ¢and j # k,
= —II,IIygn; ", forh % 7and j =k,
= Iy(1 — Iy)n:, forh # 7and j = k.

These variances and covariances can be estimated consistently by replacing the
II;; in the formulae by the correspondng p;;. Writing the (I — 1)(J — 1)
contrasts Ay; (¢ = 2,3, -+, [;5=2,3,---,J)asthe (I — 1)(J — 1) X 1
column vector A and the corresponding (I — 1)(J — 1) estimated contrasts
d;j as the (I — 1)(J — 1) X 1 column vector d, then the probability will ap-
proach 1 — a that (A — d)’B™"(A — d) < L? where B is theestimated variance-
covariance matrix of d. In other words, the probability will approach 1 — « that
the true parameter point A lies inside the ellipsoid (x — d)’'B™(x — d) = L?
where x denotes any point in the (I — 1)(J — 1)-dimensional space of possible
values of A. But A lies inside this ellipsoid if and only if for every non-zero
vector hin (I — 1)(J — 1)-dimensional space |h'(A — d)| < (W’ 'h)* where
M = L7°B™" (see [14], p. 69). Hence, the probability will approach 1 — « that
for all h, |h'(A — d)| < L(h'Bh)’. Note that h'Bh is the estimated variance of
h'd. Since h'A is a contrast among the multinomial populations, and all contrasts
among the multinomial populations are of this form, the probability will approach
1 — « that simultaneously for all contrasts 6, |§ — 8] < LS(4). Q.E.D.

The confidence intervals obtained using this theorem are shorter than the
corresponding confidence intervals obtained using the method presented by
Gold [5], since in the former method L is based upon the percentiles of the x’
distribution with (I — 1)(J — 1) degrees of freedom, whereas in the latter
method the corresponding quantity is based upon the percentiles of the x’
distribution with I(J — 1) degrees of freedom. For judging all contrasts among
the multinomial populations, the additional (/' — 1) degrees of freedom in the
latter method increase the length of the corresponding confidence intervals and
are unnecessary. If in addition to judging all contrasts we also wish to obtain
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simultaneous confidence intervals for all linear functions of the multinomial
probabilities (where the ¢;; are not necessarily subject to the condition that
i ci;j = 0 for all j), then the additional (J — 1) degrees of freedom are
needed. '

The confidence intervals obtained with Theorem 1 are suited to the case
where all contrasts among the I multinomial populations may be of interest.
However, if only a specified subset of these contrasts is of interest, it will
sometimes be possible to determine simultaneous confidence intervals pertaining
to this subset which are shorter than the corresponding intervals obtained by
the methods presented above.

For example, in judging the contrasts between I multinomial populations, each
consisting of J classes, interest may be restricted to the £I(I — 1)J contrasts

Aijr, = Iy — T4 (E=hj=12---,J)
or more generally interest may be restricted to a specified set of, say, G contrasts,
01,0, -+, 0s, and in this case simultaneous confidence intervals can be based

upon the fact that simultaneously for the G contrasts
limy.e Pl‘{éi - S(é,)Z, = é,‘ = éi + S(é,)Z, y fors = 1, 2, Tty G} 21—«

where Z, is the 100(1 — B;)th percentile of the unit normal distribution, and
> 918 = %a. (See [16], p. 291 for related results.) If we take Z; = Z; = --- =
Ze¢ = Z, where Z is the 100(1 — B)th percentile of the unit normal distribution
and 8 = a/(2@), then the confidence intervals obtained thereby will be shorter
than the corresponding confidence intervals obtained using Theorem 1 herein if
and only if

(1) Z £ L,

where L is the 100(1 — «)th percentile of the x distribution with (I — 1)(J — 1)
degrees of freedom. For a given value of &, whether or not this Condition (1) is
satisfied will depend upon the relative magnitudes of G and (I — 1)(J — 1).

Let us for the moment consider the special case where J = 2 and where the
3$I(I — 1) pair-wise contrasts Az, = I, — IIxe are of interest. In this special
case, Agp = Iy — Iy = —Au, and so confidence intervals for the A, would
also provide confidence intervals for the A , though we would actually calculate
confidence intervals for only $I(I — 1) contrasts. It is easy to see in this case
that Condition (1) is satisfied for the usual values of o (viz., « = .05 and .01),
and so the L of Theorem 1 can be replaced here by the value of Z defined above
when calculating confidence intervals. More generally, in the case where the
3I(I — 1)J pair-wise contrasts Agn = Iy — ILy; (£ = h;j = 1,2, ---,J) are
of interest, setting G equal to 31(I — 1)J (whenJ > 2), we find in this case
that Condition (1) is satisfied for the usual values of a (.05 or .01), and so we
would again use Z rather than L when calculating the relevant confidence
intervals. (For somewhat related results, see Dunn [2].)

The procedure described above based upon Z takes advantage of the fact that
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interest may be focused upon a specified set of G contrasts, rather than the set
of all contrasts. The Studentized range procedure developed by Tukey, which
provides simultaneous confidence intervals in the analysis of variance context
(see, for example, [15], [16], p. 294, [14], p. 73), also takes advantage of the fact
that interest may be focused upon a specified set of contrasts, but it may be
worth noting that this procedure can not be applied in the present context since
one of the restrictions of the Tukey method is that the estimators have equal
variance, which is not the case for the estimators of the parameters in the multi-
nomial populations.

3. Chi-square tests of homogeneity. The null hypothesis H, that the I multi-
nomial populations are homogeneous states that II;; = Ily; = «-- = II; = II.;
(forj = 1,2, ---,J). When H, is true, the statistic

Y = ;(nu‘ — nip;)?/n

will have a x” distribution with (I — 1)(J — 1) degrees of freedom, where p;
is set equal to P/ D tm1 Pr = pf, and p; is the weighted harmonic mean
n/ Y i1 npi;. These values of p; are obtained by minimizing the Y* statistic
subject to the condition that > j—; p; = 1. The Y” statistic can be written more

simply as
= SABIG nal} — n = n{(Z 5 1),

The statistic Y differs from the usual statistic presented for testing the null
hypothesis H, ; viz.,

X' = g,(nif — np;)*/np;

where p; is set equal to the weighted arithmetic mean p;, = D i1 7, p,,/n =
n.;j/n, and where n.; = 3 iy n;; . These values of p; are obtained by minimizing
X? subject to the condition that D ;i p; = 1. The X” statistic can be written as

X = JZ::I{[ 1p”]/p1} { 2: i n‘f/nm"f]] - 1}‘

When H, is true, the statistics X* and Y? will be asymptotically equivalent to
each other (see [11]).

Writing the (J — 1) probabilities {II;s, I3, « -+, Iy} asthe (J — 1) X 1
column vector IT;, the null hypothesis H, is equivalent to the hypothesis that
IO, = II; = -+ = II; = IL Writing the (/ — 1) estimates {psx, Dis, ***, Dis}
as the (J — 1) X 1 column vector p; , we see that the statistic Y? can be written
as

"’lVJ ~

= z;(l)i — 1)’ D7 (p: — M),
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where D; is the estimated variance-covariance matrix of the {pi, pi, * -, P},
and IT denotes the point in the (/ — 1)-dimensional space of possible values of
{IL,, I3, - --, II.;} which minimizes Y*. To test the null hypothesis of homo-
geneity using ¥?, we note that the probability will approach 1 — « that ¥* < L?,
where L’ is the 100(1 — «)th percentile of the x" distribution with (I — 1)-
(J — 1) degrees of freedom. The following theorem describes the relationship
between this test of homogeneity and the simultaneous confidence intervals pre-
sented in Theorem 1 for all contrasts 6:

THEOREM 2. The lest of homogeneity based upon Y* will reject Hy if and only if
at least one estimated contrast vs significantly different from zero.

Proor. The null hypothesis H, states that A; = II; — II; = 0 for i = 2, 3,
-+, I, where 0 is the (/' — 1) X 1 column vector of zeros. We can estimate
A; by p; — p1 = d;. Writing the {d;, ds, ---, d;} as the (I — 1) X 1 column
vector A, we see that d is actually a (I — 1)(J — 1) X 1 column vector with
entries p;; — py; (¢ = 2,8, -+, ;7 = 2,8, ---,J). We can test H, using the
statistic

W = d'B7d,

where B is the estimated variance-covariance matrix of d. The statistic W* is
actually equal to Y” (see, for example, [7], [10]). From the proof of Theorem 1
herein, we see that W* = L*if and only if there is at least one estimated contrast,
say, 0, such that 6] = LS(6). In this case, 0 is significantly different from zero.

Q.E.D.

From Theorem 2 we see that the simultaneous confidence intervals presented
in Theorem 1 for all contrasts can be used to supplement the test of the null
hypothesis of homogeneity based upon the statistic Y*. If the test based upon
Y? leads to acceptance of the null hypothesis then all simultaneous confidence
intervals would include zero, but if the test leads to rejection of this null hy-
pothesis we could then calculate the simultaneous confidence intervals to de-
termine which particular contrasts are significantly different from zero and thus
determine the particular ways in which the multinomial populations are not
homogeneous.

With any simultaneous confidence interval procedure we can, of course, associ-
ate a testing procedure for any null hypothesis pertaining to the relevant pa-
rameters. We would accept the null hypothesis when and only when the simul-
taneous confidence intervals included the parameter values specified under the
null hypothesis. Thus, in testing the null hypothesis of homogeneity using the
test procedure associated with the simultaneous confidence intervals of Theorem
1 herein, we would accept the null hypothesis when and only when zero is in-
cluded in the simultaneous confidence intervals for all contrasts among the
multinomial populations. We have now shown that, in testing this null hy-
pothesis, the calculation of the simultaneous confidence intervals for all contrasts
can be replaced by the calculation of a single statistic; viz., ¥>. The user will
find the calculation of Y? easier than the calculation of the simultaneous confi-
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dence intervals for all the contrasts, particularly in cases where the null hy-
pothesis is accepted. (Even in cases where the null hypothesis may be rejected,
if the user can not say beforehand which contrasts he would expect to be sig-
nificantly different from zero he may prefer to first calculate Y* to determine
whether there are any contrasts at all that are significant.) This simplification
applies to the first method presented in Section 2 herein for obtaining simul-
taneous confidence intervals (Theorem 1), but it does not apply to the second
method presented in that section, where attention was focused upon a specified
set of G contrasts. Although the second method for obtaining simultaneous
confidence intervals also provides a test of the null hypothesis of homogeneity
(the null hypothesis would be accepted when and only when zero is included in
the simultaneous confidence intervals for all G' contrasts), this test involves the
calculation of @ statistics (viz. 8;/S(8;) for< = 1,2, ---, @) and it can not be
replaced by a simpler but equivalent procedure.

The Y statistic presented herein is a rather simple chi-square-like statistic,
though it differs somewhat from the usual chi-square statistic X*. We have found
for Y* a confidence interval procedure (see Theorem 1) for which the associated
test of homogeneity is equivalent to the test based upon Y2 To see why results
of this kind are readily obtained for ¥? but not for X” it is sufficient to consider
the special case where I = J = 2. In this case, both X* and Y* can be written
as (pu — pa)’ divided by estimates of the variance of py; — pu , where for X*
the estimated variance is consistent only if the null hypothesis is correct, and
for ¥* the estimate is consistent whether or not the null hypothesis is correct.
The estimated variance applied in the calculation of Y” can also be used in the
calculation of the corresponding confidence intervals, whereas the estimated
variance applied in the calculation of X* can not be so used since it is in general
not a consistent estimator. Thus, we do not find a direct relation between X°
ax;d the confidence interval procedure, whereas we do find such a relation for
Y-

4. Statistical methods for Markov chains. In testing certain hypotheses about
finite Markov chains, Anderson and Goodman [1] and Gold [5] have derived
asymptotic x° tests which are analogous to the usual x* tests of homogeneity
among multinomial populations or to the corresponding x” tests of independence
in contingency tables. For example, considering a Markov chain having K
states, and denoting by P(¢) the K X K transition probability matrix associated
with transitions from time ¢ to time ¢ + 1, the null hypothesis that P(1) =
P(2) = --- = P(T) can be tested when N observed sequences are obtained
from the chain at times¢t = 1,2, -- -, T 4 1, by forming K “‘contingency tables,”
each having T rows and K columns, and using a test statistic having an asymp-
totic x* distribution with K(T — 1)(K — 1) degrees of freedom (when N — o)
appropriate for testing the hypothesis that there is independence between rows
and columns in each of the K contingency tables (see [1], [5]). These test sta-
tistics are analogous to the statistics presented earlier herein for testing the
hypothesis of homogeneity among T multinomial populations, each having K
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classes, when these tests are performed separately on K different sets of T
multinomial populations and the K corresponding statistics are summed. Pro-
ceeding in a manner similar to [5], we shall present a theorem which yields
simultaneous confidence intervals for judging all contrasts among the transition
probabilities which are relevant to the hypothesis that P(1) = P(2) = ... =
P(T). For judging these contrasts, the confidence intervals obtained thereby
will be smaller than the corresponding confidence intervals given in [5].

Let IL;(¢) be the transition probability that an observation will be in state 7
at time ¢ 4 1 given that it was in state ¢ at time ¢. Assume that II;;(¢) > 0 for
1=12 - K;5=1,2,---,K;t = 1,2, -+, T. Let n;(¢) be the number of
observations in state ¢ at time ¢, and let n;;(¢) be the observed frequency of
transitions from state ¢ at time ¢ to state j at time ¢ + 1. In a manner analogous
to the definition of the contrasts among multinomial populations presented in
Section 2 herein, the contrasts y among the transition probabilities, which are
relevant to the hypothesis that P(1) = P(2) = -+ = P(T), are defined as
Y= D im1 D D1 byi(¢)IL;(t), where the by;(¢) are any constants subject to
the condition that Y i~ bs;(t) = O for all 7 and 7, and by;(¢) #= ba(t) for some
1, J, t. The estimated contrasts are

T K K ‘
v=22 Z; bii(8)pii(t), where pi;(¢) = ni;(¢)/ni(t).

t=1 1=1 j=

Let
SP) = Z[n,-a)rl[jg bimi(t) — (,Z=1 by (8)pis(t))’].

Tt
We then have the following theorem analogous to Theorem 1 herein:
THEOREM 3. As N = ) _in,(t) — oo, the probability will approach 1 — o
that simultaneously for all functions ¢

v—SWM sy =¥+ S@)M,

where M s the positive square root of the 100(1 — a)th percentile of the x* dis-
tribution with K(T — 1)(K — 1) degrees of freedom.

We shall not give the proof here since it follows in a quite straightforward
fashion from the earlier results. Note that the simultaneous confidence inter-
vals obtained using Theorem 3 are based upon the percentiles of the x* distribu-
tion with K(T — 1)(K — 1) degrees of freedom, whereas the corresponding
confidence intervals given in [5] are based upon the percentiles of the x° dis-
tribution with KT'(K — 1) degrees of freedom. For judging the relevant con-
trasts, the additional K(K — 1) degrees of freedom appearing in the latter
method increase the length of the corresponding confidence intervals and are
unnecessary.

In addition to testing the hypothesis that P(1) = P(2) = .- = P(T),
it is possible to test other hypotheses concerning the Markov chain (e.g., hy-
potheses concerning the order of the chain) using asymptotic x* tests which are
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analogous to the usual x” tests of homogeneity between multinomial popula-
tions (see [1], [5]). Applying the methods presented herein, it is now also possible
to obtain simultaneous confidence intervals for judging all contrasts which are
relevant to these hypotheses.

In the preceding sections, we presented two different methods for obtaining
simultaneous confidence intervals for the contrasts among multinomial popula-
tions, and we discussed the equivalence between the test of homogeneity asso-
ciated with one of these methods and a modification of the usual chi-square test.
Theorem 3 provides a method for obtaining simultaneous confidence intervals
for contrasts among transition probabilities in the Markov chain which is
analogous to one of the methods presented earlier (Theorem 1), and a dif-
ferent method for Markov chains analogous to the second method presented
earlier herein can be obtained similarly. In addition, results concerning the
equivalence between the test of homogeneity associated with the simultaneous
confidence intervals given in Theorem 3 and a modification of the usual chi-
square test can also be obtained, but we shall not go into these details here
since they are quite straightforward.

5. Further remarks. We can, of course, view the I multinomial populations
each consisting of J classes, which were studied earlier herein, as an I X J
contingency table with fixed row marginal frequencies. The contrasts among
the multinomial populations, which were defined herein, can be viewed as
measures of the association in the I X J table. To illustrate how these contrasts
differ from other measures of association suggested in the literature, let us
consider the special case where I = J = 2. In' this case, the contrasts con-
sidered herein reduce to Il — Iy , whereas the measures of association studied
earlier by, for example, Edwards [3], Fisher [4], Goodman [7], [8] or Plackett
[12] were based upon the cross-product ratio IylIls/(Iplls) = p, the logarithm
of p, or some other function of p. Which methods will be suitable in a particular
situation will depend upon whether the difference IIy — IIy or the cross-product
ratio is of special interest in that situation. For further discussion of the case
where differences are of interest, see [6].

For the I X J table, whether the methods presented herein or methods based
upon the cross-product ratio or the generalized cross-product ratio (see [8])
should be applied in a given situation will depend again on which measures of
association are of special interest in that case. In addition to the measures
mentioned here, there are still other measures of association in the I X J table
which may also be of interest. We shall not discuss them here but shall instead
refer the reader to [9] where methods are given for obtaining confidence in-
tervals for some of these measures.
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