ESTIMATES OF EFFECTS FOR FRACTIONAL REPLICATES!
By K. S. BANERJEE? AND W. T. FEDERER
Cornell University

0. Summary. Given any fraction of a factorial experiment in which the treat-
ments either occur zero or one time, previous results were obtained on augmen-
tation of the treatment design matrix, X, such that the product of the transpose
and of the augmented matrix, X; = [X':X'\]’, resulted in a diagonal matrix,
and on a transformation of X; to another matrix X, = FX; . In the present paper
results are obtained on the evaluation of the variances of estimated effects under
augmentation, on the existence and evaluation of F and A, on the determination
of aliases of effects, and on the calculation of inverses for [X'X] and for the in-
formation matrix [Xs,Xs] for the deleted treatments.

1. Introduction. In a recent paper by the authors (1963) it was shown how to
adjust the treatment design matrix to furnish estimates of effects as orthogonal
linear functions of stochastic variates for any fractional replicate of a complete
factorial. (The fractional replicate is such that any combination occurs zero or
one time.) Such an adjustment for fractions greater than one-half reduces the
required calculations by inverting a smaller matrix than the original treatment
design matrix X. In the present paper results are presented on the evaluation of
variances of the estimated effects, on the existence and evaluation of matrices A
and F used in the adjustment or augmentation of X, on the determination of
aliases of effects, and on the calculation of the inverse of the information matrix
[X'X] and of the information matrix [X7,X»] for the deleted treatments.

The notation and some results of the previous paper are reproduced below
for completeness. The n observational equations are ¥ = XB + ¢, where ¥
is an » X 1 random vector of observations with elements y;, X is the n X p
treatment design matrix with rank p < n, Bis the p X 1 vector of effect parame-
ters, and e is an n X 1 random vector of errors with E(ee’) = o°I. Then the
least squares estimates of B are given by BY = [X'X]'X’Y with variance-
covariance matrix cov (B*) = ¢’[X’X]™". When p = n, B* = X7'V.

Since [X'X] is not diagonal for all X, the proposed adjustment involves finding
a matrix A such that the matrix X and the vector ¥ are augmented to become
X, = [X:X"\]" and Y; = [Y’:¥"\] in such a way that [X1X,] is a diagonal
matrix. Then it was shown (Theorem 1 below) that the estimates with augmen-
tation were identical to those without augmentation.

Let the treatment design matrix X be augmented with m additional rows of p
columns each; these m additional rows correspond to m additional stochastic
variates Y'\ = Y, = [y1, ys, -+ -, yn]. Denote the augmented part of X as
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X, =XNX.X,isa (p +m) X p matrix; ¥, is a (p + m) X 1 vector. Denote
the rows of X by a1, a2, -+, a and those of X; by a1, az, -++ , ap, 61, B2,
-+, Bn . The least squares estimates corresponding to the p + m observational
equations V; = X;B; + e; are Bf = [X1X1]'X1Y: . Then we have:

TurorEM 1. If B, = D7 Aua; and Yo = D.P Ny, Where k = 1,2, --- |
m and Ay, are scalars, then BT = BY.

Let the square matrix X of rank p be transformed to X, in such a manner
that the rows of X, are dependent on the rows of X, and such that the vector
space generated by the row vectors of X, is the same as that generated by the
row vectors of X; both X and X, will have rank p. Let X; = FX, where F is the
square matrix required to transform X to X, and involves only addition or sub-

traction of rows. Then we have:
THEOREM 2. If the treatment design matrix X and the stochastic vector Y be

transformed to X, and Y, , respectively, in such a manner that X, = FX and ¥, =
FY, where the matrices are as defined above, then the least squares estimates By from
the observational equations Yy = XoBy + e, will be the same as BT from the ob-
servational equations ¥ = XB + e.

2. Variance of the estimated effects under adjustment of Theorem 1. Let
e1 = [¢':¢'A]’ corresponding to ¥; = [Y’:¥'A]’. Then,

!’ ?.
AN ee ee \ 2 I P A
E(elel) = E [)\/66, )\,66,>\:| =0 [)\I >\/)\],
where I, is the p X p identity matrix and A\ has dimensions m X m. The
covariance matrix of BY is

cov (BY) = E[(Bf — B,)(Bf — By)']
= E[(S1'X1Y: — By)(87'X1Y: — By)'],

where 8; = [X1X;]. Substitution of X;B; + e; for ¥; reduces the covariance
matrix to

I,
’

(1) cov (Bf) = E(87'Xie1 e1X: STY) = S7X) [)\ )\a\)‘]lXpSl—la{

It can further be shown that
(2) x; [iﬂ )}‘)\] X = X'(I, + W)X;
= X, + W)X = XTI, + W)X
Substituting (2) and for S7'in (1) we have
cov (BY) = [X7'(I, + W)X X (I, + W) XX NI, + W)X
= JX'XI™

Hence, the estimates of the variances remain unchanged.
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3. Variance of the estimated effects under adjustment of Theorem 2. Let
e2 = Fe corresponding to Y, = FY. Then, E(ewes) = o'FF and

cov (By) = E[Bf — B,)(Bf — By)]
= B[(S:'X:Y» — By)(S:'X:Y, — By)],

where S; = [X,X,]. Substitution of X,B, + e for Y, reduces the covariance
matrix to

cov (BY) = E[{(X:X2) "Xieo} { (X2X2) Xies}'] = oX(X'X) ™

Here also the estimates of the variances remain unchanged under the procedure
of adjustment as in Theorem 2.

The results above and those in Theorem 1 are related to those of Leech and
Healy (1959).

4. On the existence of the matrix A of Theorem 1. The full design matrix X
may be partitioned as

3) x=[3 ] = ix
21 22 ]

where the matrix Xy; corresponds to the design matrix for the fractional replicate
retained. Xy, and Xy would respectively be the same as X and X, of Theorem 1,
and in terms of the conditions of Theorem 1, the dimensions of Xy; are p X p
and those of Xy, are m X m. The corresponding partitions of the full vector of
observations ¥, may be taken as [Y':Y,]’, where Y is the ¥ of Theorem 1, and
Y .. represents the remaining m observations.

When the number of omitted treatments is the same as the number of inter-
actions set equal to zero, estimates of the omitted treatments may be obtained
in a manner similar to what has been done by Tocher (1952), that is, by equating
the observations for these interactions to zero. Estimability of the omitted
treatments on this basis is related to the existence of \, the conditions for which
are embodied in the following two theorems.

TuroREM 3. If solutions Y to the equations X5V T = —X1,Y exist, Xy will
be non-singular.

Proor. If solutions to the linear equations X3V, = —X1,Y exist, we must
have Rank [X3,] = Rank [X1,:X1,). Since the m columns of X, are linearly inde-
pendent, the rank of X3, is equal to m. Hence Xy, is non-smgular

TraEOREM 4. If solutions to the equatzons XY, = —XnY exist, it is always
possible to find the matriz A = — X[ Xoo]

Proor. Since X'X is diagonal, then X1.Xy + XiXau = 0, or Xy =

[Xn]_lX 12X1 . If X3, has an inverse as in Theorem 3, then A" may be taken
as —[X3] X1, and always exists.

5. On the existence of the matrix F' of Theorem 2. What may be achievable
on the basis of Theorem 1 can also be achieved by Theorem 2. We can always
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_|1» 0
F= [0 m‘*ng]’

where I, is the p X p identity matrix. Premultiplying X by F, we have

FY — I:I,, 0 /:, . [Xu Xu] _ l: X,u X’l2 :I
0 m—éXn Xn X m_%Xzz Xa m_*Xzz X |’

FX [Bl:l - [ X}l X}:» :| . B, - Xu B
0 m_%X 22 Xo1 m_%X 22 Xoo 0 m_iX ;2 Xa 1

where B; is the p X 1 column vector in Theorem 1. Similarly,
(5) FIY: Y\ = [V —m Y Xy

From the above, it will be clear that apphcatlon of Theorem 2 gives us the same
set of observational equations, [X1;: ! Xu]'B, = [V Y\’ as obtained for Theo-
rem 1. It may be noted from Equatlon (5) that the last m rows may be ob-
tained by reversing the signs of X1, as was pointed out for 2" series in the original
paper.

6. Aliasing in fractional replication. In a full replicate of a complete factorial
with m + p treatments we may write the observational equations as:

& 5B
X 21 X 22 BO ¢’

where B is the p X 1 vector of effect parameters not equated to zero in the frac-
tional replicate and B, is the m X 1 vector of effect parameters equated to zero.
Then, in the fractional replicate the observational equations may be written as:

[Xu:Xu)[B':Bg) = [XuB + X12Bo] = 7,

have a matrix F given by

or
XuB =[Y — X12Bo]-

The last equation may be solved directly, or we may utilize the adjustment in
Theorem 1 as [X 11 X 11)\] B] = [[Y XlzBo] [Y X12B0] )\] SOIuthl'l of
either form of the observational equations yields the effects which are com-
pletely or partially aliased with the effect parameters in B.

A relatively simple procedure for determining which effects can appear in B
and which in B, is to construct the complete set of observational equations;
then, for each treatment combination deleted, the associated effect from that
observational equation is also deleted, i.e., the effect is allocated to B, .

7. On the calculation of the inverse. A straightforward solution for the effect
parameters in B for a fractional replicate involves inversion of the matrix [X 1, Xy].
This matrix is not in diagonal form for the so-called irregular fractions of a
complete factorial, and hence some tedious calculations may result. In order to
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simplify the inversion X;; was augmented to become [X X ;1]’ = X; and then
X1X; becomes a diagonal matrix and its inverse offers no problem. However, in
order to obtain a A for fractional replicates of complete factorials under Theorem
1 it is necessary to invert the matrix X,, of dimensions m X m. Less labor is in-
volved in inverting X,, than in inverting Xy for all m < p.

The variances for the estimated effects may be obtained from Equation (1)
in the following form:

cov (BY) = o’ST X0 Xanlll 5N L N[ X1 Xonl ST
=0 231— l[)( 1 - X 12X2_21X 21]'[X 1mn - X 12X2—21X 21] Sl— 1,

where §; is diagonal and X;,X3 X would need the inversion of the matrix X, .
If it is desired to invert Xy; (or X3;) this can be done rather simply by parti-

tioning X;; as follows:
4w Aa
X = [Alo Au]'

If we premultiply both sides of the observational equations X;,B = ¥ = [V;:Y,]
as follows:

[Aéo o,]X B - [Aévoo Af,’;oAmJ [B,] _ I:Aéo Y,]
0 Anl™"7 7 [Ahdn Andu] B An Y,
_[4w 0
N [ 0 A;l] Y

and if AwB; = Y, represents a regular fraction of a factorial, then Agdo is a
diagonal matrix; if AyB, = Y, forms a regular fraction then 414y, is also a

diagonal matrix. The inverse of
A O
[ 0 A{l] Xu

involves the inverse of a matrix of the same dimensions as A, and the inverse
of the diagonal matrix AgAq ; since AwB; = Y, represents the largest regular
fraction in X;; , the required inverse of non-diagonal matrices will have small
dimensions for many fractional replicates.

The above scheme would be useful if observations and effect parameters were
to be added sequentially. Here the inverse of AnAq would have been obtained
from previous steps and it would be necessary to invert a matrix of the same
dimensions as 4y .
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