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1. Introduction. The Kiefer-Wolfowitz procedure as previously described [1],
[8], [10], was concerned with solving the following problem: given a random
variable ¥ = Y(x1, 22, -+, 2x) depending on k real valued parameters
Z1, L2, * -+, Tk, determine the values of these parameters which minimize

M(zy, 22, -+, 1) = E{Y (21,22, -+, 2)}

by making a sequence of independent observations of the random variable Y
at different values of the parameters. In the field of communications we are
usually more interested in the case in which Y is an ergodic random process Y.
Here we consider this situation and study a continuous version of the Kiefer-
Wolfowitz procedure. The advantage of using a continuous version of the pro-
cedure when Y, is a continuous time-parameter process (as opposed to periodically
sampling Y, and applying the original procedure to the samples) lies in the fact
that it may be mechanized with simple analog computation components.

Our analysis considers a straightforward generalization of the original pro-
cedure and, to a certain extent, follows the pattern of Dupaé’s analysis [6] of
the original procedure. The hypotheses of the theorems which we present are
chosen from the standpoint of applicability to certain communication and data
processing problems rather than from the standpoint of mathematical generality.
Other continuous stochastic approximation methods have received treatment
[4], [5], [7], but none seem appropriate for data processing applications. For
the one-dimensional case Driml and Nedoma [5] consider a continuous version
of a generalized Robbins-Munro procedure and obtain almost sure convergence
under more liberal assumptions than are made here: unfortunately, their analysis
cannot be extended to the multidimensional case. Neither of the procedures
considered by Driml and Han$ [4] and Han$ and Spadek [7] seem particularly
well suited for analog computation.

2. Notation and description of the approximation procedure. We regard the &
parameters x;, 2, - -- Z as the components of a k-dimensional vector x. The
basis for the space will be the unit vectors e;, es, - - €, e; denoting a unit
value of z; and zero values for the other ¥ — 1 parameters. We will denote the
usual Euclidean norm and inner product by |x|| and (x, y) respectively. We
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denote the regression function by

(1) M(x) = E{Y.(x)}
and denote by 0 the vector parameter value for which M is a minimum. Let
(2) Yix, c(¢)] = Yix + c(t)e — Yix — c(t)ei]

in which ¢(t) is a positive function whose properties will be described later
The minimum-seeking approximation procedure is then defined by

(3) (d/d) X = —a(t) ;" () YiddXe, c(t)]
and
X,o=$v,(0) 7 = 1, 2, "',k
in which x; (0) is the initial value of the ¢th parameter and
4) L.=1—Gf[X.: FflY:)— G7 [X:.] Fi[Y.,]
(5) Gt (z) =0, xZb;— 6 G; (z) =0, z=a;+ 8
=1, x=b; =1, T = a;
= monotone and of ) = monotone and of
bounded deriva- bounded deriva-
tive on [b; — §, b] tive on [a; , a; + 8]
and
(6) Fi(y) =1 —y/ec(t), Fi(y) =1+ y/ec(t)

in which ¢, is a positive constant; we will later place a suitable bound on ¢, . For
convenience in the sequel we will denote by Y, the vector whose ¢th component
is Y, and by Z, the vector whose 7th component is I;,.Y;,.. We also define

(7 M. (x) = E{Y(x)}c7(t)
and
(8) Quy (x) = E{Z,(x)} ¢'(¥).

Note that these quantities are defined in terms of the parameter x and not the
random variable X,.

The relation between this continuous procedure and the original Kiefer-
Wolfowitz procedure should be apparent. The differential Equation (3) can
simply be regarded as the limiting case of the difference equation governing the
original procedure. The only real conceptual difference is that in the original
procedure the different observations used sequentially were assumed to be
conditionally independent; here such an assumption is not meaningful and must
be replaced by an alternate condition. One other difference is the appearance
of the term I; in Equation (38): its purpose is merely to constrain the parameter
z; to the interval [a;, b.]. In the sequel we will denote the set z; € [a;, bi], ¢ =
1,2, ---, k, by A.
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3. Convergence theorems. We now make the following assumptions:
N

(i) Yi(x) = 2 9:(x)Vie N < o
=

in which the V; ; are ergodic random processes which are bounded in magnitude

w.p. 1 and the g; are functions whose second partial derivatives with respect to
the z; are bounded for all x ¢ A

(ii) (grad M (2)|s=x, x — 8) 2 Ko [x — 0||°
lgrad M (x)|* = Ki [x — o]
allxc A, 0<Kiy=K < o
|0°M /oz}| < P allxe d,i=1,2, -+, k
a;+ 26 <0, < b;— 2 i=1,2 -, k.

(iii) Let D.;, be any one of the random processes Vi,i45 Vi, t40 b m = 1,2, -+,
NorViu,l=1,2, ---, N andlet F; be any bounded functional on the processes

Vil=1,2, -+, N, 7 < tand Rep(p) = E{(F. — E{F})(Dey, — E{D4,})}
then we require for all p = pg, pp < '

|Ren(p)| < oron(Ka/p"), K; < =

(iv) f“ a(t) dt = o, f“ a(D)E() dt < w
0 0

f a(t)a(3t) dt < ©», and f a(t)fdt < .
0 1

Under the above conditions we can make the following statements:
TueoreM 1. Conditions (i)—(iv) tmply

limeoE{||X; — 8%} = 0 for all x(0) ¢ A.

In order to realize the approximation procedure we must be able to generate
functions a(¢) and c(¢) satisfying Condition (iv). It will be convenient to use
functions which are functionally simple; for this reason we consider

(9) a(t) = a/(t+ 1) e(t) =c¢/(t+ 1)".

In order that Condition (iv) be satisfied we require 3 < o = 1, v > 3(1 — a).
If « = 1 we will require in addition that

(10) a > 4K

Relative to this class of functions we can state:
THuEOREM 2. Conditions (i)—(iv) and the choice « = 1, v = % tmply

E{|X. — 0"} = Ks/(t+ 1) allx(0)e A4, K; < oo;
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moreover, no choice of a and v will yield a faster rate of convergence for all situations
satisfying Conditions (1)—(iv).

Before giving the proofs of the above Theorems, let us comment briefly on
the hypotheses. Conditions (ii) and (iv) are of the usual variety and (i) de-
lineates the form of processes to be considered; only (iii) requires comment. It
would appear at first that (iii) is rather restrictive in that it holds uniformly
for all bounded functionals F; ; however, this turns out to be merely a require-
ment that the processes V;; not be too ‘“predictable.” Consider trying to pre-
diet D,;, with some bounded operation, say F;, on the past of the processes. If
we use F'; in a linear manner to predict D,

Duiy = E{Du1,} + Ren(p)(o7) (Fi — E{F})

the mean square prediction error is e(p) = (o%) (oc¥o» — R¥»(p)) and thus our
requirement is simply a condition that the minimum mean square prediction
error approach its asymptotic value as fast as the inverse of the fourth power of
the prediction time. Another way of viewing this requirement is as follows: if we
were to represent V;, in the form V;, = fffh(r)N j.t— dr in which N;, was a
process bounded in magnitude w.p. 1 and such that N; . and N, ... were sta-
tistically independent for 7 = 7o > 0 (e.g. N;,. might be a “‘shot noise” process)
then Condition (iii) would be satisfied if for all » = 7 > 0, [12],

|h(r)| < K/7° K< o

Although this rate of decrease of the magnitude of the impulse response (re-
solvent kernel) of the linear transformation is more rapid than that required for
a general stable linear transformation, it is considerably slower than that of
most physical transformations. It should be noted that we require the rate in
Condition (iii) to be p’ only to establish Theorem 2; Theorem 1 remains true if
this is weakened to p'"¢, ¢ > 0. To require that the processes in question be
bounded in magnitude w.p. 1 is no real restriction since this will be true for any
physically observable random process. We now proceed with the proofs of the
Theorems. .
Proor or THEOREM 1. From Equation (3) we have

(11) (d/dt)|[Xe — 0" = —2a(t)(X. — 8, ¢ (DZu(X0)).

The right hand side of this equation is bounded in magnitude w.p. 1 for all ¢ by
Condition (i) and so is |X; — 6|*; thus by a Theorem of Kolmogoroff [9]

(12) E{(d/dt)|X. — 0|} = (d/dt)E{|X. — o]}

For brevity we denote

(13) b(t) = E{||X: — o]}.

Adding and subtracting a term from the right hand side of Equation (11) and
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taking expected values yields
(d/dt)b(t) = 2a()E{(X: — 6, —Q(X,))}
+ 2a()E{(X: — 0, Qu(X:) — ¢ (1)Zu(X:)))}.

We now develop suitable bounds for the two terms on the right hand side of this
equation. First consider M.(x). By means of a Taylor’s series we can express
the 7th component of this vector as

(14)

(15) M, (x) = 2[(0M(2)/0%:)|=x + #¢’R), Rl = P.
Thus, using Condition (ii)
(16) (x — 6, — M(x)) = —2Ko[x — 6| + K'Pic’||x — o].

Next consider Q.(x). If a; + 6 < z; < b, — dfore = 1,2, ---, k, then Q.(x) =
M.(x) and if b; — 6 < z; < b;, the sth component of Q,(x) is

(17) Qei(x) = Mo (x)(1 — GF(2:)) + & GF(@)[Me,i(x) + ¢~ (¢)ov,].
Now for z; in the interval assumed dM/dz; is positive and bounded away from
zero. We now assume that ¢, has been taken small enough that

(18) & = inf oM /dz; , ¢ > 0.
xed,a; <z;<ag+d
by—8<z; by, i=1,2,- - )k
Now substituting Equation (15) into Equation (17), using inequality (18), and
weakening the resulting inequality by omitting a negative term, we have

(19) —Q.i(x) £ —20M(2)/3%: | p=x + Ko/}, b — 6 < 2: < b,
2
(20) K4/k*=1[P+‘1P sup aM—LﬁO—)Pz].
3 €y xed,0; Sz <a;+d axi €y 3
bi—8<z; <b;i=1,2,2k

A similar argument applies to a; < z; < a; 4 §, hence for either z; ¢ [a: , a; + §]
or [b; — &, b;] we have

(21) — (@i — 0:)Q..i(x) < —2(x:; — 6,)0M (2)/0%; | 2mx + Ku(z:i — 0:)/K.

The first term on the right hand side of the inequality being negative. Thus,
combining inequalities (16) and (21), we have for any x e 4

(22) (x — 8, —Q.(x)) £ — 2Ko|x — 8|" + ’Kilx — 0|

Since this holds for any x ¢ A it also holds for any X; generated by the approxi-
mation procedure up to time ¢; thus, substituting X, into inequality (22) and
taking expected values of both sides we see that we can bound the first term on
the right hand side of Equation (14) by

(23) By(t) = —4a(t)Kb(t) + 2a(0)d'()K.E{|X. — 0]}

We now consider the second term on the right hand side of Equation (14).
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The 7th term in this inner product is
(24) i = 20()E{(Xie — 0)[Qus(Xs) — ¢7(8)Z:, (X))}

which, by using Equations (2)-(6) and Condition (i), may be expressed in the
form
N N

25) Ti = 2a(8) 20 2 E{fa(Xe, c(8)) [V, Vs — E{V;:Vi 1}
25 7=1k=t N
+ ’;E{fj(xt y € (@)Vie — E{V; 41}

By Condition (i) all of the fi(x) and f;(x) appearing in this expression are
bounded and possess bounded first partial derivatives with respect to all of the
z;forallx e A and all ¢t = 0. Consider the /, mth term in this expression and for
brevity denote V.V, : by D,. Then this term can be written

k t
. —_ af Im Zq,, _
@) T = ~20() 3. [ a1 {Pe %, oo 22 (0, B(D)} dr
in which the order of integration and expectation has been exchanged since the
process in the integrand is bounded in magnitude w.p. 1 [9]. Now, since the
processes inside the expectation are bounded w.p. 1 for all !, m, and %, we can
use Condition (iii) to bound the expectation in the integrand in magnitude by

L=K; t—1=r=t

= Ks/(t—n2 0=sr=t—-1

(27)

Substituting this bound into Equation (26), splitting the integral up into
integrals over [0, 3¢, [3¢, ¢ — 1], and [t — 1, {], and overbounding each integral,
yields

(28)  |Twm| = 20(1)[Kea(3t) + Km(t — D)V/EN(N +1) Ko, Ky < oo,
in which
I‘(t) = 0’ t<o0
=1, t=0.
Thus the second term on the right hand side of Equation (14) may be bounded
in magnitude by
(29) By(t) = 2a(t)[Ksa(4t) + Kum(t — 1)i7]
combining this bound with that of Equation (23) and inserting in Equation (14)
yields
db(t) 2
(30) o = —4a(t)K0b(t) + 2a(t)c (t)K4E{HXt - 0”}
+ 20(9)[Ksa(3t) + Kru(t — 17,
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Now, for any ¢, > 0

(31) E{|X, — 0]} = & + & 'E{|X, — 0|"} = & + b(t)e.
Applying inequality (31) to inequality (30) for the choice
e = 2K’ (8) (Koe) ™ 0<e<4
yields
(32) (d/dt)b(t) + p()b() = q()

in which p(¢) = (4 — €¢)Koa(t) > 0 and
q(t) = 2a(t)[Kea(t/2) + Kw(t — 1){"] + 4a(t)c'(t)K:2(eKo) ™ = 0.
Integrating both sides of Equation (32) from 0 to ¢ yields
t t
b(t) + [ p(r)b(r) dr s [ g(r) dr +b(0)
0 0

b(0) = [Ix(0) — o]

Now consider the integral equation

(33)

(34) bo(t) + ft p(r)bo(7) dr = / q(r) dr + b(0)
0 o

with the solution

(35) bo(t) = by exp [— fo ") dT] + fo " fou(r) dr

in which

- o) = exp | = [ 90) de o) 0srs
=0 elsewhere.

Now the non-negativeness of p(¢) and g(¢) and the continuity of b(¢) and bo(?)
guarantee that, for any function b(¢) which satisfies inequality (33)

(37) b(t) = bo(2) allt > 0

(this is easily shown by assuming the contrary and reaching a contradiction).
Thus we focus our attention on bounding by(¢). Now 0 = fio,q(7) = gq(7) for
all ¢ and 7 greater than 0 and by Condition (iv) ¢(7) is integrable, thus by the
general convergence theorem of Lebesgue and Condition (iv)

limt.m bo(t) = limt.m b(O) exp l:—ft p(r) dr:l
(38) Co.
+ f liey fio.(7) dr = 0
0

which completes the proof of Theorem 1.
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To complete the proof of Theorem 2, we merely note that for a(t) and ¢(¢) as
specified in the statement of the theorem

p(t) = (4 — )Koa(t + 1)7, t>0

q(t) = Ks(t + 1)7, t> 0.

Substituting these expressions in Equation (35) and carrying out the integration,
we obtain

bo(t) < b(0)(t + 1)—(4—e)Koa
+ Kef[(4 — Ka — 1J(t + 1) — (¢ + 1)"4 9% 0<e<4

thus for @ > 4K;" we reach the positive side of Theorem 2.
The “minimax’’ property of the choice « = 1, v = % is most easily established
by a one-dimensional example Y,(z) = [D, — zV.J’ in which

(39)
(40)

Di=2, Dp(t—iT —0), Vi= >, Vip(t—jT —0)

the quantity 6 being a random variable uniformly distributed between 0 and T
and the random variables D; and V; are statistically independent of the random
variables D,, and V,,, m # j. The function p(¢) is zero outside the interval
[0, T]. This simple situation can be analyzed in terms of an equivalent discrete
time-parameter process. In this case the process is independent of ¢, and is in
fact simply a Robbins-Munro process on the derivative of M(z) = E{Y.(z)}.
This process has been studied extensively; and, that the rate of convergence
cannot exceed n™" for a broad class of situations, is established by the work of
Schmetterer [13], Chung [3], or Sacks [10].

4. An application of the theorems. The most obvious application of the methods
discussed here to the field of communications and data processing is the optimum
filter or predictor problem. Here we state the filtering (or prediction) problem
in an appropriate setting and list a set of restrictions which are sufficient to
guarantee that the conditions of the theorems are met. From the standpoint
of physical applications, these restrictions seem to admit almost all situations of
practical interest.

The form of filter (or predictor) to be considered is shown in Figure 1. The
process V', is the one observed and the process S; is the one we desire to estimate.
This form is general in that any filter which operates on only a finite interval
of the input process can be approximated arbitrarily closely by such a form [2].
The parameters z; , 2, - - -, 2 are to be adjusted by the method of Section 2 in
order to minimize M (x) = E{WI[S, — @.(x)]} in which W is some appropriate
weighting function on the error, 8 — Q. For a discussion of how this procedure
can be mechanized by analog simulation and of the restrictions involved, the
reader is referred to Sakrison [11].

The following restrictions on the processes involved and the error weighting
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Flt
BOUNDED J
v, TIME - INVARIANT | £
OPERATIONS AR ,
ON Fs 2] 2
Vr Tst k.t X,
k

FILTER OUTPUT Q 2 X Fj  =ESTIMATE OF S,

t(x) i1

Fia. 1. Form of filter to be designed.

function are sufficient to guarantee that Conditions (i)—(iii) of the theorems are
satisfied :

(a) The processes F; ;¢ = 1,2, ---, k and S; are jointly ergodic and bounded
in magnitude w.p. 1.

(b) The correlation coefficient between any one of the F; and any linear
combination of the remaining F; is unequal to 1.

(¢) The function Wle] is assumed to be a polynomial of degree N, N < oo,
and required to be “strictly” convex in the sense that

Wiaa + (1 — a)b] £ aWla] + (1 — «)W[b] — Ed’la — b

0<ac=1l, EzZe>0 for 02 a=¢>0.

(d) Condition (iii) is assumed to hold for any random variable D, of the form
k k
Dt = (St)qu(Fj_t)q7, Z‘; q; § 2N.
J= J=

With the exception of restriction (c) these restrictions and their relation to the
conditions of the Theorems are quite straightforward. Restriction (¢) merely
states that the error weighting polynomial W must consist of a convex function
plus a positive quadratic term. For the proof that these conditions are sufficient
to satisfy the assumptions of the theorems see [12].
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