A THEOREM ON STOPPING TIMES

By R. M. BLuMeENTHAL AND R. K. GETOOR!
University of Washington

Let (2, P°, ¢) be a time homogeneous strong Markov process with right
continuous paths taking values in a locally compact space E with a countable
base. The purpose of this note is to give a characterization of the Borel fields
associated with stopping times for such a process.

Tor elaboration on the material in the next few paragraphs we refer the reader
to [1] (where a slightly different sample space and notation are used). Let A be
a point adjoined to E as the point at infinity if £ is not compact and as an
isolated point if E is compact. Let £ = E U A and let ® and ® denote the topo-
logical Borel fields of E and E respectively. A real valued function f on E is
always extended to £ by the convention f(A) = 0.

Tor the sample space @ we take the set of all right continuous functions w
from [0, ») to E which also satisfy w(t) = A if ¢ = o(w), where o(w) =
inf{t:w(t) = A}. Given ¢ = 0 the mapping w — w(t) is denoted by X(¢) or
X(¢, w), and X:Q@ — Q is the mapping X(w)(¢) = X(¢, w). Let F°(t) (5°)
denote the Borel field of subsets of @ generated by the sets X(s)™(B) with B
in®and s £t (s < ). If uis a probability measure on & we define P* on g
by P*(A) = fP”(A)p(dx) and define § to be the intersection over all such u of the
P* completions of §. Define 5(t) to be the Borel field consisting of those sets A
such that for each probability measure u on ® there are sets 4 in F(t) and N
in § such that P*(N) = 0and (4 — A) U (A — 4) = N. We note in passing
that in some previous work we defined F(¢) to be the intersection over all u of
the P* completions of $'(¢). In fact this gives an extension of F°(t) that is a bit
too restrictive; the extension given above is the one we should have used.

A function 7:Q — [0, »] is called a stopping time if for every ¢ > 0 the set
(T < t} is in §(¢). The Borel field $(T') is then defined to be

{AeF:AN{T <t} eF(¢) forallt}.

The strong Markov property implies that $(¢) = <. F(s) so that notation is
consistent with what one gets by regarding a constant function as a stopping
time.

Suppose now that 7' is a stopping time, and define the mapping Y:Q — @
by Y(w)(t) = Y(t,w) = X(min(¢, T(w)), w). For each ¢in [0, ) the mapping
w — Y (¢, w) is measurable relative to ® and F(7') so that if ¢’(T) denotes the
Borel field generated by the sets Y(t)™(B) with B in ® and ¢ in [0, ) we
have §°(T) < F(T'). Consequently if G(T') consists of those sets which for each
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finite measure u on ® differ from a set in G’(T') by an & set of P* measure 0 then
G(T) < g(T) also. Our theorem is as follows.

TaeOREM. §(T) = F(T).

This fact must be common knowledge, and its proof is very easy. But it is a
useful characterization of $(7T') and we have not been able to find a proof of it
in the literature. In the following paragraphs we will collect some standard
observations and then write down the calculation which leads to this result.

LemMA 1. If T is Q(T') measurable then G(T) = F(T).

Proor. Let u be a probability measure on ® and let f and N with or without
subscripts denote respectively a bounded & measurable function and a strictly
positive constant. Suppose g:Q — (— «, ) is a finite product of the form

(1) g(w) = IkI JS exp(=Nt)fe(X (2, w))dt.

If we write each integral in the product as foT + ﬁ then g may be written as a
finite sum of products where each summand has the form

@) (I fexp(—2)fu(X(0))dt) (IT [rexp(—=NDA(X (1))dt).

Let us now assume that 7 is G(T') measurable. Then the product over 7 in (2)
is G(T') measurable. On the other hand if A is in §(7') the strong Markov property
yields

E"(I;I J7exp(—Nt)f;(X(t))dt; A) = E“(so(X(T))exp(—T; A); A)

where o(z) = E° [[; [Fexp(—Nit)f;(X(t))dt. Of course o(X(T))exp(—T D_\;)
is g(T') measurable, so we have just showed that

(3) E'(g15(T)) = E*(g|5(T))

whenever g is of the form (1). It follows by standard reasoning that (3) remains
true whenever g is any bounded § measurable function, and since u is arbitrary
G(T) = F(T) is established.

LEmMA 2. Let T be a countably valued stopping time whose finite values are
a1 < as < --- and suppose that {T < a;} is in F°(as) for all ©. Then T is G°(T)
measurable.

Proor. Let Y:Q — Q be the mapping defined earlier in terms of X and T
and note that if A is a set in ¥°(a) then Y™'(A) N {T = a} isequalto A N {T = a}.
Now {T = ai} = Ayisin F(a;) and so A; = Y 7'(Ay). Let A, = {T = a} and
suppose as an induction hypothesis that A, = Y7'(A:) for all & £ n. Now
Y (Apy1) N AT = @it} = Apps N {T = anya} = Anp1, but the induction hy-
pothesis implies that ¥ (A,4:1) is disjoint from {T < a,} and so ¥ '(Apy) =
Any1, completing the proof.

It is easy to see that Lemma 2 remains valid if we alter the last hypothesis to
read {T = a;} is in F(a;) and the conclusion to assert that 7' is G(7T') measurable.
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Let T be a stopping time and define T, by T, = (k + 1)/2" if k/2" = T
<E+1)/2k=0,1,.-..,and T, = 0 if T = o0,

Lemma 3. 5(T) = NaS(Th).

Proor. It is obvious that $(7T) = M. F(T.). But Lemma 2, or rather the
sentence following its proof, asserts that T, is G(T,) measurable, and so by
Lemma 1, §(T,) = F(Th).

In the rest of the proof 7 will be a stopping time, T, will be defined as above,
and Y,:Q — Q will be defined as was Y earlier, but using T, instead of 7. We
will set

S(w) = inf{t: Y(t, w) = Y(r,w) forallr = 4.

Clearly S < T, S is §°(T) measurable and X(8) = X (T) whenever T is finite.

Let H be the set of holding points for our process. If {A,} is a collection of
open sets with compact closures forming a base for the topology of E then H
consists of A together with {x:sup,l An(x)E’(e—R") < 1} where R, is the time the
process first hits the complement of 4, . Consequently H is in ®. Given numbers
r < s, let

A(r, 8) = {w:X(r,w) e H, X(t, w) = X(r, w) foralltel]r,s]}.
Routine calculations show that for any probability measure 4 on ® we have
(a) P*(A(r, 8)) =0,

(b) P Y #Y,,X(T)eH, T < @) = PT < o, X(T)eH, X(t+ T)
# X(T) forsomet < 2™")—>0asn— o, and
(¢) PS<T,X(T)eH, T < ») £ > P*(A(r,8)) =0

where the sum in (¢) is over all rationals r, s with » < s.

If ¢t is any positive number then Iz<y = PY(T < t|G(T»)) = PXT < ¢,
X(T)eH|G(T.)) + PXT < ¢, X(T) gH|G(Tx»)). Because of (¢) the second
summand just above is the indicator function of {S < ¢, X(S) ¢ H}, which is
¢"(T) measurable. We may write the first summand as f-¢n(¥,) Where f is the
indicator function of {X(8)eH, 8 < =} and ¢,:Q — [0, 1] is F° measurable
and is such that ¢,(Y,) is a version of P*(T' < ¢ | G(T,)). Now f-¢.(Y) is §°(T)
measurable, and

B (lou(Ya) — ea(Y)|f) < PHX(T) e H, T < w0, Vs # ¥)

which according to (b) approaches 0 as n — . Thus regardless of u we have
Iir<y displayed as a limit in the mean with respect to P* of ¢°(T) measurable
functions. Hence T is G(T') measurable, and from Lemma 1 it follows that
g(T) = (7).
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