A THEOREM ON STOPPING TIMES

BY R. M. BLUMENTHAL AND R. K. GETOOR¹

University of Washington

Let (Ω, P^x, σ) be a time homogeneous strong Markov process with right continuous paths taking values in a locally compact space E with a countable base. The purpose of this note is to give a characterization of the Borel fields associated with stopping times for such a process.

For elaboration on the material in the next few paragraphs we refer the reader to [1] (where a slightly different sample space and notation are used). Let Δ be a point adjoined to E as the point at infinity if E is not compact and as an isolated point if E is compact. Let $\bar{E} = E \cup \Delta$ and let \oplus and $\bar{\oplus}$ denote the topological Borel fields of E and \bar{E} respectively. A real valued function f on E is always extended to \bar{E} by the convention $f(\Delta) = 0$.

For the sample space Ω we take the set of all right continuous functions w from $[0, \infty)$ to \bar{E} which also satisfy $w(t) = \Delta$ if $t \geq \sigma(w)$, where $\sigma(w) = \inf\{t: w(t) = \Delta\}$. Given $t \geq 0$ the mapping $w \to w(t)$ is denoted by X(t) or X(t, w), and $X: \Omega \to \Omega$ is the mapping X(w)(t) = X(t, w). Let $\mathfrak{F}^0(t)$ (\mathfrak{F}^0) denote the Borel field of subsets of Ω generated by the sets $X(s)^{-1}(B)$ with B in \mathfrak{B} and $s \leq t$ ($s < \infty$). If μ is a probability measure on \mathfrak{B} we define P^{μ} on \mathfrak{F}^0 by $P^{\mu}(\Lambda) = \int P^x(\Lambda)\mu(dx)$ and define \mathfrak{F} to be the intersection over all such μ of the P^{μ} completions of \mathfrak{F}^0 . Define $\mathfrak{F}(t)$ to be the Borel field consisting of those sets Λ such that for each probability measure μ on \mathfrak{B} there are sets A in $\mathfrak{F}^0(t)$ and N in \mathfrak{F} such that $P^{\mu}(N) = 0$ and $(A - \Lambda) \cup (\Lambda - A) = N$. We note in passing that in some previous work we defined $\mathfrak{F}(t)$ to be the intersection over all μ of the P^{μ} completions of $\mathfrak{F}^0(t)$. In fact this gives an extension of $\mathfrak{F}^0(t)$ that is a bit too restrictive; the extension given above is the one we should have used.

A function $T:\Omega \to [0, \infty]$ is called a stopping time if for every t > 0 the set $\{T < t\}$ is in $\mathfrak{F}(t)$. The Borel field $\mathfrak{F}(T)$ is then defined to be

$$\{\Lambda \in \mathfrak{F}: \Lambda \cap \{T < t\} \in \mathfrak{F}(t) \text{ for all } t\}.$$

The strong Markov property implies that $\mathfrak{F}(t) = \bigcap_{t < s} \mathfrak{F}(s)$ so that notation is consistent with what one gets by regarding a constant function as a stopping time.

Suppose now that T is a stopping time, and define the mapping $Y:\Omega \to \Omega$ by $Y(w)(t) = Y(t, w) = X(\min(t, T(w)), w)$. For each t in $[0, \infty)$ the mapping $w \to Y(t, w)$ is measurable relative to $\mathfrak B$ and $\mathfrak F(T)$ so that if $\mathfrak G^0(T)$ denotes the Borel field generated by the sets $Y(t)^{-1}(B)$ with B in $\mathfrak B$ and t in $[0, \infty)$ we have $\mathfrak G^0(T) \subset \mathfrak F(T)$. Consequently if $\mathfrak G(T)$ consists of those sets which for each

Received 14 January 1964.

¹ This research was supported in part by the National Science Foundation, NSF-GP1737.

finite measure μ on $\mathfrak B$ differ from a set in $\mathfrak G^0(T)$ by an $\mathfrak F$ set of P^μ measure 0 then $\mathfrak G(T) \subset \mathfrak F(T)$ also. Our theorem is as follows.

Theorem. $g(T) = \mathfrak{F}(T)$.

This fact must be common knowledge, and its proof is very easy. But it is a useful characterization of $\mathfrak{F}(T)$ and we have not been able to find a proof of it in the literature. In the following paragraphs we will collect some standard observations and then write down the calculation which leads to this result.

LEMMA 1. If T is S(T) measurable then $S(T) = \mathfrak{F}(T)$.

Proof. Let μ be a probability measure on \mathfrak{B} and let f and λ with or without subscripts denote respectively a bounded \mathfrak{B} measurable function and a strictly positive constant. Suppose $g:\Omega \to (-\infty, \infty)$ is a finite product of the form

(1)
$$g(w) = \prod_{k} \int_{0}^{\infty} \exp(-\lambda_{k}t) f_{k}(X(t, w)) dt.$$

If we write each integral in the product as $\int_0^T + \int_T^{\infty}$ then g may be written as a finite sum of products where each summand has the form

(2)
$$(\prod_{i} \int_{0}^{T} \exp(-\lambda_{i}t) f_{i}(X(t)) dt) (\prod_{j} \int_{T}^{\infty} \exp(-\lambda_{j}t) f_{j}(X(t)) dt).$$

Let us now assume that T is $\mathfrak{G}(T)$ measurable. Then the product over i in (2) is $\mathfrak{G}(T)$ measurable. On the other hand if Λ is in $\mathfrak{F}(T)$ the strong Markov property yields

$$E^{\mu} \Big(\prod_{j} \int_{T}^{\infty} \exp(-\lambda_{j} t) f_{j}(X(t)) dt; \Lambda \Big) = E^{\mu} \Big(\varphi(X(T)) \exp \left(-T \sum_{j} \lambda_{j} \right); \Lambda \Big)$$

where $\varphi(x) = E^x \prod_j \int_0^\infty \exp(-\lambda_j t) f_j(X(t)) dt$. Of course $\varphi(X(T)) \exp(-T \sum_j \lambda_j)$ is $\mathfrak{L}(T)$ measurable, so we have just showed that

(3)
$$E^{\mu}(g \mid \mathfrak{G}(T)) = E^{\mu}(g \mid \mathfrak{F}(T))$$

whenever g is of the form (1). It follows by standard reasoning that (3) remains true whenever g is any bounded \mathfrak{F} measurable function, and since μ is arbitrary $\mathfrak{F}(T) = \mathfrak{F}(T)$ is established.

LEMMA 2. Let T be a countably valued stopping time whose finite values are $a_1 < a_2 < \cdots$ and suppose that $\{T \leq a_i\}$ is in $\mathfrak{F}^0(a_i)$ for all i. Then T is $\mathfrak{F}^0(T)$ measurable.

PROOF. Let $Y:\Omega \to \Omega$ be the mapping defined earlier in terms of X and T and note that if Λ is a set in $\mathfrak{F}^0(a)$ then $Y^{-1}(\Lambda) \cap \{T \geq a\}$ is equal to $\Lambda \cap \{T \geq a\}$. Now $\{T = a_1\} = \Lambda_1$ is in $\mathfrak{F}^0(a_1)$ and so $\Lambda_1 = Y^{-1}(\Lambda_1)$. Let $\Lambda_k = \{T = a_k\}$ and suppose as an induction hypothesis that $\Lambda_k = Y^{-1}(\Lambda_k)$ for all $k \leq n$. Now $Y^{-1}(\Lambda_{n+1}) \cap \{T \geq a_{n+1}\} = \Lambda_{n+1} \cap \{T \geq a_{n+1}\} = \Lambda_{n+1}$, but the induction hypothesis implies that $Y^{-1}(\Lambda_{n+1})$ is disjoint from $\{T \leq a_n\}$ and so $Y^{-1}(\Lambda_{n+1}) = \Lambda_{n+1}$, completing the proof.

It is easy to see that Lemma 2 remains valid if we alter the last hypothesis to read $\{T \leq a_i\}$ is in $\mathfrak{F}(a_i)$ and the conclusion to assert that T is $\mathfrak{G}(T)$ measurable.

Let T be a stopping time and define T_n by $T_n = (k+1)/2^n$ if $k/2^n \le T < (k+1)/2^n$, $k = 0, 1, \dots$, and $T_n = \infty$ if $T = \infty$. Lemma 3. $\mathfrak{F}(T) = \bigcap_n \mathfrak{F}(T_n)$.

PROOF. It is obvious that $\mathfrak{F}(T) = \bigcap_n \mathfrak{F}(T_n)$. But Lemma 2, or rather the sentence following its proof, asserts that T_n is $\mathfrak{G}(T_n)$ measurable, and so by Lemma 1, $\mathfrak{G}(T_n) = \mathfrak{F}(T_n)$.

In the rest of the proof T will be a stopping time, T_n will be defined as above, and $Y_n:\Omega\to\Omega$ will be defined as was Y earlier, but using T_n instead of T. We will set

$$S(w) = \inf\{t: Y(t, w) = Y(r, w) \text{ for all } r \ge t\}.$$

Clearly $S \subseteq T$, S is $S^0(T)$ measurable and X(S) = X(T) whenever T is finite. Let H be the set of holding points for our process. If $\{A_n\}$ is a collection of open sets with compact closures forming a base for the topology of E then H consists of Δ together with $\{x\colon \sup_n I_{A_n}(x)E^x(e^{-R_n}) < 1\}$ where R_n is the time the process first hits the complement of \bar{A}_n . Consequently H is in $\bar{\mathbb{G}}$. Given numbers r < s, let

$$\Lambda(r,s) = \{w: X(r,w) \in H, X(t,w) = X(r,w) \text{ for all } t \in [r,s]\}.$$

Routine calculations show that for any probability measure μ on $\mathfrak B$ we have

$$(a) P^{\mu}(\Lambda(r,s)) = 0,$$

(b)
$$P^{\mu}(Y \neq Y_n, X(T) \varepsilon H, T < \infty) \leq P^{\mu}(T < \infty, X(T) \varepsilon H, X(t+T))$$

$$\neq X(T)$$
 for some $t \leq 2^{-n} \rightarrow 0$ as $n \rightarrow \infty$, and

(c)
$$P^{\mu}(S < T, X(T) \not\in H, T < \infty) \leq \sum P^{\mu}(\Lambda(r, s)) = 0$$

where the sum in (c) is over all rationals r, s with r < s.

If t is any positive number then $I_{\{T \leq t\}} = P^{\mu}(T < t \mid \mathfrak{G}(T_n)) = P^{\mu}(T < t, X(T) \varepsilon H \mid \mathfrak{G}(T_n)) + P^{\mu}(T < t, X(T) \varepsilon H \mid \mathfrak{G}(T_n))$. Because of (c) the second summand just above is the indicator function of $\{S < t, X(S) \varepsilon H\}$, which is $\mathfrak{G}^0(T)$ measurable. We may write the first summand as $f \cdot \varphi_n(Y_n)$ where f is the indicator function of $\{X(S) \varepsilon H, S < \infty\}$ and $\varphi_n : \Omega \to [0, 1]$ is \mathfrak{F}^0 measurable and is such that $\varphi_n(Y_n)$ is a version of $P^{\mu}(T < t \mid \mathfrak{G}(T_n))$. Now $f \cdot \varphi_n(Y)$ is $\mathfrak{G}^0(T)$ measurable, and

$$E^{\mu}(|\varphi_n(Y_n) - \varphi_n(Y)|f) \leq P^{\mu}(X(T) \varepsilon H, T < \infty, Y_n \neq Y)$$

which according to (b) approaches 0 as $n \to \infty$. Thus regardless of μ we have $I_{\{T < t\}}$ displayed as a limit in the mean with respect to P^{μ} of $\mathfrak{S}^{0}(T)$ measurable functions. Hence T is $\mathfrak{S}(T)$ measurable, and from Lemma 1 it follows that $\mathfrak{S}(T) = \mathfrak{F}(T)$.

REFERENCE

[1] BLUMENTHAL, R. M., GETOOR, R. K., and McKean, H. P., Jr. (1962). Markov processes with identical hitting distributions. *Illinois J. Math.* 6 402–420.