ESTIMATORS OF A LOCATION PARAMETER IN THE ABSOLUTELY
CONTINUOUS CASE'

By R. H. FARRELL
Cornell University

0. Summary. In the last decade there have been a number of papers dealing
with the admissibility of translation invariant estimators of a location parameter.
Blyth [2] treated sequential procedures in the case of normally or rectangularly
distributed random variables. If d is estimated and 6 is the actual parameter
value, for Blyth, op. cit., loss was measured by W(|d — 6|) where W(.) was a
nondecreasing function on [0, «). In the same year Blackwell [1] treated the
fixed sample size problem in the case of discrete random variables taking only a
finite number of values. For Blackwell, op. cit., loss was measured by W(d — 6)
where W (-) was assumed continuous and bounded from below but otherwise
arbitrary. Blackwell showed that if the discrete random variables (which could
be vector valued) took values only on the integer lattice points and if there was
a unique minimax translation invariant estimator then it was admissible. Later
papers by Karlin [7] and Stein [11] discuss the admissibility of Pitman’s estimator
for square error.

In reviewing these results we discovered that if the loss satisfied

(0.1) 0 =z < yimplies W(z) < W(y), y < z < 0implies W(z) < W(y),

and if there were several minimax translation invariant estimators then no
translation invariant estimator could be admissible. This and a related result
constitutes Section 4.

It was logical to ask the converse question, does uniqueness imply admissibility ?
In the case of square error Pitman’s estimator (except for changes on sets of
measure zero) is necessarily unique since the loss function is strictly convex. In
the case of normally distributed random variables and symmetrical loss functions
as considered by Blyth, op. cit., the sample mean is the uniquely determined
minimax translation invariant estimator.

In this paper we have restricted the discussion to random variables which
have density functions relative to Lebesgue measure. Since it proved possible
to deal with the question of admissibility for a larger class of estimators than
the translation invariant estimators, we define generalized Bayes estimators as
the solution of a minimization problem. Section 2 deals with the question of the
existence of measurable solutions to the minimization problem. Sections 5 and 6
deal with the question, does uniqueness imply admissibility?

Section 3 deals with the question of whether generalized Bayes estimators are
strongly consistent and shows that under mild restrictions this is the case.
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9560 R. H. FARRELL

Section 8 is a generalization of the results of Katz [8] for minimax estimators
of 60, ). We show how to construct such estimators whenever loss is meas-
ured by W(d — 6), W(-) strictly convex, non-negative, W(0) = 0.

Blyth, op. cit., proved admissibility only within the class of continuous risk
functions. In Section 9 we remove this restriction. We then show that if the loss
function W( ) is strictly convex and symmetrical then the sample mean based
on 7 observations is admissible, in the nonparametric context of estimating the
mean of an unknown density function, within the class of all sequential pro-
cedures having expected sample size < n.

1. Introduction. Let f(- , ---, -) be a non-negative Borel measurable func-
tion defined on Euclidian n-space such that
(1.1) 1=f f fley, +o-,2,) doy -+ - dz, .

Throughout we study estimators of the parameter 6 for the family
(12) {f(-—0,~--,-—0),—00<0<°0}

of density functions. We will suppose a non-negative Borel measurable function
W(-) of a real variable is given. If 8 is the actual parameter value and d is the
estimated value then W(d — @) is the measure of loss.

Throughout we discuss generalized Bayes estimators 6( -, ---, -), defined as
follows. Suppose g( -) is a non-negative Borel measurable function. Suppose for
all vectors (1, - -+, z,) in Euclidian n-space that

[ W, ) = 0@ = 6, -+, 5. — 0)g(6) o

—Q

(1.3) - \
= inf,;‘j_- W™ (xy, -+, @) — 0)f(xs — 6, -+ -, x, — 0)g(6) db.

Then 6(-, ---, -) will be called a generalized Bayes estimator relative to the
weight function g( - ).

If [2.g(6)d8 < o then §(., ---, -) is a Bayes estimator. For the weight
function g(6) = 1, — © < § < w,and W(z) = 2°, — © < z < o, the estimator
which results is Pitman’s estimator. See Pitman [10]. This estimator is minimax
within the class of all estimators, see Girshick and Savage [5]; under liberal
conditions the estimator is admissible, see Stein [11].

In case g(6) is identically one the estimator 8( -, - - -, -) (if uniquely defined by
(1.3)) is translation invariant, i.e.

for all real numbers ¢ and vectors (1, - - -, ),
8wr+e oy ntc) =081, -, 20) + e

8(-, -+, -) must be minimax within the class of all invariant estimators; from
results of Kiefer [9], 6(-, ---, -) must be minimax within the class of all esti-
mators. Estimators of this type were discussed by Blyth [2] in the case f(-) is a

(1.4)
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normal density and W(-.) satisfies, for all z, W(xz) = W(—=z). Blyth shows
that if 6 has finite risk then & 'is admissible (within the class of all estimators
based on a sample size n).

Location parameters for discrete random variables taking only a finite number
of values were studied by Blackwell [1]. If the loss function is continuous and if
the analogue of Pitman’s estimator is uniquely determined then it is admissible.
Blackwell gives an example in which W(z) = |z|, — » < 2 < =, where the
analogue of Pitman’s estimator is not uniquely determined and shows every
translation invariant estimator must be inadmissible.

In Section 4, W( ) satisfying

if £<y=<0 then W(z)> W(y) =0,
(1.5) if 2>y =0 then W(z) > W(y) =0,
W(0) = 0,

we show that a necessary condition for admissibility of a solution of (1.3) with
g(8) = 1 is that there be a unique solution of (1.3), a parallel with Blackwell’s
results. In Section 5, for a more restricted class of functions W(-), and for a
certain class of functions g(-), we show uniqueness implies admissibility. We
will not state here the necessary conditions.

Fox and Rubin [4] have studied loss functions of the form W(z) = a(|z| — z)
+ b(lz| + z) and have shown that uniqueness of the solution of (1.3) for the
weight function g(6) = 1 implies admissibility. Their result is stronger than the
results of Section 5 applied to this case.

Let

(1.6) g(6) =0, § =0, g(0) =1 06>0,

W (-) be strictly convex and satisfy the Condition (7.4) (see Section 7). Then
the solution 6(-, --., -) to (1.3) with this ¢g(-) is a minimax estimator
of 6 £ [0, «). This includes the result of Katz [8] and a similar result of J. Sacks
(unpublished ). The methods of Section 5 do not give a proof of admissibility for
this choice of weight function. In Section 8 we prove a general admissibility
result in the special case W(z) = «’. This includes the admissibility result of
Katz, op. cit. In the case of minimax estimators of 6 £ [0, «) there will in general
be many different and admissible minimax estimators. See the discussion in
Section 8.

In Section 9 we consider the following non-parametric problem. Suppose
W(-) is a strictly convex symmetric function and Q is a class of density functions
satisfying

(1.7) if feq, / W(z)f(z) dv < «, and for every realc, f(- — ¢)eQ.

Let 8(z1, -+, @) = (1/n) D ta i, and 8(f) = [2, xf(x)de. Within the class
of all sequential procedures with expected sample size < nforallf e Q,8(., ---, -)
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is an admissible estimator, provided for some » > 0,
1/(2n7)} exp(— (1/2r)2%) € Q.

We obtain this result by restricting the problem to one about normal random
variables. By a modification of arguments due to Blyth [2] we are able to show
in the normal case 8(-, ---, -) is the unique minimax estimator (except for
changes on sets of measure zero). This answers a question left open by Blyth
whose admissibility proof was valid only for estimators in the class of sequential
procedures having continuous risk functions.

For a given weight function g(-) we consider the sequence of solutions

{(6,(+, -+, +),n =1} to (1.3) for the sample sizes n = 1,2, - --. Under mild
restrictions, and if W(-) is bounded or convex and satisfies
(1.8) infjz e W(z) >0 forall >0, w(0) = 0,

we prove strong consistency in Section 3.

In the case of a scale parameter o, given the family {(1/¢)f(z/c),0 < ¢ < oo}
of density functions, loss measured by W((d — ¢)/c), the parameter may be
changed to a location parameter using the substitutions § = log o, y = log z,
and loss W*(d — 6) = W(e*™® — 1). In case W () is convex, W*(-) is not
convex but satisfies (provided W(0) = 0)

(1.9) sup.<o W*(z) < o, W¥(.)isaconvex function of z = 0, W*(0) = 0.

This explains what might otherwise seem like a bizarre type of loss considered
in Section 5.

Some restrictions used in Section 5 may be removed by different methods not
found by us. In Section 3 the restrictions used to show certain sequences of
functions are uniformly integrable are unnecessarily restrictive. One feels (see
Section 8) that the estimators considered in Section 7 must be admissible for a
bigger class of loss functions than square error. It remains an open question
(Section 9) whether for symmetric loss functions W( -) not strictly convex the
estimator (1/n)Y i z, is the only minimax estimator of the median based on
n observations. These are, we feel, a few of the questions left open by this paper.

2. Existence of nonrandomized estimators. This section establishes notation
and lemmas needed throughout. We have been advised by the referee that the
types of results stated here, and their proofs, are well known. Proofs are omitted.

If n = 1, E, will be n-dimensional Euclidian space. Throughout z will be a
real number, y a vector in E,_; . u(-) will be a probability measure defined on
the Borel subsets of B,_;. f(-, -, -) = Oon E, x E,; x E, to E; is jointly
measurable in the three variables and

1=fff(w,y,0)dxu(dy), —0 <0 < .
(21)
1=ff(x,y,0)dx, yeEB,1, —»o <0< o.
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Later we will specialize to
(22) for all (xr Z/) eE, , —o <0< » f(x, Y, 0) = f(x — 6,y 0)

In this case the third variable will not be indicated.

A density function of the form (2.2) may arise as follows. Suppose fi(-) is a
density function defined on E; . The joint density of n independent observations
each with fi( -) as density function is

filer — 0)fi(xs — 0 + y1) - fi(@r — 0 + Yo) with

Yi = Tiy1 — L1, 1=7=n-—1.

(2.3)

We define f( -, -) as

flz,y) = == Il(x)fl(x + ) o fil@ F Yua) _

and u( ) by, for all n — 1 dimensional Borel sets 4,
n—1

(25) w4) = / e /A [:fl(x)fl(x —|— Y1) -+ il + Yar) do 1I=I1 dy; .

The interpretation of f(-, -) and u(-) given by (2.4) and (2.5) is required
in Section 3 to prove strong consistency. In the remainder of this paper all
results are valid for the general function of the form (2.2).

If a decision d is made (i.e., d is the estimated value) and if 6 is the actual
parameter value, loss will be measured by W (d — 8). We will assume throughout
that W (.) satisfies the following conditions.

(2.6) W) =20, —wo<z< »; w(0) = 0;
if 0 <2 £z then W(a) £ W(a);
if 0= =2 then W(x) = W(xg).

Throughout, if (-, -) is an estimator then
(27) R(5,6) = [[ Wz, y) — 0)i(a, ,0) da w(dy)

defines the risk function of B(s, -) of 8(-, ).
DerinirioN. Define F( -, -, -) by

(28) Fe,z,y) = [ W(e — 0)f(z, 3, 0) Mab).

Suppose A\(-) is a o-finite measure defined on the Borel sets of E;. Suppose
8( -, -) is a measurable function on E; x E,_; to E; such that for some measurable

SetN C E1 X En—l,

20 °7 [[ dout@y) andit (z,9) 2N, F(a(z,0),3,v)

= inf, F(c,z,y) < oo.
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Then &( -, -) will be called a generalized Bayes estimator for X( -). In most appli-
cations the set of values ¢ such that F(c, z, y) = inf, F(¢, «, y) will be compact.
If 8(x, y) is a generalized Bayes estimator such that for each (z, y), 6(x, y) is
the largest number ¢ satisfying F(c, z, y) = inf. F(c, z, y) then we will call
8(z, y) the maximal generalized Bayes estimator. Similarly one may define the
minimal generalized Bayes estimator. If \(-) is a totally finite measure then
8( -, -) is a Bayes estimator.
If

(2.10) W( ») = limg., W(zx), W(— ») = lim,,_o W(z),

and if min(W(— »), W(»)) < o, it may be necessary to allow values of
— » or + o in order to establish the existence of nonrandomized generalized
Bayes estimators. Theorem 1 below is needed in later sections to prove the
existence of nonrandomized estimators.

TuEOREM 1. Assume the definitions above and that W(-) satisfies (2.6). Let
N c E, x E,_; be a measurable set satisfying (2.9) and such that

(2.11) if (z,y)eN, infF(czy) < *.

Suppose one of the following hypotheses is satisfied: (1) W(-) s continuous and
N(-) is a o-finite measure; (2) N(-) ts a nonatomic o-finite measure. Then there
exists a maximal generalized Bayes esttmator and there exists a minimal generalized
Bayes estimator, each satisfying (2.9).

In certain cases in which the function W ( -) is differentiable one might expect
that

(2.12) (% [ e = 0)p(a, 3, 0) >\(d0)>

W' the derivative of W(-). We state a lemma.

Lemma 2.1. Suppose in addition to (2.6) that W ( -) is convex. Let W'(-) be the
right continuous derivative of W( - ). Suppose \(-) is a nonatomic o-finite measure
defined on the Borel sets of Ey . If for some (z, y) € BEx x En.1 and real numbers
a <b,

= f W,(CO - O)f(x, Y, 0) )\(dO),

c=cy

(2.13) f Wic — 8)f(z,y,0) Mdf) < = a <c<hb,
then
(2.14) f [W'(c — 0)| f(z,y,0) \N(df) < ©, a<c<Db,

and (2.12) holds if co € (a, b).
Lemma 2.2. Suppose in addition to (2.6) that W( -) is convex and

(2.15) limjzjne W(z) = .

Suppose there is a measurable set Ny C E; x E,_; satisfying [ [ vdzu(dy) = 0
such that if (x,y) € Bx x E.1, (z,y) 2 N1, then
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(216) [ W(e— 0)f(z,5,0) Nds) < », —w <¢< .
If \(-) 7s nonatomic then every generalized Bayes estimator 8( -, - ) for N(-) satisfies
(217) 0= [ Wz, y) — 0)f(z,v,0) Mdb)

except possibly for (x, y) € N1 ; fle dzu(dy) = 0.
ExampLE. W(z) = |z|. Let f(z, y, 8) = f(x — 0). Let \(-) be Lebesgue
measure on the Borel sets of F;. By the preceding the maximal generalized

Bayes estimator §( -) for \( -) satisfies
8(x)

0= [ W) — o)~ d= [ ja—16)ds
(2.18) -

0

© x—06 ()

~[ fa-0a=[ jo-[ " jo)a.
8(z) z—08(2) —o0

It follows that

z—0 ()
(2.19) 3= f 1(6) db, —w <3 < .

—00

Therefore + — 8(x) is a median of f(-). If f(-) has several median values, say
¢ and d, then é,(x) = z — ¢ and ds(z) = 2 — d are both generalized Bayes
estimators for A(-). In Section 4 we show this lack of uniqueness implies 8,( - )
and 84( -) are inadmissible.

3. Strong consistency. In this section we will consider only independent iden-
tically distributed random variables with common density function f(- — 8)
relative to Lebesgue measure on the line. We will suppose a o-finite measure
N(-) defined on the Borel sets of E; is given. We consider the sequence
{6.(-), n = 1} of generalized Bayes estimators defined by

if n=1, all (1, -, 2,) eE,, /W(&n(xl, ceey ) —0)111

(3.1) .
f(z: — 0)N(d8) = inf, f W(e = 0) L #(a: — 0) Nan).

We give in Theorem 2 sufficient conditions that the sequence {5,(-),n = 1} be a
strongly consistent sequence of estimators.

We will suppose E., is the set of all real valued functions defined on the integers
n = 0, E, given the Cartesian product topology. We let & be the c-algebra of
Borel sets of E, . We denote points of E,, by e. We suppose there is defined on
(Ev, ) a o-finite measure u( -) satisfying,

if n =2 0and A4,, ---, A, are Borel sets of E;, and if

E={e|e(®) ecd4;,0 =7 =n}, then

wm = [ ([ ) ”1f<xi—y>21=1dxi) \dy).

n 1=

(3.2)
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AssumptrioN 1. There is an integer M; = 1 such that if n = M., then (3.1)

defines a generalized Bayes estimator 8,( - ) for A(-).

AssumpTioN 2. W( -) satisfies (2.6). If € 5 0 then W(e) > 0.

AssumptioN 3. W(-) is a bounded function; or, W(.) is convex and there
exists a constant X > O such that

if — oo <z,y < o then

Wz +y) < KW(x) + W(y)) and W(-z) < K W(z)
Define functions X,(-),n = 1 on E, by
(34) if nz=l, X.(e) = e(n), all eckE,.

(3.3)

Let §, C & be the least o-algebra of sets in which X;(-), - - -, X.(-) are measur-
able.

AssumpTioN 4. There exists an integer M, such that if n = M, then u(-)
restricted to F, is a o-finite measure. There exists in F, a sequence of sets
{A,,n = 1} satisfying if n = 1, 4, C App1, u(ds) < », Ui 4; = E,, and
[ o W(e(0))u(de) < co.

AssumerioN 5. If W(.) is bounded then W(.) is a continuous function or
A(-) is a nonatomic measure. If W( ) is bounded then lim.., W(z) = 0.

Define a measurable function ( -) by 9(e) = ¢(0),allec E,, .

TuEOREM 2. Given Assumptions 1 to 5, if {8.(-), n = 1} are defined by (3.1),
then for almost all e € E,(u),

(35) limn—»ooan(Xl(e)) R} Xn(e)) = 0(6)'

The remainder of this section consists in the proof of Theorem 2. Let F, C &
be the least o-algebra of sets containing U5—.F, . We will show first that there is
a real valued function 8*(-) on E, , measurable in &, , such that

(3.6) 5%(e) = 6(e) except for e in a set of u(-) measure zero.

Suppose ¢( -) is a bounded strictly increasing function. Then

1 oW = [ s@ e -y o= [ o=y @) i

It follows that ¢™( -) is a strictly increasing function. Conditional on § = y the
random variables (measurable functions) {X,, * = 1} are independent and
identically distributed with conditional density function f(- — y). By the
strong law of large numbers with probability one,

(3.8) limps, 1/0 2 $(X:) = ¢7(y).
Since this holds for each y, by Fubini’s Theorem,
(3.9) 1Moo 1/n$;l B(Xi(e)) = ¢™(6(e))

except for e in a set of measure zero.
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Since ¢*( -) is strictly increasing, and continuous,
(3.10) liMyae 6™ (1/n ), (X)) = 6 ace.
=1

The function ¢**(1/n)_ 1y ¢(X(-))) is measurable in §, C F., . Therefore the
limit in (3.10) is measurable in &, . Note that this does not assert 8( - ) is measur-
able in F,, .

Using the result just obtained we show the proof of strong consistency may be
reduced to a problem in probability theory. Let M, and {4, ,n = 1} be as in
Assumption 4. Let
(3.11) (), m = 1)

be the characteristic functions of the sets A,, n = 1 taken to be functions
defined on E y, . Define constants {¢, , n = 1} by

Mo M
812) if n =1, Cn = f cee fahn(xl, ---,xMZ)IIlf(xi — y)IIldxi)\(dy).
By Assumption 4, if n = 1, ¢, < «. We may therefore define on (E, , F) proba-
bility measures {u.(-), n = 1} by
(8.13) if m=1, AeF, then  p(4) = (1/c.)u(4 N A,).
From (3.1) it follows that

if n=1 m= M,, then

(3.14) f‘hn(wlr",%) W(om(@1,- - -, Tm) —Yy) ﬁf(xl — y) \dy)

= E(W(%n —0) | ﬁm)fm,. (21, "’)xm)ﬁf(xi —y)Mdy) ae p(-)

and that if 8’ is any function measurable in ,, then
(315) E(W(am - 0) lgm) = E(W(a’ - 0)' "}m) a.e. un ,
this holding for all m = M, . To prove the theorem it is clearly sufficient to show

lilnm-mo SbAn(Xl y Ty Xm)W(am(Xl )y Ty Xm) - 0)

(3.16)
=0 ae m(:), n=1

as follows from Assumption 4. To prove (3.16) we require the existence of a
function 8™( -) measurable in %, and equal to 6( -) except on a set of measure
zero. From the first part of the proof it follows that if n» = 1 this condition is
satisfied for the measure p,( - ).

The subsequent argument is not affected by the simplification M, = 1. We
assume this simplification. We will drop the subscript and refer simply to a
probability measure u( -).
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Define functions {65(-), n = 1} by

(3.17) if W(.) is bounded, &% = tan(E(arc tan 6 | F.)) ae. n(-), n=1l
' If W(.) is convex, &% = E(0|F,) a.e. u(-).

If W(.) is convex our Assumption 4 implies

(3.18) E(W(6)) < ,
from Assumption 2 it follows that
(3.19) limgse W(z) = oo,

Taken together (3.18) and (3.19) imply
(3.20) Elo] < .

Therefore the definition in (3.17) is justified.
Define sets A(n, j,e),n = 1,7 =2 0,¢ > 0 by

(321) A(n, j, €) is the event [nri — Onpe] < ¢
' i=0,--,j—1 and [0, — 0% > e
Thenifn = 1,7 =2 0,e > 0, A(n, j, €) €Fnyj.
It follows from (3.15) that

[, WGuie) = 0() uide)

= E(W (8uts — 8) | Fuys)(e) plde)

(3.22) Atn 3,9
= Aln, 7,0 E(W(8n1s — 0) | Fayi)(e) n(de)
= Jumio W(onsi (e) — 6(e)) n(de).

If W(-) is convex then using (3.3), Jensen’s inequality and the fact the sets
A(n,0,¢), A(n, 1, €), -- - are pairwise disjoint it follows that

S Wt (o) - 00e)) ulde)
=0 v A(n, j, ¢€)

(3.23)

< (K + K) [ W(e(e)) nlde) < <, nzl
If W(.) is bounded then
(324) 20 fm ) )W(61'5+f (e) — 6(e)) u(de) = sup. W(z), n L

From the definition of the functions {6%(-), » = 1}, the martingale theorems,
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Doob [3], and the relation § = E(6]|F.) except on a set of measure zero, it
follows that

(3.25) limp.e 87 = 6 ace. p(-).

Define for n = 1, ¢ > 0 sets B(n, ¢) by

(3.26) B(n, €) is the event supmx, |65 — 8] < /2.
Then

(3.27) if €>0, limy., u(B(n, €)) = 1.

On the event B(n, ¢) N A(n, j, €),

(3.28) [8nti — Snmesl > ¢ and [o7y; — 0] < /2.
It follows that

(3.29) [6uss — 6] > /2.

Then by (3.22)
min (W(e/2), W(—¢/2)) u(B(n, e) NA(n,j, e))

(3.30) = SN (CORLIONICD

= , W(8%4+i(e) — 6(e)) u(de).

A(n, 7, €

Define sets A(n, ¢) forn = 1 and ¢ > 0 by
(3.31) A(n, €) = UOA(n, Js €).
i
A(n, €) is the event that SUDnsn [6n — on| > e
From (3.30),
min (W (e/2), W(—¢/2)) u(B(n, ) N A(n, €))

(3.32) < 2 f o, (ks (&) = 0(e)) ulde).

The proof will be completed by showing the right side of (3.32) tends to zero
as n — . For since min(W(e/2), W(—¢/2)) > 0 and since (3.27) holds if
e > 0 it will follow that if € > 0, lim,.,, u(4(n, €)) = 0. That is to say,

(333) if e > 0, p({e | lim Supn.. |6.(e) — du(e)] > ¢) = O.

From (3.25) the conclusion of Theorem 2 will follow. To prove the right side of
(8.32) tends to zero we will prove uniform integrability. In view of (3.32), (3.24)
it suffices to show

(334) 0 = lima.o Sup"(B)glA ./; ZO Kl’(n’ j’ € 6) W(5:+j (6) - 0(3)) /‘(de)
nz Jj=
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whereifn = 1,5 = 0,¢ > 0,¢(n, J, ¢, -) is the characteristic function of A(n, 7, €).
If W(-) is bounded (3.34) follows at once. If W(.) is convex then by Jensen’s
inequality,
W(onts — 0) < K(W(E(0|Fnts)) + W(—90))

< KE(W(9)| Fuis) + K'W(0).

It suffices to show (3.34) holds for the functions E(W(8)| Fnts),n = 1,7 = O.
Let ¢»( -) be the characteristic function of the set B.

(3.35)

[ 35 95(6) 90,3, 0) BOW(O) | 52ts) ) lde)

J=

(3.36) .
= [ B 150) (&) ¥, d ¢ ) W(o(e)) ulde).

Since the sets A(n, j, €), 7 = 0 are pairwise disjoint it follows that

(3.37) > B San e ) S 1 ae.n()
and

(3:38) [ 2 B 150 ¥, & 0) w(de) S w(B).
Let

(3.39) ¢ = [W(o(e)) ulde).

By the Neyman-Pearson lemma, among all functions ¢ on E., satisfying
(340) 0<¢ =1, fﬂdﬂw)§A

a function ¢™(-) such that
(41) [ () W(0(e)) u(de) = supy [ 9(e) W(0(e) u(de)

is given as follows.
If >0 let Ei(a) be the event W(8) > ac;
(3.42) let Ey(a) be the event W(0) < ac;
let Es(a) be the event W(9) = ac.
Choose a = ay to satisfy

(3.43) w(Er(on)) S A, limeeg, u(Fi(a)) Z A.
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Let 8 = 0 satisfy
(3.44) A = p(Ei(aw)) + Bu(Es(w)).
Define ¢*(-) by
¢*(e) =1, eeEi(am);
(3.45) ¢*(e) =8, eeEBy(an);
6*(e) =0, eeEya).
It follows from (3.37), (3.38), (3.41) and (3.45) that

SUDu(B) <4 f; 2 Wn, j, ¢, e) W(0(e)) u(de)
(3.46) ~
<

/ W(6(e)) u(de).
{elW(8(e)) 2 ape)

From (3.46) it follows that (3.34) must hold.
Having established uniform integrability the proof is completed by showing

(3'47) lirnn-voo 2)10(”, j) €, ')W(6:+f - 0) =0 ae. ”’( ')'
=
But
(3.48) Zolﬁ(n, Jr & )W (8nys — 0) = supjzo W(snss — 6).
=

Since W( -) is assumed to be continuous at zero, (3.47) follows from (3.48) and
(3.25). That completes the proof of Theorem 2.

4. Nonuniqueness and inadmissibility. In this section we will continue using
the notation of Section 2 with one modification.  will be a real variable, y an
n — 1 dimensional vector variable, u( -) a probability measure on the Borel sets
of E, ;. We will discuss the family of density functions

Let D; be the family of estimators of the form x + §(y). In the terminology of
the introduction z + 8(y) is a translation invariant estimator. The risk of such
an estimator is

ff Wz + 8(y) — 0)f(x — 6, y) dz u(dy)
(4.2)

It follows that an element of D; is minimax in D; if and only if the element is a
generalized Bayes solution for the weight function g(8) = 1, — » < § < .
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Therefore if x 4+ 8(y) is minimax in Dy,

for almost all , f W(s(y) + )6, y) do
(43)
= inf, [ W(e + 0)f(6,9) b

From this it follows at once that if x 4+ 8:(y) and 2 + 8:(y) are two estimators,
each minimax in D; then the estimators

(4.4) z + min(&(y), 6:(y)) and 2z + max(8:(y), s:(y))

are minimax in D; .

We now state and prove the following theorem. We assume throughout the
sequel Dy has at least one estimator having finite risk.

TuEOREM 3. Suppose W( -) satisfies

45) #of 0=z <y Wk) < W(y); if y<z=20 W) < W(y).

If x + 8:(y) and x + 8:(y) are two estimators each minimazx in Dy define

(4.6) 4 = {y/6u(y) #= &(y)};

(4.7) let 1 be any real number;

48) 8z, y) = z + max(8i(y), &(y)), r =<,
8(z, y) = x + min(8:(y), %(y)), x >n.

If

(49) [ ] 1) dz wiay) > 0

then no estimator in Dy is admissible. The estimator (4.8) is better than every
element of Dy .

Proor. In view of (4.4) we may assume without loss of generality that
8:1(y) = 6x(y) for all y. By construction of §;(-) and d;( - ), for almost all y(u)
such that

(4.10) f_:f(x, y) dz < o,

z + 8:1(y) and z + d:(y) are minimax within the class of invariant estimators for
the family

(4.11) (G- = 6,y), —» <0< o}

of density functions. Consequently for almost all y(u),

(412) RW) = [ Wi + 6@y do = [ W + 66z y) i
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We now calculate
(413) R0 = [ Ws(a,y) — 0)fiz — 0,3) do.
We have

R0 = [ W+ ) - 0)f@ - 6,) do

+ fw W(z + &(y) — 0)f(e — 6,y) dz
(4.14) L
= R) + [ (W + 8y) — 0) = Wo+ ) — 0)a — 0,9) do

7+0
=R+ [ Wlo+ b)) — W + 5@ 9) d

We show W (z + 8(y)) — W(z + 6:(y)) as a function of z can change sign at
most once. If 2 £ — &(y) < — 8i(y) thenz 4+ 8i(y) = « + 6:(y) = 0. From
(4.5) it follows that W(z + 62(y)) — W(z + &u(y)) = 0. If —8(y) = —d.(y)
< zthen0 = z + 6(y) < = + 8(y). From (4.5) it follows that W (x 4 62(y)) —
Wz + 6:(y)) = 0.If —8(y) <z < —di(y) thenz + &(y) 0 = = + &(y).
Therefore in this interval — W (z + 8:(y)) is a nondecreasing function of z and
W(z + 68(y)) is a nondecreasing function z. These statements taken together
show

(4.15) F(z,y) = W(z + &(y)) — W(z + a(y))
can change sign at most once, — o <z < «;

limg,— Fz, y) = 0; limg.io F(z, y) = 0.

Since
(4.16) f_w F(z, y)f(z,y) de = 0
it follows that
7+6
(4.17) f F(z,y)f(z,y) de =0, —o <0< o,

If 8:(y) < 8(y) and given (4.5) the above argument shows that F(z, y) = 0
for at most one x. Therefore

7+0
(418) if &i(y) < 8a(y), —o0 <0< oo, f_: F(z, y)f(z,y) de < 0;

(419)  if &(y) < &(y), —o << o5 By 0) < R(y).
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On the hypothesis (4.9),
(4.20) /R(y, 0) u(dy) < fR(y) p(dy).

Theorem 3 now follows.

We consider in the following corollary the situation if there is a nontrivial
randomized invariant estimator which is minimax within the class of all random-
ized invariant estimators. A randomized estimator is a family of probability
measures \;,(-) defined on the real Borel sets, one measure for each (z, y).
The property of invariance says

(4.21)  for all Borel sets A, allreal z, N, ,(A) = Ny(4 — x).
CoROLLARY 3.1. Assume the hypotheses of Theorem 3 and in addition
(4.22) W(— o) = W( ).

Suppose Ny y(-) s a randomized invariant estimator minimazx within the class of
randomszed invariant estimators. Suppose on a set of y’s having positive u measure
the support of N,( -) contains more than one point. Then no randomized invariant
estimator is admissible. '

Proor. The risk function of A\, ,(-) is

[ W+ 2 — 00nanlde) Sz — 0,) do w(ay)
(4.23)
= [ff W(z + 2)f(x,y) dz Noy(dz) u(dy).

Therefore if \;,( -) is minimax within the class of invariant estimators then for
almost all ¥ (x) for almost all z in the support of Noy(-),

(4.24) f W(zx + 2)f(z, y) dz = inf, f W(z + ¢)f(z,y) dz.

For by Theorem 1 of Section 2 and using (4.22) there is an almost everywhere
finite valued estimator x + §(y) satisfying, for almost all y(u),

425) [ Wlo + s)ia,y) do = int, [ Wiz + o)f(z,y) do.

Since [ W(z + 2)f(z, y)dz is a continuous function of 2, and since the support
of Noy( ) is compact (=% « included) it follows that for almost all y(u), for all
z in the support of Ngy(-), (4.24) holds. This implies, using (4.22), that for
almost all y(x) the support of Ao, (-) is bounded.

Again by Theorem 1 of Section 2 and using (4.22) there is a minimal solution
2 + 81(y) and a maximal solution x 4 8:(y) each of which are solutions of (4.25)
and for almost all y(u) each estimator is finite valued. Consequently if on a set
of y’s of positive u measure the support of A, ( -) contains two points then on a



ESTIMATORS OF A LOCATION PARAMETER 965

set of y’s of positive u measure, &:(y) < 8(y). The Corollary now follows from
Theorem 3.

CoROLLARY 3.2. If W(z) = |z|, — ©» < z < o, and if f( -) s a density function
such that for numbers ¢ < ¢z,

(4.26) f_cl f(z) de = [czf(x) dz = 1/2,

then every tnvariant estimator based on a single observation is inadmissible.

(See the example at the end of Section 2.)

The following theorem is the final result of this section.

TuEOREM 4. Suppose W( -) is a continuous and even function satisfying (4.5).
If W(-) s not strictly convex there exists a density function f(-) which is an even
function having compact support and a real number ¢ 7= 0 such that

(4.27) [ Wi+ of@) do = int, [ "W + o)f(z) do.

From Theorem 4 it follows for the constructed density function that no in-
variant estimator can be admissible (smgle observation).

To prove Theorem 4 we first examine the case W(-) is not convex. There
must exist numbers xl, Ty, To satlsfymg 0 < z¥ < 2 < zy and such that if
0 < ap < 1 Ty = aoilll + (]. - ao)x2 then

(4.28) W(awf + (1 — a)ad) — aW(2l) — (1 — a0)W(2) > 0.
Define a function F(-) by
(4.29) F(a) = W(aat + (1 — a)ay) — aW(af) — (1 — a)W(x3).

Then F(-) is a continuous function and is positive at & = ao . Define numbers
a; , oz as follows.

o = supi{a | a<a,a = 0, F(a) = 0};
(4.30)

oy = infla|a > a,a £ 1, F(a) = 0}.
Define numbers z; , 2. as follows. ‘
(4.31) axt + (1 — an)2s = 215 aty + (1 — an)2s = 2.
Then
(432) if 0<a<l, W(az: + (1 — a)z:) — aW(z1)

— (1 — a)W(x:) > 0.

Define numbers €, z3 by
(4.33) = (@ — 21)/2; @ = (m+ 2)/2.
Suppose fs( -) is a density function satisfying

z3+8
(434) it == <z <, f@) =f(=a); 2= [ pe) dn
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Then
limg.g Lo W (z)fs(z) de = 1/2 W(—x3) + 1/2W (x3)

= W(ws) = W(((xs + €*) + (25 — €%))/2) > (W(as + €*)
+ W(as — €))1/2 = (W(as + €*) + W(—a5 + €%))1/2

= limgso f_ : W(z + )fs(z) da.

(4.35)

Therefore we may find 8 > 0 so small that
436) [ W+ M)ow) da < [ W(a)p(a) do < limeww W().

By continuity [2, W(z + ¢)fs(z)dz assumes its minimum for some finite value
of ¢ # 0. That completes the proof of Theorem 4 in the case W(-) is not a
convex function.

In the case W(-) is a convex function but is not strictly convex there must
exist numbers 21 , 7 such that 0 < z; < 2, satisfying
(437) f 02a =1 then W(ari + (1 — a)x)

= aW(x:) + (1 — a)W(x).
Then
if @1 <2z <z, thederivative

(4.38) ,
Wi(z) = (W(@) — W(m))/ (22 — @1).

Since W (-) is an even function,

(4.39) if —2 < —z < —z then W(—2)=—W1(z).

Let 20 = (21 + 2)/2 and 8 > 0 be so small that

(4.40) n<rn—0<zt+p<z.

Let f3(-) be an even density function satisfying (4.34). If ¢ > 0 satisfies
(4.41) n<rtn—B—e<t+B+e<ux

then

(4.42) 0= f_ : W'z + e)fs(z) da.

Theorem 4 now follows by the corollary of Section 2.

6. Admissibility. In this section, in order to treat the case of estimators based
onn = 1 independent observations we continue using the notation of Section 4.
We will suppose in this section and in Section 6 that W(.) satisfies (2.6) and
the following assumptions.
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(5.1) For all real numbers c, f[ W(zx + c)f(z,y) dz u(dy) < .
Except on a set of u measure zero, the function
(5.2) [ W(z + ¢)f(x,y) dz assumes its minimum at the

single point ¢ = 3(y).
(53) W(-) is bounded, or uniformly continuous, or convex, or satisfies
' Supz<o W(z) < o, W(-) is convex in 2 > 0.

There is a real number p, 1 < p = 2 such that

ff [z[? W(z)f(z,y) dz u(dy) < . If W(-) is convex,

(5.4) [[ 1w/ + )] lol? 12, v) d wldy) <

for all real numbers d. If W(-) is partly bounded, partly convex then

fy(dy)f [W'(d + z)| - |z]” f(x,y) dz < o forall d = 0.

0

In this section and in Section 6 we suppose a weight function g(-) is given
which satisfies the following conditions.
(5.5) g(-) is a bounded function.

a = lime,_, g(8) existsand 0 < a;
(5.6) . .

B = limp,, g(8) existsand 0 < 8.

Except on a set of u measure zero the function
(57) [ W(c —x + 0)f(6,y)g(x — 6) d6 assumes its minimum value

at a single finite point ¢ = 8(z, y).

We will define here almost admissibility. An estimator 6*( -, -) will be called
almost admissible relative to the weight function g( - ) if given any other estimate
2(-, -) as good as 8™(-, -) then

(58) [ ®G* 0) — R, 0))9(0) a0 = 0.

The main result of this section is as follows.

THEOREM 5. Assume (5.1) to (5.7). If W(-) is bounded then 8( -, -) is almost
admissible. If u(-) puts total mass on a single point then 8( -, -) is almost ad-
missible.

If W(-) s not bounded and the support of u( -) contains more than one point we
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will suppose f( -, -) vanishes off a compact set of Buclidian n-space. Then o(-, )
1s almost admissible.

The methods we use here do not give information about almost admissibility
of 6(-, -) if the weight function g(-) is unbounded. In Section 8 we prove a
different admissibility theorem where W(z) = a° for all z. The restriction on
g(-) used in Section 8 is that there exist numbers &k > 0,0 < 8 < 1 such that
for all z, g(z) < k(1 + [z|®). This shows that at least for some loss functions
some unbounded weight functions g( -) give rise to almost admissible estimators.
That it will not be possible to prove admissibility for arbitrary weight functions
is shown by the example

(5.9) g(6) = ¢, W(z) = W(—=z) forallz.

Then if §( -, -) is a generalized Bayes solution relative to g(-),

[: W(s(z,y) — 6)f(x — 0,y)e’ db
(510) = [ Wt y) = = + 0106, ) ao

= [ Wy - - D=0, .

From the definition of §( -, -), for almost all y,
(5.11) x — 8(z, y) = §(0, y), —w <z < o,

Let 6o( ) be defined as in (5.2).

In view of Theorem 3, Section 4, since §( -, -) defined by (5.11) is an invariant
estimator, (-, -) is inadmissible unless 6(0, y) = &(y) almost everywhere (u),
where x -+ 6(y) is the generalized Bayes solution relative to the weight function
g(0) = 1. If the loss W(.) is strictly convex then

(5.12) 0= /_: W'(z + 8(y) — 0)f(x — 6,y) db.

It is clear that for almost all y(u),

(5.13) 0< f_: W'z — so(y) — 0)f(z — 6, y)é’ do.

Therefore for almost all y(u), 6(0, y) > d(y), and 6(-, -) cannot be admissible.
Passing from the conclusion of almost admissibility to the conclusion of ad-

missibility requires additional arguments. Define a set K, by

f0+¢
g(z) dz > 0}.

—€

(5.14) K, = {o lall € > o,fo

The set K, is called the support of g( - ) and has the property that the intersection
of K, with any bounded closed interval is a compact set.
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One would like to conclude from (5.8) that
(5.15) if 6K, then R(n,0) = R(5%9).

In the case W(-) is bounded it follows that R(», -) is a continuous function.
(5.15) then follows. In case W( ) is strictly convex (5.15) may be proven as
follows. Let

(5.16) 4 = {(z )| n(=,y) # 6"z, y)}.

The function ffA f(x — 6, y)dzu(dy) is a continuous function of 6. If 6 ¢ K,
and [[.f(z — 6, y)deu(dy) > O then the same holds on a set in K, having
positive Lebesgue measure. Define a new estimator n'( -, -) by

(5.17) ' (z,y) = (1/2)(n(z, y) + 6%(z, v)) all (z,y).
From the strict convexity of W( -) it follows that

if Ong,fff(x—o,y)dwu(dy)>O then
A

(5.18)
R(v’,0) < 1/2(R(n,0) + R(5%, 6)) < R(s%,0).
Therefore ,
if for some 6, ¢ K, , ff f(x — 6,,y) >0, then
A
(5.18)

f_:(R(a*’ 9) — R(x',0))g(6) > 0.

This contradicts the almost admissibility of §*(-, -).

In the remaining cases covered by Theorem 5 we do not have results about
whether almost admissibility implies admissibility. This question has been settled
affirmatively by Fox and Rubin [4] for the special type of loss function they
consider and for the weight function g(8) = 1.

To prove Theorem 5 we construct a sequence {8,( -, ), n = 1} of nonrandom-
ized Bayes estimators. Define ¢(-), {g.(-), n = 1} by

if p is the number in (5.4), q(0) = 1/(1 + [6]"),
—o <0< o and, if n=1 ¢.(8) = q(8/n).
If n = 1, 8,(-, -) is defined to be the maximal Bayes solution for the weight

function g(+)@a(-). From Theorem 1 of Section 2 the existence of a nonrandom-
ized maximal solution 8,(-, -) is guaranteed. The subsequent arguments of
Section 6 will show that for large n, 6,(-, -) is finite valued. Suppose (-, -) is

an estimator which is as good as 6( -, -). Then

[ R, 060)0u00) d0 < [ RCr,0)0(0)0.(0) o

—00

(5.20)

(5.21) "
< f_w R(5.0)g(0)g.(0) db.
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Suppose it can be shown that

(5.22) limoee [ (R(,6) = R(,,0))g(6)0a(6) 0 = 0.
Since
(5.23) if —w <6< o R0 —R(n0) =0,

and since lim,., ¢.(8) = 1 for all 6, using (5.21), (5.22), (5.23) and Fatou’s
lemma

(5.24) [ (G, 0) = R, 0))90) d0 = 0
follows.
In Section 6 we prove the following results.

For almost all y(u),
(5.25) u
sup [8(z, y) — = — &(y)| = c(y) < .
(5.26) For almost all y(u), limg.esup. [6(z, y) — d.(z, y)| = O.
Define constants K; and K, as follows.
(5.27) : K; = sups g(8).
(5.28) K, = sup{|z| | some y, f(z, y) > 0}.

The definitions of §( -) and 8( -, -) in (5.2) and (5.7) together with (2.6) imply
that

(5.20 for almost all y, [6o(y)| < K23  sup.[8(z, y) — 2| £ K»;
. Sup, [0a(z, y) — | = Ko, n = L

The conditions of (5.29) will be of interest to us in the case W( -) is unbounded.
The hypotheses of Theorem 5 then imply that if the support of u( -) has at least
two points then K, < o. Consequently in the case W(-) is unbounded the
hypotheses of Theorem 5, (5.25), (5.26) and (5.29) imply there is a constant
K; = K, such that

for almost all y(u), sup,[8(z, y) — 2 — &(y)| = Ks;
Sup; |0.(z, y) — x — &(y)| < Kz, n = 1.
Since from (5.30) follows that if W( -) is unbounded
W((z,y) —0) = W(Ks + 2+ do(y) — 0) +
W(—K;s + z + s(y) — 0),

(5.30)

(5.31)

from (5.1) it then follows that in all cases covered by Theorem 5,

(5.32) sups R(5, 0) < oo,
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Then

[[] s, v) = 0) = Wesn(a,w) — 0] 5z — 0,)

- 9(0)94(0) dz u(dy) df < oo.

(5.33)

By Fubini’s theorem,

Ra = [ (B(3,0) = R(6,0)g(0)a(0) 0

(534)  _ /f (W(s(z,y) — 6) — W(s.(z,y) — 0))f(x — 6,y)

- 9(0)g.(6) do dz u(dy).
By definition of 5( -, -), for almost all y(u),
(535) = < [ (W(s(a,9) = 0) = Wanz,9) = O))f(z — 0) g(0) do < 0.
It follows that
E. = ff/ (W(s(z,y) — 0) — W(ba(z,y) — 0)) f(z — 6,y)
- (g2(8) — ga(2)) g(6) db dz u(dy)
s & [[f Gs(a,v) = 6) = W) - Ol 5 = 0,9)
+ 1ga(8) — gu(2)| d6 dz p(dy)
=K fff W(s(z,y) — 2+ 0) — W(a(z,y) — z + 6)] 1(6,9)

- ga(z — 8) — qu(z)]| dz do u(dy).
We use the inequalities proven in Lemma 8.1 of Section 8.
(537) ga(z — 8) — ga(@)| = (1/n)au(z — 0)ga(2) | [2l” — & — 6]
< 2(1/n)"qa(z — 0)gn(2) (101" + 6] |2"7).
Since sup.(1 + [z[*™")/(1 + |z|?) < 2 and since 0 < p—1 = 1, so that
le/n™ < (2 — 0)/n|"™ + |6/nf"”"
< (L+ (= 0)/a") (1 + 1617™),

(5.36)

(5.38)

it follows that

(5.39) ga(x — 0)|z/n"™ < 2(1 + |0]"7).
Therefore

(5.40) lgn(z — 6) — ga(z)| < 6(1/n)gu(x)[6](1 + [6]7™).
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Then
R. < 6Ky(1/n) fff | W(5(z, y) — 2 + 6) — W(ou(z,y) — = + 6)]
- f(6,y) 16] (1 + [6]") ¢u(=) dz db u(dy)

(5.41)
= 6K; fff [W((na, y) — na + 8) — W (sa(nz,y) — nx + 60)| £(6,y)

- ol (1 + 161"7) q(e) da df u(dy).

Case L. W(-) is bounded. By virtue of (2.6), W(-) has at most a countable
number of discontinuities. Therefore, for each (z, y)

limg,e [W(6(nx, y) — nx 4 6) — W(du(nz, y) — nx + 0)] = 0

(5.42)
a.e., Lebesgue measure.

Therefore by Fubini’s theorem, (5.42) holds for almost all (6, z, y). By the
bounded convergence theorem,

(5.43) limy, Rn = 0

now follows.
Casg II. W(-) is uniformly continuous. Define for ¢ > 0

(5.44) A(e) = sup {|[W(z) — W) ||z — y| < €.
Then by (5.30)
[W(8(nz, y) — nx + 6) — W(s.(nz, y) — nz + 6)|
= A(Jo(nz, y) — da(nz, y)|) £ A(2Ks).

By (5.26) and the bounded convergence theorem lim,,. B, = 0 now follows.
Case III. W(-) is convex. In this case, using (5.30) and (5.29),

[W(3(nz, y) — na + 6) — W(b.(nw, y) — nx + 6)]
=< [8(na, y) — du(na, y)|([W'(Ks + do(y) + 6)]
(5.46) + W' (—Ks + 8(y) + 0)])
§ la(nx’ y) - 61&(”'1;) y)l
([W (K. + K3 + 0)| + [W (=K, — Ks + 0)]).

Using (5.26), (5.40), (5.29) and the bounded convergence theorem, limy.. B, = 0
follows.

Case IV. W () is a convex function on [0, ), sup,«o W(-) < . In this
case, if 0 =< 2Kj it is clear from (5.26) and (5.29), (5.30) that

(5.45)

(5’47) 0= limn—vw supy [w ,W(a(’nx, y) — nx + 0)

— W(bu(nz,y) — na + 6) | g(z)dz.
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Therefore using the bounded convergence theorem
2K3 L
0 = limyew [ u(dy) [ astel 1+ 1o s0,9) [ Kz

- W (s(nx,y) — nx + 6) — W(s(nx,y) — nx + 0)| ¢(x).
If 6 = 2K; then for almost all y(u),
(5.49) (nx,y) —nx+60 =0 and é&,(nx,y) —nex+ 6 = 0.

(5.48)

Using the convexity of W(-) on [0, «), and an argument similar to Case III,
(5.46) may be established if § = 2K; . Using the bounded convergence theorem

0 = limysw f,u(dy) ‘/2: de |6 (1 + [o"™) 76, %) [: dw

(5.50)

W (8(nz, y) — nx + 6) — W(oa(nz,y) — na + )| g(z)
provided
(5.51) fow 6]” |W'(2Ks + )| £(6, y) db p(dy) < .

As (5.51) is covered by the assumptions made, the proof is complete.

6. Convergence lemmas. In order to complete the discussion of Section 5
we verify (5.25) and (5.26). The proofs of these results are given in a series of
lemmas below. Lemmas 6.1 to 6.4 lead to the proof of Lemma 6.5 from which
(5.25) follows. Lemma 6.6 contains the result (5.26).

The definitions of &(-) and 6(-, -) in (5.2) and (5.7) imply the following
relations.

6.1) For almost all y(u), the function [Z, W(e + z)f(x — d(y), ¥) dz
) has its minimum value at a single point ¢ = 0.

For almost all y(u), the function
(6.2) ZaW(e — x + 6)f(—b(y) + 6, y)g(s(y) + = — 6) do
has its minimum value at a single point ¢ = 6(z, y) — (x).

Since for each y, the weight function g, ( -) defined by
(6.3) gs(8) = g(8(y) + 6)

satisfies (5.5) and (5.6), it is sufficient to consider f( -) as a function of a single
real variable, and the estimator 8( -, -) as a function of a single real variable.

LemmA 6.1. Let g( -) be a bounded Borel measurable function of a real variable.
Suppose {x, , n = 1} is a real number sequence such that lim, . &, = x. There is
an integer sequence {a, ,n = 1} and a set N of Lebesgue measure zero such that
if6zN,
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(6.4) limye g(Ta, — 0) = gz — ).
Proor. Define a sequence {g.(-), n = 1} of functions as follows.
(6.5) if |z] = n, ga(z) = g(x); i [z] >n, gu(z) =0.
As is well known,
(66) if m=1,  limuew [ |ga(ze — 0) — galz — 6)|d8 = O,
We now use a diagonalization process. Let {a1,. , » = 1} be an integer sequence,
N(1) a set of Lebesgue measure zero, such that
(6.7) if 6zN(1), limpoy g1(%ay , — 0) = g1(z — 6).

If m = 1,let {@my1n,n = 1} be a subsequence of {@m..,n = 1} and N(m + 1)

be a set of Lebesgue measure zero such that

(68) if 0 gN(m + 1), liMyseo Gt (Tapy 10 — 0) = gmua(x — 6).
Define
(6.9) N =UN@m), andif n =1, On = Qnon .

m=1

It is easily verified that the set N and the sequence {a, , n = 1} satisfy the con-
clusion of the lemma.
LemMma 6.2. Suppose

(6.10) for all real numbers ¢, [Z, W(c + z)f(z) dz < oo.

If g(-) is a bounded mon-negative Borel measurable function and if F(-) is de-
fined by

(6.11) F(z) = inf, [Z, W(c — 6)f(x — 6)g(8) db,

then F( ) is a continuous function.
Proor. We will show first that

(6.12) F(z) £ lim inf,.. F(y).
If this does not hold then there is an ¢ > 0 and a sequence {2, ,n = 1} such that
(6.13) limpyoe e = ¢ andif n =1, F(x,) + ¢ = F(z).

In view of Lemma 6.1 we may assume that if 6 g N, limuse g(2a — 0) = g(x — 0).
Using (6.11) and (6.13) there is a sequence {c,, n = 1} such that

(6.14) /2 + f_w W(ew — xn + 6) f(8) g(xn — 6) d6 = F(z).

Without loss of generality we may suppose lims.s € = co, provided values
4+ « are allowed. By Fatou’s lemma it follows that



ESTIMATORS OF A LOCATION PARAMETER 975

(6.15) 2 + f_: W(er — z + 6) £8) g(z — 6) do < F().

Since [*, W(c — x + 0)f(8)g(x — 6) df is a continuous function of ¢ & [— <, <],
(6.15) contradicts the definition of F(x).

We next show lim sup,.. F(y) < F(z). To show this we need to show that
for each real number ¢, the function H( -) defined by

(616) H(y) = [ We—y+0)50) oy — 6) do

is a continuous function. Suppose ¢ > 0 and {y,, n = 1} is a sequence satisfying
(6.17) limn—»o yn = y) lim infn-NO IH(yn) - H(y)l ‘>; €.

Using Lemma 6.1 we may assume without loss of generality that if 6 ¢ N,
limpsew g(yn — 8) = g(y — 6). Also we may assume sup, [y» — y| = 1. Then,
if K; = supe g(0), it follows that

if nz1  W(e— yn+0)g(y. —0)
SKiWe—y—146)+Wee—y+1+0)).
As the right side of (6.18) is integrable, by the bounded convergence theorem
(6.19) limge H(ys) = H(y)

follows. This contradicts (6.17). Therefore no such sequence {y,, n = 1} can
exist and continuity of H( -) is proven. Let ¢ > 0 be given. By definition of
F(.) there is a number ¢ such that

(6.18)

(620)  FG@) + 2> [ Wie—a+0)6) gl —0)d.
Using the continuity of H( -), there is a number ¢ such that

it -yl <a thn FG)E[ Wie—y+0)0)gly—0)do

(6.21) .
< ¢/2 +f_ We — x + 6) f(6) g(x — 6) d8 < ¢ + F(z).

Therefore

(6.22) if €>0, limsupy..F(y) = e+ F(z).

(6.12) and (6.22) complete the proof of Lemma 6.2.

Lemma 6.3. Suppose (6.10) holds and the weight function g(-) is bounded.
Suppose the function [Z, W(c — 6)f(x — 8)g(6) d8 has its minimum value at a
single point ¢ = 8(x), finite in value. Then 8( -) is a continuous function.

Proor. If §( -) is not continuous at x then we may find a sequence {x, ,n = 1}
such that lim, ., 2, = 2, and if 8 2 N, lim,. g(z, — 0) = g(x — 0) (see Lemma
6.1), and lim,., 6(x,) = ¢ # 8(x). ¢ = = » is a possible value for ¢. Define
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F(-) by
(628) it —» <y <=, F) = [ W)~ 6) iy — 6) o) b

By Lemma 6.2 F(.) is a continuous function. Therefore
(6.24) limg,e F(x,) = F(x).

By Fatou’s lemma,
[owee—o+0 50 oo — 6) ao

625) <l infyen [ W(5(20) — 20 + 6) f(6) g(zn — 0) db

= lim inf,e0 F(z,) = F(z).

It follows from the hypotheses of the lemma that ¢ = §(zx). This contradiction
shows 6(-) must be continuous.

LeMMA 6.4. Suppose g(-) is a bounded non-negative Borel measurable function
such that

(6.26) a = limg, o g(0), o > 0; B = limg,, g(6), B > O.
Suppose (6.10) holds. Suppose

(6.27) the function [: W(e — 6) f(z — 6) g(6) do

has a unique minimum at ¢ = §(z), a finite value. Suppose
(6.28) the function f W(c — ) f(x — 0) de

has a unique minimum at ¢ = 0. Then lim|,j. (6(z) — z) = 0.
Proor. By definition of 8(-),

(6.20) f_: W(5(z) — = + 6) 7(0) gz — 6) do < f_: W(0) £(8) g(z — 0) db.

We consider first the case lim,., (6(x) — 2) = 0. By the bounded convergence
theorem

(630)  limees [ : W(0) 5(6) gl — 6) ds = 6 | W(6) 7(6) db.

Suppose there is a sequence {x, , n = 1} such that
(6.31) limy,e n = o, limpae (8(2n) — 24) = c.

Values = « are allowed for c.
By Fatou’s lemma and (6.30)
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g [o W(c 4+ 6) £(8) do < lim infpee ) W(6(x,) — xn + 0)

(6.32) .
- 1(8) glza — 8) do < B L W(8) £(6) db.

Therefore since (6.10) is assumed, ¢ = 0 follows. Consequently it is proven that
limg., (6(x) — z) = 0. By a similar argument lim,,_,, (6(z) — z) = 0. As a
summary of preceding results,

Lemma 6.5. Suppose g( -) is a bounded non-negative Borel measurable function
and that (6.10), (6.26), (6.27) and (6.28) hold. Then 8(-) is a continuous func-
tion and lim|z). (8(x) — z) = 0.

If the conclusion of Lemma 6.5 is stated in terms of the problem of Section 5
and the changes of variable indicated in (6.1), (6.2) and (6.3), the result stated
in (5.25) follows.

In the following the functions ¢(-), g.(-), n = 1 are as in (5.20). We will
suppose 8,(-), n = 1, is a Bayes solution for the weight function ¢(-)q.(-).

LemMma 6.6. Suppose the hypotheses of Lemma 6.5 are satisfied. In addition,
suppose

(6.33) [: [z [P W(z) fz) dx < .
Then
(6.34) limg.,o SUp, [6(z) — du(z)| = O.

Proor. We will assume the denial of (6.34) and obtain a contradiction. In
the contrary case there is an ¢ > 0 and a sequence {z, , » = 1} such that

(6.35) if =1 [3(x) — Suza)| 2 e

We may without loss of generality assume at once that

(6.36) limy,e T/ = d and  limg. (8(x,) — 6,(x,)) = c.
=+ o are possible values of d and ¢. We consider below three cases.

CasE I. d = & «. The argument if d = — « is exactly parallel to the argu-
ment if d = + «. We give the proof only for d = + «. By Lemma 8.1 Section 8,
(6.37) (L + [2/n")/(1 + |[(x — 6)/n") = 2(1 + [8]).

Also
(6.38) 1 = liMpae (1 + [2a/n]")/(1 + [(z0 — 0)/n]").

Consequently if (6.33) holds, by the bounded convergence theorem,

limn—>oo (1 + Ixn/nlp) [: W(o) f(e) g(xn - 0) Qn(xn - 0) do
(6.39) o
=8 [ W) o) ae.
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Define functions H,(-), n = 1 by
(640)  Hix) = [ W(si(a) — o + 0)f(0)g(z — O)anz — 6) do.

By Lemma 6.4, limg,, (6(x) — z) = 0. Therefore from (6.36) follows
limy.e 2n — 8a(x,) = ec.

Apply Fatou’s lemma to obtain

(641)  limn (1 + fru/l)Ha(za) 2 8 [ W(—c + 0)1(6) ds

From the definition of 4( ),

(6.42) H,) < [ WO — 0)g.(z — 0) db
Therefore from (6.39), (6.41) and (6.42) it follows that
(6.43) 8] W(—c+ane ass | Wene d.
By (6.10), ¢ = 0 follows.

CasE II. — o < d < oo, lim sup, |z.] = . In Case II we may suppose
without loss of generality that lim,-« |z, | = . We consider the case that
lim sups. Z» = . Then we may suppose without loss of generality (by other-
wise taking subsequences) that lim,., 2, = . The case lim inf,,, 2, = —

may be treated by a parallel argument. As in Case I, limy»w (6(2,) — 2,) = 0.
Since we assume throughout that (6.36) holds, limu.. (zn — 8.(2.)) = ec.
Also,

(6.44) limyse gu(2n — 0) = q(d).

Using the bounded convergence theorem and (6.42),

(6.45) lim Supyew Ha(za) < Bo(d) [ ~W(o)j(0) do.
Applying Fatou’s lemma,
(646) lim infase Ha(za) = Bo(d) f_ W(—c + 0)f(8) ds.

(6.45) and (6.46) together imply ¢ = 0.
Casg II1. The sequence {x,,n = 1} is bounded. We may then suppose (by
considering subsequences) that

(647) x = limy.e s if 02N, limg,,g(z, — 6) = glz — 0).

(see Lemma 6.1)
By definition of 8.( -),
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[ W 8@) = 2 + 050)g(a — 0)gu(an — 0) do
(6.48) .
< [ W) — 20 + 05(0)g(an — 0)au(za — 6) do.
By Lemma 6.5, limy..o, (8(2,) — z,) = 8(z) — z, and sup, [6(z) — 2| £ K,.
Then
W((2n) — 20 + 0)g(xn — 0)qn(xn — 0)
= Ki(W(Ks+ 0) + W(—Kq+ 0)).

By hypothesis the right side of (6.49) is f(.) integrable. By the bounded con-
vergence theorem,

(6.49)

(650) lim supyew Haln) < [ “ W) — 3 + 0)f(0)g(z — 6) db.

By assumption
lirnn-»w (an(xn) - xn) = limn->°° (aﬂ(x") - 6(37"))

(6.51) .
+ llmn—»eo(a(xn) - xn) = —c+ (5(:17) — ).

Using Fatou’s lemma,
(6.52) lim infpew Ha(z,) = / W(—c + 8(z) — z + 0)f(8)g(x — 8) de.

From (6.50), (6.52) and the hypothesis of the lemma, ¢ = 0 follows. That com-
pletes the proof of Lemma 6.6.

(5.26) of Section 5 is a consequence of Lemma 6.6 and the changes of variable
introduced at the start of this section.

7. A minimax estimator of 6 £ [0, « ). Throughout this section we will use the
notation introduced in Section 4. We will assume in this section that the loss
function W( -) is a strictly convex funection satisfying (2.6). We suppose W (-)
satisfies

(7.1) for all real numbers c, ff W(c + z)f(z,y) de u(dy) < .

Throughout W’( -) is the right continuous right derivative of W(-).
Under the assumptions we have made there is a uniquely defined function
8( -, -) satisfying for almost all y(u), for all z

[ " W(s(a,9) — 0§z — 6,9) do = inf, [ W(e — 0)f(z — 6,4) do
0 0

"2) 3
0= f W (s(z,y) — 0)f(z — 6,y) do.
0
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Existence follows from the results of Section 2. Uniqueness follows from the
fact W'(-) is strictly increasing.
Throughout 8( -) will be the (measurable) solution of

(13) 0= [ Wly) + )z, ) dz.
Our proof that §( -, -) is minimax requires the integrability condition

14 [ e+ 6] W+ 6| £ 9) do uldy) < .

Throughout R will be the constant risk of the estimator z + 8(y).
The main result of this section is the following theorem.
TaroreM 6. Let R(5, -) be the risk function of 8(-, -). If (7.1) holds then

(7.5) if =0, R(3,06) <R;
(7.6) limg. B(5, 6) = R.

If (7.4) holds then 8( -, -) is a minimax estimator of § € [0, «).

The methods of the preceding sections do not seem strong enough to prove
the d( -, -) of this section admissible. In Section 8 we give an admissibility theorem
for square error which implies in the case of square error, if for some ¢ > 0,

(7.7) ff ez, y) do u(dy) < o

then the estimator 8( -, -) is admissible. Consequently the results of Section 7
and Section 8 include theresultof Katz [8] whenjf(z) = (1/(2r)}) exp (—(1/2)a?).

Although 8( ., -) may be shown to be admissible and minimax it may have
very surprising properties. In the case of square error and f(z) = (n — 1)/27,
—w<z = —1,f(x)=0,2> — 1,neven, we find

if 2= -1, @)= —z/(n—2),
if z> —1, d(z) =z + (n — 1)/(n — 2).

The estimator §(-, -) may therefore have the property that the smaller the
observed value the larger the estimated value!

If 5;( ) is a measurable function defined on E,_; the statistician may elect
to use as his density function

(7.9) @, y) = fle = 5y, y).

Provided (7.1) and (7.4) hold for f*(-, -) a minimax estimator 6*(-, -) of
6 £[0, ) is defined by

(7.8)

(7.10) 0= [0” W' (5*(z, y) — 0O)f*(z — 6,y) db.
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If the loss is square error and for some ¢ > 0

(7.11) [[ 12+ 8@ 5, ) da wldy) <

then it follows from Section 8 that 8*(-, -) is admissible as an estimator of
60, »).

In order to prove Theorem 6, we first develop some properties of 8( -, ).
LemMa 7.1. For all (z, y) such that

(7.12) f fz—6,y)d0 >0, 8zy) =0
0
Proor. If 8(z, y) < 0and 6 = 0 then W'(8(x,y) — 6) < 0. Therefore
(7.13) 0> f W'(8(z,y) — 6)f(z — 6,y) do.
0

This contradicts (7.3).
LemmMa 7.2. Define a function a( -) by

fowf.(x —6,y) d6 >0}.

For each y, 8(z, y) — = is a nonincreasing function of z, x > a(y). If x > a(y)
then 8(z, y) = x + 6(y).
lirnz-wo (a(xy y) - x) = Bo(y).

Proor. By change of variables in (7.2),

(7.14) a(y) = inf { x

(7.15) 0= [ Wtay) =+ 05e,y) do

If z > a(y) and 8(z, y) — = < d(y) it would follow that

(718) 0= [ Woa,9) —a+0f0,9) do < [ Wany) + 056,9) .
Since

(7.47) 0= [ W(aly) + 0)5(0,5) do

it follows that

(718) [ W) + otev) o z 0

But (7.16) and (7.18) contradict (7.17). Therefore 6(z, y) = x + 8(y) follows.
Suppose for some y and z;, 2 that a(y) < 21 < 22 and 8(z2, y) — x2 >
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3(z1, y) — 1. Since W'(-) is a strictly increasing function,

0= [ W, v) — =+ 0oy) do
(7.19) o
< [ W@,y — o+ 056, y) d.

This implies
(7.20) (we,y) — a2+ 2.>0

since otherwise the integrand of the right side of (7.19) would be nonpositive.
Therefore

(7.21) [ W s, v) =+ 0)1(6,) do 2 0,

1

(7.19) and (7.21) together contradict (7.15). Therefore 6(zs, y) — 22 =

5(:171 y y) — 2.
It follows that lim,.. (8(x, y) — z) = c(y) exists. By the monotone con-
vergence theorem, for any real number z;,

0 2 limeww [ w W (6(z, y) — = + )76, y) do

(7.22) .
= [ W) + 016, v) de.

Since (7.22) holds for all z,,

(7.23) 0 = W'(c(y) + 0)f(6, v) de.
This implies
(7.24) do(y) = c(y) = limg,e (8(z, y) — ).

By the first part of Lemma 7.2, ¢(y) = &(y) follows.
Lemma 7.3. If R(3, -) s the risk function of 9,

(725)  limes B(5,6) = R = ff W(s(y) + 2)f(z,y) deu(dy).

Proor. Let W_(-) and W,(-) be monotone functions such that for all z,
W(z) = W_(z) + W(z). Then

R(3,0) = [[ W(a(z,9) — 0)fz — 0,1) deuldy)
(7.26)
= [[ WGt + 6,0) — (@ + 0) + )iz, ) dwuldy).

Since W_(-) and W.(-) are monotone functions, by the monotone convergence
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theorem and Lemma 7.2,

limo.mf W_((x + 6,y) — (x + 8) + z)f(z, y) dzuldy)

= ff W_(6(y) + 2)f(z,y) dzu(dy);
(7.27)
limees [[ Welo(z + 6,9) — (@ + 0) + )iz, ) douldy)

- /f W(a(y) + 2)f(z, y) deu(dy).

Since W(z) = W_(z) + W (z) for all z, Lemma, 7.3 follows.
LemMmA 7.4. Suppose for each y there are real numbers b(y) and c(y) satisfying

c(y)

(7.28) b(y) <c(y) and 1 = v flz, y) dz.

If R(9, -) is the risk function of 8( -, -) then
(7.29) if 620, R(50) < R; R(5,0) = R.
Proor. Let R be as in (7.25). From (7.28),

it o>e), [ Wlay) — o+ 0)5(0,y) do

(7.30) ]
= f_,, W'(s(z, ) — = + 6)(6,y) db.

Therefore,

(7.31) it x> cly), ozy) =2+ 6y

By change of variables,
c(y)

(32) R0 = [[ W+ 6,y) — 0)f(z,y) dauldy).
b(y)

We consider the functions

c(y)
(7.33) R(5,6,y) = f WG+ 0,y) = 0)f(s, ) do
and

c(y)
(7.34) R(y) = f  Waly) + )iz, ) do.

From (7.31) it follows that
(7.35) if 6> c(y) —b(y) then R(3,6,y) = R(y).
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The function

(7.36) [ (Bw) — RG,0 + d,9)) do = H(d)
0

is the signed area under the curve R(y) — R(8, 0 + d, y) from d to . If we can
show that for d = 0 this is a decreasing function of d, it will follow that if 6, d = 0,
R(y) = R(3, 0 + d, y). For by Lemma 7.3, lims,, B(3, 6 + d, y) = R(y).
Suppose di < ds . From (7.36),

H(d) — H(dy) = [ (R(5,6 + ds,y) — R(5,0 + di, 7)) do

(7.37) - f” de f_: (W((x + do,y) — da — 6)

— Wz +diyy) —di — 0))f(x — 6,y) da.

It follows from (7.28) and (7.31) that the double integral in (7.37) is absolutely
convergent. The order of integration may be interchanged. We use below the
fact W'(-) is a strictly increasing function and the inequality

(7.38) forall z1,20, W(a) — W(z) = (21 — 22)W (2).
By Lemma 7.2,
if x4 di> a(y) then
(b(z+ do,y) — ) — (3(z + dr,y) —di) S0
if 2> a(y) then 8(z + di,y) — di = 6(z).

(7.39)

We may suppose without loss of generality that a(y) = b(y), as follows from
(7.14) and (7.28). The conditions z — 6 > b(y) and 6 > 0 then imply > 6 +
b(y) > b(y) = a(y).Since 0 = di < ds, (7.39) is valid for all z in the range of
integration in (7.37). Therefore

H(d,) — H(d.)
= f_:dxfom (((zx + da,y) —dy) — ((z 4+ di,y) — dv))
Wz + d,y) —di — 0)f(x — 6,y) do

(7.40) w
z f_wdx((ﬁ(x+dz,y) —dy— 8z +di,y) — )

: f“ W' (s(z) — 6)f(z — 6,y) do = 0.

Therefore it follows that for all 0 £ d; < ds, H(dy) — H(dz) = 0.
Using the fact 6(x, ¥y) — z is a nonincreasing function of « and using the
decomposition W(-) = W_(-) 4+ W.(-) it is easily shown that for each y,
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R(3,06,y) is a continuous function of 8. The result, if 0 < d; < d» then H(d,) —
H(d:) = 0is equivalent to

dg
(7.41) fd (R(y) — R(5,6,y)) do = 0.

From the continuity of R(8, -, y) it now follows that
(7.42) it =0, R(y)=R(G,y).

Integration of both sides of the inequality in (7.42) with respect to the measure
w( ) gives inequality (7.29).
Repetition of the above argument for § < 0 will show

[ @) - kG0, 0 20
0

for all real numbers d. It follows from the continuity of R(3, -, y) that R(y) =
R(5, 0, y). Integration of this equality with respect to u( -) gives the final state-
ment of the lemma.

We now generalize Lemma, 7.4 to apply to all density functions f( -, -) satisfy-
ing the hypotheses of this section. Suppose f(-, -) is given. For each integer
n = 1 define a function f,(-, -) by

forally, if lxl = n, fa(z, ?/) = f(z, Y),
if |o >n,  fa(z,y) = 0.

For each integer n = 1 define functions 87(-), 8.( -, -), B(3., 6), and the con-
stant R, by

(7.43)

0= [ W) + 2o ) dz;

0 = fm Wl(an(x, y) - o)fn(x - 0’ y) do,
(7.44) °
R 0) = [[ Waa,9) — Ofule = 6,1) duu(dy);

and . = [ W) + (e, y) do.

We will show below that 2 + 8%(y) is a minimax estimator of 6 & (— o, «)
for the family of Ly(— o, «) functions {fa(- — 6, ), — © < 6 < o}; see
Lemma 7.6. It follows that
(7.45) B < [[ W + a))fulz, y) dauldy) < B

By Lemma 7.4,
(7.46) if 620, Ru(on,0) < Rn.
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We show immediately following (7.48) that
(7.47) liMapse 0(2, ¥y) = 8(z, ¥).
By Fatou’s lemma, if 6 = 0,

(74g) F&0) = liminfe [[ WG 2,9) = O)fale = 6, 9) dzutay)

= lim in.fn-»oo Rn(ﬁn, 0) = lim in.fn»oo Rn é R.

To verify (7.47) suppose {a. , » = 1} is an integer sequence, limp. @n = 0,
and for given (z, ¥), liMpw 86,(2, y) = c. By definition of &.(-, O,m =1,

[ Wautay) - Ofe — 6 do = | Wz, y) — 6)
(7.49) Y
- fale — 6,y) do = fo W(s(z,y) — 0)f(z — 6, y) db.

By Fatou’s lemma and (7.49),

f W(c — 0)f(z — 6, y) db < lim infuecs | W(oa(®,9) = 6)
o 0

(7.50) 3}
fulz — 6,y) do = f W(s(z,y) — 6)f(z — 6, y) db.

By definition of 3( -, -), ¢ = é(, y) follows.

Tt remains to show that the validity of (7.48) implies 8(-, -) is a minimax
estimator of 6 £ [0, «). If not there is an ¢ > 0 and an estimate (-, .) satisfy-
ingif § = 0 then R(6,,0) + ¢ = R.

Then relative to the family

(7~51) {f(il? - 80(1/) — 0, y); —o <6< 00}
the risk function of the estimator &(x — & (y), y) satisfies
if =0 then

[[ W(otz = ), 9) = 0@ = soly) — 6, v) dauldy)

(7.52) f f W (ai(z,y) — 6)f(z — 6, y) dau(dy)

lIA

—e + ff W(z + 8(y) — 0)f(x — 6,y) dau(dy)

— e+ [[ W — o) — aly) = 6,v) duuldy).
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Also

fW’(x — 0)f(z — &(y) — 6,y) do
(7.53)
- f W'(6 + 8(y))f(6,y) do = 0.

We may therefore suppose for the remainder of the argument that 8(y) = 0.

Let oy(-, ) be the Bayes estimator for the uniform distribution of 6 on
[—N, N]. The estimator 8;(x + a, y) — a has as risk function R(6,, 6 + a)
satisfying R(8,,0 + a) < R — e¢if # = —a. Consequently if ¢ = N, it follows
that

N
(7.54) (1/2N) [ R(se,0)d0< R —
-~
We will show that if (7.4) holds then
N
(7.55) limyse (1/2N) f R(sy,0) d6 =R.
—N

This contradiction shows the estimator §;( -, -) cannot exist.
From the defining relation

N
(7.56) 0 = ‘/;N W,(BN(x) y) - o)f(x - 0, y) do’
by change of variable,

x+N ,
(7.57) 0= /_N W (ox(z,y) — = + 0)1(6, y) db.

This implies the inequalities

(7.58) ony(z,y) — x4+ (x + N) = 0, ow(z,y) — 2+ (z — N) =0.
That is,

(7.59) lon(z, y)| = N.

Define z* by 2* + N = . Then from (7.57) follows

T* 2N
(7.60) 0 = limyse / W (ou(z* + N,y) — a* — N + 6)5(6, y) do.

From (7.60) it follows that
(7.61) di(y) = limy,e (05(z + N,y) —xz — N)
exists. By use of a substitution z** = z + N it may be shown that

(7.62) d_(y) = limy,, (04(x — N,y) — 2+ N)
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exists. Using the convexity of W(-),
(1/2N) f_fo (W(z —0) — W(en(z,y) — 0))f(z — 6, y) dxu(dy) db

< (/20 [[[ @~ oule,)) W@ — 0@ — 0,1) do deutay)
= —/20) [[[” @ = su(a,1))W'@ ~ 0)f(z ~ 0, ) do dau(dy)
= /) [[[ 7 &~ sulm g )W (e ~ 05 — 0,9) dodoutay)

I

(7.63) —(1/2N) ff_w f_w (z — oz, y)) W' (0)f(6,y) do dzu(dy)

— o) [T [ @~ sula, )W 0)5(0,) do dantn)
= /o) [ [ @+ N = sula + N, )W (010, ) d0 douldy)
+ @) [ [ @ =N = aula = N, )W @)106,9) ds douldy)

— M) [[ [ (@ =N = sule =N, )

— (¢ + N —sv(z + N, )W (0)f(8,y) db deu(dy).
(764) |(x = N —dx(x — N,y)) — (+ N — ox(z + N, y))|/(2N) = 2
for all z, y. As shown above in (7.61), (7.62)
—di(y) = limy.ez + N — oy(z + N,y) and
—d_(y) = limy,o (& — N) — ov(z — N, y)

exist and are finite. Consequently the quantity (7.64) bounded by 2 tends to
zero for each z, y. It will follow by the bounded convergence theorem that if

(7.65) [l :

then limy.., 1/2N [y (R — R(5x,6)) dd = 0. Since [Zw W'(8)(6, y) d§ = O
and since ff.w W'(6)f(0,y)dd <0, — 0 < & < o, it suffices to show

(7.66) [ [ w'@so, v) do donay) > ~eo.
If [[2.60/W'(0)|f(6, y) dou(dy) < oo then integration by parts gives the value

of (7.66) to be — [ 2w 6W'(6)f(0, y) dou(dy). That completes the proof of the
following lemma and the theorem of this section.

[ w5, y) a8 dsuta) <
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LevMma 7.6. Suppose (7.4) holds. Let 6x( -, -) be the Bayes estimate correspond-
ing to the uniform distribution on [—N, N]. Then

limy.q (1/2N) [Yx R(6x,60) d6 = R.
It follows that = + §*(y) s a minimaz estimate of 6 ¢ (— o, ®).

8. An admissibility result for square error. The results of Section 6 and Section
7 do not give information about the admissibility of a generalized Bayes estimator
8( -) relative to a weight function g(-) if g(-) is unbounded or if for example
g(0) = 0,0 < 0. In the case of square error it is possible to give an explicit formula
for 8( -). Using methods similar to those of Stein [11] it is possible to obtain a
better admissibility theorem. We will continue to use the notation of earlier
sections so as to include the case of 7 observations.

TuaEoREM 7. Suppose g( -) is a non-negative Borel measurable function satistying
there exist constants ¢ > 0, ¢, = 0 and a,

8.1)
( 0<a<l suchthatif — o <0< x, g(0) <c+clb”

Suppose there is a 8 satisfying 2 = 8 > 1 + a and

(82) [[ = 12, v) douay) < .
Let

04x
(8.3) Q = {0|forall X >0, fo-x g(z) dz > 0}.

If 6(-, -) is the generalized Bayes estimator for g(-) then 8( -, -) is an admissible
estimator of 0 € Q.

To prove Theorem 7 we will use a sequence of a prior: density functions
{¢.(-), ¢ > 0} defined by

(84) q(8) = 1/(1 + [6°), ¢.(8) = (1/0)q(6/0).

We assume 1 < 8 < 2 and do not include normalization. In view of the discus-
sion in Section 5, since the loss function is strictly convex, it is sufficient to prove
almost admissibility.

In the calculation below we will need the following inequalities.

LemMma 8.1. If 1 < 8 < 2 then

(8.5 e+ M = [P | < 2NV + F);
(86) L+ s 201+ e = A+ ).

Proor. For all 2,

(87) =5 " sign (w) [ dw.
0
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Therefore

ERR
f sign (w) [w|*™ dw

6 _ LB —
(8.8) [z + A" = R[" [ =8

< 8 Al max (]el" 7, |e + A7) = B A (7 + P

Since 8 < 2, (8.5) follows.
To prove (8.6)

L+ N =14+ N—z4+2 =270+ =2 + 2P
<2014+ h =) (1 + o).

Let 8,( -, -) be the Bayes solution corresponding to the L;(— «, «) function
g(-)g.(+). It suffices to prove

(8.9)

(8.10) Jim, o of (R(3,0) — R(5,,0))g(0)q.(0) o = 0.
A direct calculation will show

4, = [: (R(s,6) — R(5,,6))g(6)g.(9) do
(8.11)
B f[f (8(z,y) — 8,(2,9))’f(z — 6, )9(8)g,(0) do dzu(dy).

Also

f(a(xa y) - ﬂ)f(x - y)g(n)Qo'(n) d77
(8~12) 6(:1:7 y) - 6tr(x7 ?/) = .
ff(x — 0,9)9(n)g.(n) dn

By definition of 6( -, -)
(8.13) 0= /(3(96,?/) — )f(x — n,y)g(n) dn.

From (8.11), (8.12) and (8.13) follows
A,

-l

([ 60 = mie = o)) = a.@)) di) i
Tulay

ff(x — 1, ¥)9(n)a.(n) dn

< [[[f sty = [1 = £ gt

qoe(m)f(x — m, y) dn deu(dy).

(8.14)
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Let
(8.15) B, = ¢2(2)g.(n)(g-*(z) — ¢-"(n))".
By Lemma 8.1;
R et 6—1\ 2
B, = 8¢°¢2(x)q.(n) I77 2 <'n ° ad )
g
(8.16) 7 7

26—2

2
n —x

< 160°¢2(2)g.(n) ”%’”

Again by Lemma 8.1,

991

26—2
X

).
4

x)/of.

-9(n)g.(x) dn dep(dy).

6
G110l [ S @0+ fafel!) = 207 ),
0) (L= = P (g ))
(8.18) 1
(G 2D o — of 407D [
Also ‘
(8.19) lx/Ul%H < (1 + |x/o,l)(26—2)/ﬂ — 0'(2_2'3)/'3((].,(:3))(2_2ﬂ)lﬂ.
From (8.16) to (8.19) follows
(8.20) B, = 96¢.(z)|(n — %)/a’,
and
1) Ar =9 [I[ @@ y) = (e = 9/ 52 = 2,0)
Define
(8.22) rn=(@+2)/2 and .= (8+ 2)/8.
Then
(8.23) 1= (1/7'1) + (1/1”2).

Applying the Holder inequality to (8.21) gives

[ G y) =0 e = m)/ol 1@ = 0, 9)9(n) dn

1/ry
(8:24) < ([ e ) = 24 = n,0)0(0) dn)

: ( f Iz — 1)/al* (@ = n,9)g(n) d,,)”’{

We now obtain an upper bound on the first term of the product in (8.24).
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f (8(x, y) = n)*" fl@ — 1, y)g(n) dn
_ [ (J6 = n)f(z — 6, y)g(8) do)***
- f< [ f@ — 8, y)g(6) do ) f@ = n,y)9(n) dy

I 16 = 2 f(z — 6, y)g(6) do
= [ flx — 6, y)g(0) do F(@ — n, 9)g(n) dn

— gl —
< g [LO= 2 TG 0000 Bz, y)an) b

T Y _
It =L

= 16f e — 4" f(z — n, y)g(n) dn.

(825)

From (8.21), (8.24) and (8.25) we obtain
(826) A, £ 15360 f/f |z — nl’mf(a:' — 0, 9)9(n)g.(z) dn deu(dy).

Using (8.1) there is a constant K; such that
(8.27) g(n) = K1+ Kifx — [ + Kijal*.
Substitution of (8.27) into (8.26) gives for a suitable constant K,

A, < Ko™ fff le — ™" (& — n, y)g.(z) dn dou(dy)
(828)  + Ko™ [[[ lo = 2" (o — n, )a2) dn duuldy)

+ Koo [[[ Jo = a5 = m, 9) ol a.(a) dn dunCay).
Therefore if
(829) [[ 11 iz, ) dautay) <

then since [Zw ,(z) dz does not depend on o, we may find a constant Kj; so large
that

(8:30) 4, S Ko™ + Koo [ " o(@) da.

For the integral in (8.30) to be finite,
(8.31) B—a>1
To complete the proof we verify (8.10).
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(8.32) 0<od, < K;6®? + Ksa'(ﬁ_“_l)/ lz]* ¢(x) dz.

Since the right side of (8.32) tends to zero as ¢ — oo, (8.10) follows.

9. A nonparametric problem. Throughout this section we will suppose the
loss function W is strictly convex. @ will be a class of density functions defined
on the real line such that f(-) e @andif — o <0 < o, f(- — 0) £ Q. We suppose
further that there is a 7 > 0 such that

(9.1) (1/(2r7)?) exp (—(1/27)a%) e Q.
We assume that
(9.2) if feQ then [o W(z)f(z) de < .

Since W(0) = 0, W is non-negative and strictly convex, condition (9.2) implies

(9.3) if feq, [ lz| f(z) dz < .
We define a function 6:Q — reals by
(9.4) if feQ, 6(f) = ‘/_: zf(zx) dx.

The nonparametric problem we consider is the admissibility of the average of n
observations as an estimator of 6(f). It is the purpose of this section to prove the
following theorem.

TureoreM 8. Suppose W(-) is symmetric, that s,

(9.5) Sor all z, W(—z) = W(z).
Given the hypotheses above, among all estimators based on n independent observa-
tions from the same population the estimator & defined by 6(x1, ---, Tn)=

(1 + --- + z.)/n is an admissible estimator of 6(-).

If M = 1 is an integer the sequential procedure, take M observations, estimate
@y, -+, xu) = (/M) Eix:, is admissible in the class of all sequential
procedures 1 satisfying, expected sample size of n < M for oll f e Q.

The proof, following, of this theorem, uses the results of Blyth [2]. It will be
seen from the argument below that the proof of admissibility in the sequential
case consists for the most part in improving on the admissibility argument of
Blyth, op. cit., in the normal case.

In the case of n observations suppose that 6¥(-) is an estimator as good as
321, -+, &n) = (1/n) > %1 x; . Then for all density functions f ¢ Q.

(9.6) R(5%,f) = R(5, /).
By hypothesis there is a 7 > 0 such that if — o < § < oo,
(9.7) f(, 8) = (1/(2r1)") exp ((=1/27)(z — 6)") e
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It follows immediately from the results of Blyth [2] that for all normal density
functions f( -, 8) of this set,
Define '

(9.9) A= {(xl, e m) 6%, e wa) # (1/n) ;x}

If the set A has positive n-dimensional Lebesgue measure and if — © < 8 < oo,
then

(010) 0< [ ~--fA(1/(2w)%)" exp (1/27);"1(95,. _ e)?lilldxi.

From the strict convexity of W(-) and from (9.10) it follows at once for the
estimator (1/2)(8* + &) that

(9.11) R((1/2)(8" + 8), (-, 0)) < R(3,f(-,0)), — o <8< o.

This contradiction shows 4 must be a set of Lebesgue measure zero. It follows
that any estimator 6*(-) as good as 8(-) relative to @ can differ from (-)
only on a set of Lebesgue measure zero. Therefore

(9.12) R(n,f) = E(3,1), all feQ.

That completes the proof of the first part of the theorem.

To prove the second part of Theorem 8, suppose M = 1 is an integer. Through-
out the following 6 will be the sequential procedure defined as follows. Take M
observations (independent identically distributed.) Estimate 6 (21, - -+, Zx) =
1/M > %, z;. Suppose n is a sequential procedure. We write N(y) for the
stopping variable of this procedure and if n = 0, 7.( - ) is the estimator used given
N(n) = n. We will suppose of 4 that

EN(n) £ M, all feQ, and
EW(ny — 0(f)) < E;W(6x — 6(f)), all feQ.

We will show in the sequel that the procedures 7 and § can differ only on sets
of measure zero.

Given ¢ > 0 define for any sequential procedure n”,
(9.14) R.(n*,f) = cE;N(n™) + EW (v — 6(f)).

It is shown by Blyth, op. cit., that there exist constants ¢ > 0 for which relative
to the risk function defined by (9.14) the procedure & is minimax. We will
suppose in the sequel one such value of ¢ has been chosen and will not subse-
quently use c as a subscript. From (9.13) it follows that

(915) R("hf) = R(ayf)’ all feQ.

(9.13)
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For density functions of the form (9.7) we will write

(9.16) R(n,0) = R(3, 0).
For the remainder of the argument we suppose the observations are independent
identically distributed normal random variables having f(. — 8) of (9.7) as
density function.

Since
(9.17) sups R(5, 0) < oo,

it follows n takes at least one observation with probability one. If n = 1 let
Bu(z1, -+, ,) be the probability that N(n) = n conditional on the sequence
{z,, 7 = 1} of values having been observed.

We suppose 6 a random variable with a prior: distribution

(9.18) (1/(2r)te) exp (—(1/26%)6%), s> 0.
Consequently for each n, the random variables X, ---, X,, 8 have a joint
normal distribution. The conditional density of 8 given X1 = 21, - -+ , Xpn = 2, 18

((ne® + 1)/276")}
9.19 n
(919) cexp — ((ne® + 1)/26°)(6 — (*/(ns® + 1)) ; )™

The joint density of X;, ---, X, is a joint normal density function

(920) pn,o‘( * )-
We define constants

(9.21) Yn,e = f coe ‘/ﬁn(xl’ cee ,xn)pn,d(xl, e ’xn)gdxi,

nzle>0.
It is easily verified that

(9.22) 2 Yoo = 1, s> 0.
Following Blyth, op. cit., define a function g( -) by
(923) if m >0, glm) = (1/20)") [ W(o/m') exp (—(1/2)¢") do.

If n = 1, the Bayes terminal decision rule §,,.,(-) does not depend on the
stopping rule. It was noted by Blyth, op. cit., that for the class of loss functions
considered,

(9.24) if n=1,  bue(m, -, x) = (/(nd + 1)) ;x
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It follows that

/ e /Bﬂ(xly e ,xn)W(ﬂn(xl, e ,xn) - 0)
925) - (1/(2rr))" fexp (—(1/2¢) ; (z: — 0)}{(1/(2m))

- exp — (1/26°)6°} d6 [] dai = vaog(n/r + 1/°).
7=1

The procedure § has constant risk
(9.26) R = R(3, 9), — 0 <0< oo,
Therefore from (9.25) it follows that

R = f R(n,0)(1/(27)%) exp (—1/24%)6° do

'—00

(9.27) ®
> n2=21 yaolen + gln/r + 1/6°)).

From the definition (9.23) of g(.) and from (9.1) it follows that ¢(-) is a
strictly decreasing function and
(9.28) gim) < o if m=1/7, limpao g(m) = .

It is shown by Blyth, op. cit., that g( - ) is a strictly convex function. The constant
R has the value

(9.29) R =cM + g(M/7).
We may without loss of generality suppose the constant ¢ is chosen so that
(9.30) M+ g(M/7) <ce(M + 1) + g((M + 1)/7)

and yet have R the minimum value of the numbers {cn + g(n/7), n = 1}. The
strictly convex function ¢m + g(m) then has its minimum value somewhere
between m = M/r and m = (M + 1)/7. By the continuity of g(-) and the
remarks just made there is ¢ > 0 and a constant K; > 0 such that

o> K, and n # M,
(en + g(n/7 + 1/6")) — (M + g(M/7 + 1/)) > «.

It is shown by Blyth, op. cit., that there is a constant K, > K, such that if
o > K, then the Bayes risk of the Bayes decision procedure is

(9.32) cM + g(M/r + 1/%).
Since the derivative g'(-) of g(-) is negative and strictly increasing,
R — (¢M + g(M/7 + 1/5"))
= g(M/7) — g(M/7 + 1/0") = (1/0")(—¢'(M/7)).

(9.31)

(9.33)
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It follows from (9.27) and (9.32), (9.33) that

05 3 vuslon + gln/r + 1/6)

(9.34)

— (M + g(M/7 + 1/0")) = (1/6*)(—g (M/7)).
By (9.22),
(9.35) Yo — 1= =2 Yao.

It follows that
0= 2 Vuol(en + g(n/r + 1/3°))

(9.36) el
— (eM + g(M/7 + 1/5")) = (1/6*)(—g'(M/7)).

By (9.31) if ¢ > K., each term of the sum in (9.36) is non-negative. Using
(9.31) and (9.36) it follows that

(9.37) if n=1 mn M then limg,,ovs. = 0.

By Fatou’s lemma, K; appropriately chdsen,

lim infyoe oyn, = Ks f f lim infyse Ba(2r, - - , @)
(9.38) n
exp (=1/2) X (2 — 0)*} {exp (—1/26°)6%} do [] du; .
=1

It follows that

n=1 n#M, andif liminf,.e oys,c = 0 then

(9.39)
B.(-) = 0 except on a set on n-dimensional Lebesgue measure zero.

Therefore (9.36) and (9.39) together imply the sequential procedure  takes
M observations with probability one. That is,

(9.40) Bu(-) =1 excepton a set of M dimensional Lebesgue measure zero.

The proof of Theorem 8 in the sequential case now follows from the proof in the
fixed sample size case.

The result we have obtained answers a question left open by Blyth, op. cit.
Blyth proves admissibility of § within the class of sequential procedures having
continuous risk function. It follows from our argument that if  is as good as
6 then 5 cannot take more that M/ 4 1 observations even if the restriction (9.30)
is removed. Therefore R(7, -) must be continuous. (W () convex is not needed
for the proof of (9.40). The hypotheses of Blyth are sufficient here.)
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