EIGENVALUES OF NON-NEGATIVE MATRICES!

By WirrLiam E. Prurrr
University of Minnesota

1. Introduction. Let P = (p;;), 3,5 = 0, 1, 2, --- , be a matrix with non-
negative entries. P is said to be irreducible if for every pair 1, J, there is a finite
sequence of integers k ) k2, -+, k, such that pu,pee, « - - Pr,i > O. An alterna-
tive definition is given in Gantmacher s book ([4], p. 50).

The point of view adopted here is to consider an irreducible matrix P as an
operator acting on column vectors having non-negative entries. A necessary and
sufficient condition for there to be a solution of Pz = Mz, i.e. for A to be an eigen-
value, is obtained. The principal tool is the theorem of Harris [5] and Veech [7]
which gives a necessary and sufficient condition for the existence of a stationary
measure for a transient Markov chain.

The relationship between the R-recurrent matrices studied by Vere-Jones [8]
and Kingman [6] and recurrent matrices is investigated in the final section. In
the stochastic case, this investigation is related to the eigenvalue problem de-
scribed above.

2. The eigenvalue problem. The method to be used is to transform P into a
substochastic matrix so that the Harris-Veech theorem may be applied. The first
step is the observation that an eigenvector can only have positive components.

Lemma 1. If P 1s irreducible and sPx < x for some s > 0 and nontrivial z,
then z; > 0 for all j.

PROOF For any 4, j, spij x; £ ;, so by induction for any sequence {ka},

pkok,pklk, *Dhnkny1Thnpr = Lo - NOW z; > 0 for some j and then for any ¢ let
{k} be the sequence guaranteed by the definition of irreducibility. Letting
ko = 1, kny1 = j in the above inequality yields the positivity of z; .

The next lemma proves the ex1stence of a,ll iterates of P provided there is an
eigenvalue. Let p{3 = 6i;, DS = D i pupis ™, Pis(s) = Doy pPs", and Ry;
equal the radius of convergence of this power series

Lemma 2. If P is irreducible and sPz < x for some s > 0 and nontrivial z,
then ps}’ < oo for all 7, j, and n, and R;; = s. ,

Proor. First sp;jz; < x; and using the given inequality in an induction yields
s”pf;‘)x, =< «;. This suffices for the first part since z; > 0 by Lemma, 1. Finally

p‘”)}”” < s'(xi/z;)"'" so that lim sup {pf}‘)}”" <s'orRy;=

In view of Lemma 2 -and our interest in P having elgenvalues, it will be as-
sumed henceforth that all iterates of P are finite and that R.; > 0. Vere-Jones
[8] has shown in this case that R.; = R, independent of 7 and j, and that the
series P;;(R) converge or diverge together. In the first case P is called R-transient
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and in the other R-recurrent. A substochastic matrix P (for which R = 1) is
called recurrent if P;;(1) diverges and transient if it converges. Thus for sub-
stochastic matrices recurrence is equivalent to 1-recurrence.

It will be convenient to introduce the analogues of the taboo probabilities of
Chung [1]. Define xp{Y = p;; and forn = 1,

klhg}' w = Z Dia k:l?fx';')~
a#k
The defining sums will converge since xp{}’ < p{}’. The usual convention that
w07 = 8:;(1 — 84) will be used. The power series 1P;;(s) = D neo ipiPs™ will
converge at least for s < R.

At this point the method of Harris and Veech could be imitated for the case
at hand. However, some additional information can be obtained by first con-
sidering the system of inequalities sPx < x. Theorem 1 relates this system to the
radius of convergence R and the classification of P as to its R-recurrence or R-

transience.

TuEOREM 1. The system sPx < x has infinitely many (linearly independent)
solutions for 0 < s < R, no solutions for s > R, and for s = R

(a) nfinitely many solutions if P is R-transient, or

(b) a unique solution (up to positive multiples) if P is R-recurrent and this solution
satisfies RPx = x.

Proor. For s < R (and s = Rif P is R-transient),

-] 0
) +1) _n+l1
s 2; Xk: papsys” = Zo piatism
n= n=

or 8 Dk PitPra(8) = Pi(s) — dia < Pia(s) so that for every a, z* = {z} where
2t = Pia(8) is a solution of the system. To see that these solutions are linearly
independent, suppose that z* = > 8;2’, i.e. £*is a (finite) linear combination of
the other 2’. Then

e — 1= (sP2")a = 2. B;i(sPr’)a = 2. Bsal = we

which is the desired contradiction. (This short proof of the linear independence
was suggested by S. Orey.)

The absence of solutions for s > R follows from Lemma 2 so only (b) when
s = R remains. Vere-Jones [8] has shown that P (R) < o, oPs(R) = 1, and
for fixed a, {oPr.(R)} is the only solution of RPx = « when P is R-recurrent.
Because the interest here is in solutions of the system RPx =< z, the uniqueness
question must still be examined. We apply a technique used by Kingman for a
similar purpose in [6]. Let  be any solution of RPx =< z. Since zx = Rpi.Za,
suppose that 2 = Za 2 we1 apsa’ R". Then

N N+1
Tk _2_ R Z pkaxa g Rxa(plca + ;a pka ;apfzz)Rn) = Za ;apl(c:)Rn-

Therefore the inequality is valid for all N and zx = %, .Pr.(R). Now if z is not
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to be a multiple of the given solution, then for some b, z; > %, «Ps(R). By
irreducibility there is an n such that p$;” > 0. Finally,

Za g Rn Zk:péf) Ty > Rn Zpéi‘) Za aPka(R) = Za aPaa(R) = Za ,
k .

which is the contradiction. Thus any solution is a multiple of {,Pi.(R)}.

The theorem of Harris and Veech is as follows: An irreducible, substochastic,
transient matrix P has a positive solution to the equation uP = u if and only if
there is an infinite set of integers K such that

Z. iPra(1) Pai
li = =0
j-»oo,k]—{g,kex Pri(1)

fori=0,1, 2, ---. Harris and Veech may have in mind only the stochastic case
but their proof goes through without change for the substochastic case. This
theorem will now be applied to yield

TrEOREM 2. The system sPx = z has a solution if and only if

(i) s = R and P s R-recurrent, or

(ii) when either s < Ror s = R and P is R-iransient, there is an infinite se-
quence of integers K such that

Z‘ Dia iPar(s)
lim & =0

>0k ke K _——iPik(s)

for every 1.

Proor. By Theorem 1 there can be no solution for s > R and there is always
a solution in case (i). Therefore the situation must be examined only for s < R
and s = R when P is R-transient. Let P* denote the transpose of P and y satisfy
sP"y < y. Define a matrix Q@ = (gi;) with ¢;; = spji;/y: . (A similar technique
was used by Derman [2] and has since been used by many authors including
Vere-Jones [8] and Kingman [6].) Then @ is irreducible and substochastic, and
since ¢}’ = s"p$Py;/y:, Q is transient. The theorem of Harris and Veech states
that there is a positive solution of uQ = w if and only if there is an infinite set of
integers K such that

0

Z. iQka( 1 )Qai
li i A— |
j-»oo,kllrvg,kex iQk 'L( 1)

(21)

for every 4. But the equation uQ = u is equivalent to
s 2 piiui/y:) = wily;

so that condition (2.1) is equivalent to the existence of a solution of sPz = z.
Finally interpreting (2.1) in terms of P yields the condition of the theorem.

CoroLLARY. If, for each 1, i = 0 except for a finite set of o values, then sPxr =
z has a solution for 0 < s < R.
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The corollary gives a class of examples where there is an interval of eigenvalues,
For examples at the opposite extreme consider P with py; = r; where r; > 0,
2 7 < o, and piiy =1, ps;j = 0 for j 5 i — 1 when 7 > 0. Then sPz = z
has a solution only for s = R and then only if P is R-recurrent.

One final point of interest is that since only symmetric assumptions have been
made on the rows and columns of P, there is no need to prove the usual dual
the’ql;'em concerning solutions of suP = p. It suffices to apply the stated theorem
to P°.

3. Transformation of substochastic matrices. The purpose of this section is to
relate those substochastic matrices with radius of convergence B > 1 to sub-
stochastic matrices with B = 1. The primary motivation here is to see what the
relation is between R-recurrent and recurrent matrices. Whenever sPz < =z,
define P(s, ) = (pij(s, )) with p;;(s, ) = sp;xz;/z; . The situation in the
stochastic case is described in

TrrorREM 3. Suppose P is R-recurrent (R-transient) and stochastic. Then if x
is any solution of RPx < z, P(R, x) is 1-recurrent (I1-transient) and has etgen-
value R. Conversely, if Q is 1-recurrent (1-transient) with etgenvalue R > 1 and
corresponding eigenfunction y, then Q(R™',y) is R-recurrent (R-transient) and
stochastic.

The proof of each statement is a straightforward computation and will be
omitted. It is interesting to note that since recurrent (substochastic) matrices
are automatically stochastic the above transformations are from stochastic
matrices to stochastic matrices in the recurrent part of the theorem.

The situation when P is allowed to be substochastic is briefly as follows. First,
if it is R-recurrent (R-transient) it may be transformed into a 1-recurrent (1-
transient) matrix as above but there is no additional information about eigen-
values. If, on the other hand, @ is an arbitrary 1-recurrent (1-transient) matrix
and for any s < 1 z is a solution of sQz =< x, then Q(s, z) is s -recurrent (s™-
transient) and substochastic.
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