ON THE RISK OF SOME STRATEGIES FOR OUTLYING OBSERVATIONS!

By Frieprice GEBHARDT?

Unaversity of Connecticut

1. Introduction and summary. Many procedures have been proposed for
handling outlying observations. Most authors use various statistics 7' to reject
one or more observations, if T is too large (or too small), and compute percentage
points of the distribution function of 7. Some authors, as in [11], [13], [15], [16],
find statistics with the optimum property of minimizing for certain alternative
hypotheses the error of the second kind given the error of the first kind. The
observations that are not rejected are used to estimate unknown parameters,
e.g. the mean.

In this paper, we shall consider one of these procedures which gives rise to a
one-parameter family of estimators for the mean and compare their risks with
those of the Bayes solutions with respect to a one-parameter family of prior
distributions. Two simplified models of outliers as will be specified in (2.1)
and (2.2) and a quadratic loss function will be investigated. For sample
sizes of 3, 6, and 10, the risks are tabulated and plotted. For Model (2.1) the
risks of the first procedure are only a little larger than those of the Bayes solu-
tions; in other words, to each admissible strategy there exists an estimator arising
from the first procedure with approximately the same risk. Winsorizing the ob-
servations [18] should presumably result in an even better approximation; how-
ever, numerical results are not available. For Model (2.2), the risks differ con-
siderably. Although this model is rather unrealistic it is included here because of
its prominence in the literature.

References for tables of percentage points and the distribution functions of
various statistics are collected in the table guide of J. A. Greenwood and H. O.
Hartley [7]. Bayes solutions are considered by S. Karlin and D. Truax [10],
B. de Finetti [3], and T. E. Ferguson [4]. Some other important papers are [1],
[12], [14], [18].

In this paper, “stragglers’ are random variables that obey a probability law
with a larger variance or with a larger or smaller expectation than the “typical”
random variables. An “outlier’’ is an observation that because of its magnitude
may be suspected of being a straggler. Thus the term “outlier” is not precisely
defined.

2. Bayes solutions. We shall now investigate two special cases in which there
exists not a whole family of alternative hypotheses, but rather apart from permu-
tations of the indices only one: We assume that all parameters of the alternative
hypothesis are known except those also appearing in the null hypothesis.
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Let the random variables X;, -+, X, be normally and independently dis-
tributed with expected values my , - - -, m, and variances o1, - -, o5 . In the
first model the straggler has a greater variance than the other variables (the
notation “4 := B” or “B =: A” defines A as B):

HO: m1=...=mn=:m,
o =...=g-n=l_‘
(2.1) 1 ’
Hz,: my = -+ = My = M,
o; =1(j#1),0i=0>1 (z=1,---,n).

In the second model the straggler has a distinet expected value:
Hy: my=--+=my =:m,
01 = CECERY o'n — 1;

(2.2)
H;: mj=m(#1),m=m-Ga

Il
—

) n’)

Let m be unknown and a and ¢ be known. In either case there is at most one
straggler. The purpose of this restriction is to simplify the numerical calculations
of Section 3 which otherwise would exceed the capacity of a medium sized com-
puter. If a straggler is a rather rare event, our model can be expected to be a
fairly good approximation to the general case where more than one straggler is
admitted. We will discuss this question a little bit further at the ends of both
this section and Section 3.

Usually the decisions

D;: H; s regarded to be the underlying hypothesis (0 < 7 < n) are admitted
together with a loss function L(H,;, D;) = L;; . Often the special case

Lr,:j=0 lf ’L.=]',
=1 if %

0'1=“'=0'n=1 (i

and prior probabilities ¢; = -+ = ¢, =: ¢, o = 1 — ng, for the hypotheses
H,,H,,---,H,,H)are considered, as by S. Karlin and D. Truax [10] and T. E.
Ferguson [4]. The class of admissible strategies is in this case just the class of
optimum procedures mentioned in the first section, the particular one now being
selected by the value of ¢ instead of the error of the first kind a.

Typically, one is not really interested in which observation is a straggler;
rather one wants to estimate the unknown parameter m. Thus, if one knew that
the correct hypothesis in (2.1) were H;, one would use with advantage
(23) —1_<n X~—|—1—X> - X __1:_";()( - X

’ n—1+ 62 g T 2 n—1+ 2 !
which is an efficient estimator for m utilizing the information about m contained
in X; as well as that in the other observations.
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A Bayesian approach to the estimation of m is due to B. de Finetti [3]. Starting
with a (subjective) prior probability density of the parameters involved, one
gets the posterior density by multiplication with the likelihood. If the influence
of some observations on the posterior distribution is weak or practically neg-
ligible, de Finetti calls these observations outliers.

In this paper, however, we are not concerned with the subjective probability
distributions of the unknown parameters, rather we will use the Bayesian esti-
mators to minimize the weighted sum of risks for a quadratic loss function.

Let Z; = X; — X and write X instead of (X3, - -+, X,) and correspondingly
z,Z, 2.

The theory of statistical decision functions [5], [17], [19] will now be used.
Let us denote by X — b(Z, X) an estimator for m, and consider the quadratic
loss

(2.4) L) = (X — b —m)

The risk R; under the hypothesis H; is defined as the expectation of the loss and
it depends in general also on m:

Ri(b; m) := E;(L(b))

2.5 '
@5 = f (& — b(z,8) — ml*fi(2,& — m) dzy - - - d2ns d.

Here the probability densities f; have already been written as functions of z and
. In all formulas, 2, denotes the function — ;= z;. For some simple esti-
mators X — b(Z, X) and a quadratic loss function, the risk was approximately
computed by F. J. Anscombe [1] who in addition deals with complex patterns
of data, such as factorial designs.

If X — b(Z, X) is an unbiased estimator for m, then, when (2.4) is the loss,
the risk is just the variance of X — b(Z, X).

As (simple) decisions D are admitted Dy: £ — b s the estimate for m.

The decision functions (composite decisions) are then just the measurable
functions £ — b(Z, 2). Let (¢o, 1, * -+ , ¢») be a prior distribution of the hy-
potheses Hy, H;, -+, H,. Within each of these hypotheses we consider an
equal prior distribution (in the limit) of all values of m, i.e. we try to minimize

the sum
+M

(2.6) > ¢ lim 1/2M Ri(b, m) dm,
=0 M->%0 —M

if the limit exists. First we shall show that we can restrict ourselves to decision
functions £ — b(z), where b is independent of Z, so that R;(b, m) is independent
of m and the limit exists, trivially.

Let

+M +0
A(M,2) = 1/2M f_M dm [ a5 T gsla — m — bz, ) fi(e, 7 — m).

For the sake of simplicity we shall make the assumption, that [b(Z, 2)| is
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bounded by a polynomial B(z). This seems to be no essential restriction, since
one would expect that the estimator £ — b(Z, z) falls into the range of the ob-
servations z; and since the final result does not depend on the particular function
B(z) as long as B(z) > max [2;]. A closer analysis shows indeed that this as-
sumption is not necessary.

From our assumption follows that A (M, 2) is bounded by an integrable func-
tion A*(z). Therefore, if limye A (M, z) exists, the order of integral and limit
can be exchanged and (2.6) becomes
27 im [ A(M,2) dz = f lim A(M, 2) dz.

M->0
(If limuow A (M, 2) does not exist, all considerations and the inequality (2.8)
still hold for any sequence lim inf,.,, 4 (M,) where lim M, = «).
Writing y = £ — m and dropping the variable z which for a while will be held
fixed we find

+o0 y+M
A =5 [ ar [ a8 T oly — b@ 4.

The inner integral can be split into three integrals ranging from y — M to — M,
from —M to +M, and from 4+M toy + M, respectively. As b(Z) is bounded, so
is

o0
w00 = [y [ X ely — b@) P i)

and therefore limy., [;(M) /2M = 0. The same holds for the third integral,
so that finally

. . 1 -+ +M

llIIlM_>°o A(M) = llIIlM-»eo m .[eo dy /—M dﬁi Z ¢1[?/ - b(-’i')]%ft(y)
(258) I
zminy [ dy 3 oy — bi(y)

The value by that minimizes (2.8) depends of course on 2. by(2) is a solution of
the problem (2.6) provided bo(z) is measurable. This measurability can be ex-
pected because all functions involved are continuous. Consequently we will
consider now decision functions b(z), and because the Bayes solution will be
seen to be measurable in the (&, z)-space, it is a solution of (2.6).

As b(z) is now a function of z only, (2.5) can easily be integrated with respect
to #. Let X — wi(Z) be an efficient estimator for m under the hypothesis H; ;
such a w;(Z) always exists in the cases of interest to us. Then

Ri(b) = vard X — wi2)) + [ [wiz) = b@FFiz) dis - - dewms
(2.9)
= Ri + r:(b)
with Fi(2) = [fi(2, £ — m) d(Z — m).
Thus R;(b) does not depend on m, and our problem is reduced to a finite
number of simple hypotheses.
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The term R: on the right sid_e of (2.9) depends only on the hypothesis H;,
not, however, on the estimator X — b(Z). If one wishes to compare two different
estimators, R: plays no part at all. Let us therefore concern ourselves first only
Wlth r;.

To minimize Y_¢s;, one has to minimize D pdw:(z) — b(2)]*Fi(z) for fixed
z with respect to b. The solution is
(2.10) be(2) = (22 dawi(2)Fi(2))/( 22 ¢iFi(2))

Let us introduce the following notations: ¢ := n(2r) "2 k := (n — 1)¢*
+ 1, K := [(n — 1)¢® + 1]/[n(¢® — 1)]. For the hypotheses (2.1) we have
(compare (2.3))

wy(z) = 0,

wi(z) = z/nK (¢ 0),

Fo(2) = (¢/(n)") exp (=32 23},

Fu(z) = (c/(k)®) exp {—1>. & + (1/2K)2} (i % 0).

In the case of a symmetrical prior distribution (1 — n¢, ¢, « -+ , ¢), defining
C = (k/n)*(l — n¢)/¢, the Bayes solution

> ziexp {22/2K)}
nK(C + > exp {22/2K})

(2.11) by(2) =

results.
Writing D = [(1 — n¢)/é] exp {1[(n — 1)/nla’}, the corresponding formulae
for the hypotheses (2.2), again with the symmetrical prior distribution, are:

wo(z) = 0, w;(z) = a/n (z = 0),

Fo(2) = (¢/(n)") exp {~3 24},

Fi(2) = (¢/(n)") exp {— Z &+ az; — §{(n — 1)/nla’} (i #0),
(2.12) be(2) = (a/n) (2 exp {az})/(D + 2 exp {az}).

In both cases the Bayes solutions & — bg(z) are rather complicated.

If all z; are small, then by = 0. If one z; is much larger than the rest, then
(2.11) becomes bs(2) = z;/nK and (2.12) becomes by(2) = a/n, that is w;(z)
in either case.

In a similar way, the Bayes solution for a model permitting more than one
straggler can be computed. Let ¢, be the prior probability of each hypothesis
assuming r stragglers; )" stands for a summation with respect to all r-tuples
U<t < - <2}.WritingS=1——a—2

h(il,...,i,)=exp<{ Z +1 rS[i zi]z},

=13 1=

M, = oo (0 — r8) T [W“ i) 3 o]
Ne=vro(n— r8) ™ *n(sr, -, %)
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the Bayes solution for stragglers differing in the variance is

n—1 n

(2.13) as(z) = 8 Z; M./ > N,.
r= r=0
(2.11) arises from (2.13) if Yo = 1 — ng, ¥1 = ¢, Yo = --- = ¢, = 0. Due to

the factor Y,¢ ", M, and N,(r = 2) are small as compared to M; and N; as long
as all z; or all but one are absolutely small. If » observations z; are absolutely
large, then M, and N, will predominate and as(z) ~ S/(n — r8) D it 2: S0
that these r observations have little weight in & — a4(2).

3. Risks of several estimators for the mean. The risk of another estimator
X — b*(Z), which is formulated very simply, will be compared with the risk of
the Bayes solution. This second estimate arises when the largest (or smallest)
observation is not used in estimating m if it deviates too much from the sample
mean. In particular, under the hypotheses (2.1) we use

X-2)=X if max |Z;| £ B,
(3.1) =W -102 X, = X~ 1/(n = 1))Zx
’ otherwise, |Zy| = max |Z,|.
Correspondingly, under the hypotheses (2.2) fora > 0
X-v2) =X if max Z; £ 8,
=X — (1/(n — 1))Zy otherwise, Zy = max Z;.

The risk of the Bayes solutions and of the estimators (3.1), (3.2) respectively
were computed for various parameter values on the electronic computer Siemens
2002 of Tiibingen University. The results are compiled in Tables 1-4. The error
of the numerical computation is in some instances several units of the last
indicated decimal.

Since the parameter ¢ of the Bayes solution has no relationship to the parame-
ter B of the estimate functions (3.1) and (3.2), the risks of b, and b* cannot be
compared effectively by means of the tables. This comparison can be much
better effected by means of Figures 1 and 2. The thick lines represent the risk
of the Bayes solutions, the thin ones, the risk of b*. In the case of the model
(2.1) (where stragglers have a larger variance), the risk of b* is not much larger
than that of by . If, just for the purpose of comparing the risks, the parameters
are so chosen that ro(bs) = ro(b*), then r1(b*) is a fourth to a half larger than
r1(bs), and this fraction becomes smaller as n increases. This means that Ri(b%)
is only a few percent larger than R,(b,), e.g. about 2-5% for n = 10, while,
by contrast, a decrease of n by one would increase both By and R, by 11-121 %.
In the case of the hypotheses (2.2), the differences are considerably greater.
Choosing again the parameters so that ro(bs) = 7o(b*), then for n = 3, R:i(b")
is 30 % to 50 % larger than R;(bs), for n = 10 still about 10 %. This shows that
considerable information is disregarded if the outlier is not used while the
parameter a is known.

(3.2)
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F1g. 1. Outliers with different variance. Bold lines: risk of the Bayes solution bs. Fine
lines: risk of the estimate b*.

While the Bayes solutions have a smaller risk than the statistics (3.1) and
(3.2), the latter ones are more easily computed. There is an additional advantage
to the statistics b*: the straggler parameter a, o respectively does not enter into
b*(Z), i.e. X — b*(Z) can be used even when this parameter is known only ap-
proximately or not at all, and in every case the risk is not appreciably larger than
that of a Bayes solution for straggler parameters known, if only 8 is not too
small.

If in the case of a straggler with distinet variance, 8 becomes too small, the
risks 7o(b*) and r;(b*) both increase again. From the diagrams and tables one
sees that forn = 3and n = 10, 8 = 2.5 and 8 = 3, respectively, are to be
recommended; this corresponds to an error of the first kind of about & = 0.01.
The value of 8 corresponding to & = 0.05 in any case already results in risks on
the upper branch of the thin line curves, where both risks increase again. In the
case of a straggler with a distinct expectation the values of 8 corresponding to
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01 .02 .03 .04

Fre. 2. Outliers with different mean. Bold lines: risk of the Bayes solution by. Fine
lines: risk of the estimate b*.

a = 0.02 to @ = 0.05 are recommended. For smaller a, r;(b*) climbs steeply
without 7o(b*) becoming appreciably smaller.

If the set of hypotheses (2.1) is extended to allow for any number of stragglers,
the Bayes solution is a4(2) as given in (2.13) rather than bs(2), equation (2.11);
likewise, b*(2) should be replaced by an estimate, a *(2), say, which permits more
than one observation to be discarded. For the following discussion, let us denote
the risk of a decision function b(z) (symmetric in 21, - zn) under any hy-
pothesis assuming j stragglers by Q,(b), so that e.g. Rl(b) = R,(b) =
@1(b). The risks @;(ay) and Q;(a*) have not been computed, but under model
(2.1) they again should be nearly equal (at least for j = 0, 1) for the following
reasons: Qo(ay) and @:(as) must be larger than Qo(bs) and Qi(bs) (more exactly:
the graph of a, must lie to the right of that of bs), and one will expect that
Qo(a*®) and Qi(a*) also are larger than Qo(b*) and Q,(b*). However, the dif-
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ferences should be small; for we have seen in Section 2 that bs(z) is a good ap-
proximation to a4(2) as long as there is at most one outlier, and the probability
for two or more outliers is small; the same will be true for b*(z) and a reasonably
chosen a*(z). None of the risks Q; has been computed for j = 2.

4. On the numerical calculation of the risks. To compute integrals such as
(2.7) one often uses the Monte Carlo method, that is one computes the integrand
for a large number of random arguments and takes the mean. This procedure
converges as N ! when N is the number of computed function values. However,
it is not necessary that the arguments be independent from each other provided
they are evenly scattered. The following procedure was cited by Davis and
Rabinowitz [2] to compute the integral

1 1
(4.1) I=f ~--fF(tl,-u,t")dtl-udtn.
0 0
Let 1, -+, p. be arbitrary real numbers (e.g., p1 = -+ = p, = 0) and
g1, - , ¢. real numbers such that no relation > 1r,q, = ro with rational numbers
T, 71, *+ T» holds except for ry = --- = r, = 0, and let

8;, = Py + 1g, (mod 1), 0=s <1,

v

4.2 N
( ) IN=(1/N);F(8i1""7sin)°

Then I converges to I and the error is almost of order N". This has not been
proven, but it has been verified for several examples.

In our case one reasonably proceeds from (2.5), not (2.9), writing this integral
in terms of the original integration variables z1, --- , 2., with m = 0. Let us
denote by ®(x) the normal distribution function. Using the transformation
t = ®(x), it takes the form (4.1), namely

(4.3) I=/Olu-fol[az—b(z)thlu-dtn;

here b(z) and Z are to be regarded as functions of ¢, - - - , ¢, by means of z; =
r; — T and t;j = <I>(x,-).

Thus to be able to compute b(z), one needs the inverse function for ¢ = ®(z).
Since with moderate computing time (14 hours on the Siemens 2002 have actu-
ally been used) one can expect for I an accuracy of three decimals at the most,
a moderate accuracy in the computation of z = x(t) suffices; on the other hand,
one is interested in a rapid procedure because of the great number of function
values. This is accomplished in the method cited in [6].

For fixed n and ¢, a, respectively, the values of ro(bs), r1(bs), ro(b™) and
r1(b*) were computed simultaneously, and simultaneously for all values of ¢ and
B, i.e. using for all these integrals the same values of s;, . For the risks under the
hypotheses (2.1), N was set equal to 10,000; for the risks under the hypotheses
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(2.2), N = 6,000. In addition the partial sums for 1,000 arguments apiece were
computed, in order to be able to estimate the accuracy of the approximation.
Although r,(b) can be explicitly determined for ¢ = 0, it has also been computed
by the method described here to check its accuracy. The agreement was satis-
factory.

Acknowledgment. I wish to thank Professor Leonard J. Savage for many
helpful suggestions which led to a major revision of the earlier version of this
paper and Professor K. Zeller for the permission to use the Siemens 2002 com-
puter in the Computer Center of the Universitdt Tiibingen.

TABLE 1
Risk of the Bayes solution under hypotheses (2.1)
n: 3 6 10
¢ o 3 5 7 3 5 7 3 5 7
To .333 .029 .044 .049

.167 .015 .021 .020 .0109  .0146 .0167

.10 .009 .013 .012 .0062  .0069 .0073 .0043  .0059  .0065
.05 .005 .007 .006 .0032  .0032 .0035 .0019  .0022 .0021
.01 .001 .002 .001 .0007  .0006 .0009 .0004 .0004 .0004
.005 .001 .001 .001 .0003  .0003 .0005 .0002 .0002 .0002

.000 0 0 0 0 0 0 0 0 0
Ré .333 .333 .333 .1667  .1667 .1667 .1000  .1000  .1000
71 .333 .228 .233 .196

167 .233 242 .206 .0420  .0346 .0282

.10 .242 .253 .218 .0432  .0366 .0303 .0149  .0122  .0096
.05 .259 .274 .238 .0470  .0414 .0351 .0157  .0134  .0109
.01 .313 .343 .302 .0601  .0573 .0494 .0203  .0188  .0159
.005 .341 .380 .335 .0678  .0658 .0568 .0228  .0216  .0184
.000 749 2,510 5.172 1932 .635 1.301 .0702 .2294  .4691

Rll 474 .490 .495 1957 1984 .1992 .1098  .1106  .1109




TABLE 2

Risk of the estimates (3.1) under hypotheses (2.1). Approximate error of first kind, a, according

to M. Halperin et al. [9], their formula (4.1)

n B o To
c=3 c=5 o=17
3 2.00 .042 .050 .357 .314 .27
2.25 .017 .026 .348 .321 .27
2.50 .0066 .011 .353 .345 .30
2.75 .0023 .004 .370 .379 .34
3.00 .00071 .002 .396 .430 .38
6 2.25 .079 .0203 .060 .049 .037
’ 2.50 .036 .0109 .058 .049 .037
2.75 .015 .0056 .060 .055 .041
3.00 .0062 .0026 .066 .060 .048
3.25 .0022 .0011 .073 .070 .056
10 2.50 .08 .0078 .0214 0160 .012
2.75 .037 .0040 .0208 0165 .012
3.00 .0156 .0019 .0213 .0180 .014
3.25 .0061 .0009 .0233 .0208 .017
3.50 .00225 .0003 .0260 .0235 .020
TABLE 3
Risk of the Bayes solution under hypotheses (2.2)
n: 3 6 10
¢ a: 3 4 5 3 4 5 3 4 5
To .333 1.000 1.777 2.777
.25 .250 .205 .131
.167 .250 .444 .694
.15 .096 .086 .060 114 .087 .045
.10 .055 .054 .040 .037 .029 .016 .0900 .1600 .2500
.08 .0282  .0205 .0101
.05 .024 .027 .022 .013 .011 .007 .0104 .0081 .0041
.025 .0056  .0056 .0039 .0040 .0035 .0018
.01 .004 .006 .006 .0019 .0023 .0019 .0014  .0013  .0008
.005 .002 .003 .003 .0008 .0012 .0011 .0006 .0006 .0004
.000 0 0 0 0 0 0 0 0 0
Rs .333 .333 .333 .1667  .1667  .1667 .1000  .1000 .1600
71 .333 0 0 0
.25 .063 .065 .043
.167 . 0 0 0
.15 .160 .140 .089 .0052 .0066 .0043
.10 .229 .195 .123 .0268  .0226  .0123 0 0 0
.08 .0043  .0048 .0025
.05 .340 .292 .187 L0564  .0442  .0227 L0132 .0107  .0052
.025 .083 .065 .034 .0240 .0183  .0090
.01 .583 .557 .381 .116 .095 .051 L0369  .0287 .0148
.005 .676 .688 .490 .141 .120 .069 .0460 .0373  .0199
.000 1.000 1.777 2.777 .250 .444 .694 .0900 .1600 .2500
R{ .333 .333 .333 .1667  .1667  .1667 .1000  .1000 .1000

1534
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TABLE 4

Risk of the estimates (3.2) under hypothesis (2.2). Error of first kind, e, according
to F. G. Grubbs [8]

a=3 a=4 a=25
3 1.50 .0992 .085 .358 .254 .188
1.75 .0481 .051 .464 .337 .218
2.00 .0215 .028 .584 .460 275
2.25 .0088 .015 704 .627 374
2.50 .0033 .006 .809 .829 .531
6 1.50 .2874 .0425 .050 .037
1.75 .1625 .0297 .066 .043 .0345
2.00 .0847 .0189 .089 .055 .0367
2.25 .0410 .0107 113 .076 .0420
2.50 .0185 .0057 .142 .100 .052
2.75 .0078 .0031 .064
10 1.50 .4842 .0235 .0134
1.75 .3001 0176 . .0182 .0129
2.00 .1686 .0117 .0245 .0155 .0117
2.25 .0871 .0074 .0331 .0194 .0125
2.50 .0418 .0044 .0420 .0262 .0141
2.75 .0187 .0021 .0360 .0167
3.00 .0078 .0008 .0227
REFERENCES

[1] AnscomsE, F. J. (1960). Rejection of outliers. Technometrics 2 123-147.
[2] Davis, P. and RaBiNowrTz, P. (1956). Some Monte Carlo experiments in computing
multiple integrals. Math. Tables Aids Comput. 10 1-8.
[3] De Finerri, B. (1961). The Bayesian approach to the rejection of outliers. Proc.
Fourth Berkeley Symp. Math. Statist. Prob. 1 199-210.
[4] FErcuson, T. E. (1961). On the rejection of outliers. Proc. Fourth Berkeley Symp.
Math. Statist. Prob. 1 253-287.
[5] GEBuARDT, F. (1961). Bayeslosungen des Ausreisserproblems. Dissertation, Miinchen.
[6] GEBHARDT, F. (1964). Generating normally distributed random numbers by inverting
the normal distribution function. Math. Comput. 18 302-306.
[7] GrEENwWoOOD, J. A. and HarTLEY, H. O. (1962). Guide to Tables in Mathematical Sta-
tistics. Princeton Univ. Press.
[8] Grusss, F. E. (1950). Sample criteria for testing outlying observations. Ann. Math.
Statist. 21 27-58.
[9] HaLrERIN, M., GREENHOUSE, S. W., CORNFIELD, J. and ZALOKAR, J. (1955). Tables
of percentage points for the studentized maximum absolute deviate in normal
samples. J. Amer. Statist. Assoc. 50 185-195.
[10] KaruIN, S. and Truax, D. (1960). Slippage problems. Ann. Math. Statist. 31 296-324.
[11] Kupo, A. (1956-57). On the testing of outlying observations. Sankhyd 17 67-76.
[12] LeamanN, E. L. (1961). Some model I problems of selection. Ann. Math. Statist. 32
990-1012.



1536 FRIEDRICH GEBHARDT

[13] PauLson, E. (1952). An optimum solution to the k-sample slippage problem for the
normal distribution. Ann. Math. Statist. 23 610-616.

[14] PranzacL, J. (1959). Ein kombiniertes Test- und Klassifikationsproblem. Metrika 2
11-45.

[15] QuesenBERRY, C. P., and Davip, H. A. (1961). Some tests for outliers. Biometrika
48 379-387.

[16] RamacHANDRAN, K. V. and Kuarri, C. G. (1957). On a decision procedure based on
the Tukey statistic. Ann. Math. Statist. 28 802-806.

[17] Ricurer, H. (1960). Uber optimale mehrstufige Tests. Trans. 2nd Prague Conference
on Information Theory, Statist. Decision Functions, Random Processes. 557-568.

[18] TukEy, J. W. (1962). The future of data analysis. Ann. Math. Statist. 33 1-67.

[19] WarLp, A. (1950). Statistical Decision Functions. Wiley, New York and London.



