DISCOUNTED DYNAMIC PROGRAMMING

By Davip BrackwEeLL!
Unaversity of California, Berkeley

1. Introduction. Soon after the appearance of Wald’s work in sequential
analysis, Richard Bellman recognized the broad applicability of the methods
of sequential analysis, named this body of methods dynamic programming, and
applied the methods to many problems (see [1] and papers cited there). The first
development of a general theory underlying these methods is due to Karlin
[6], and a rather complete analysis of the finite case was given by Howard [5].
Dubins and Savage [3] have recently developed a general theory of gambling;
the relation of gambling to dynamic programming is not completely clear, but
it is certainly close. -

Our formulation of a dynamic programming problem is somewhat narrower
than Bellman’s. For us, a dynamic programming problem is specified by four
objects S, 4, ¢, r, where S, A are any non-empty Borel sets, ¢ associates with
each pair (s, a) ¢ S X A a probability distribution ¢(-|s, @) on S, and r is a
bounded Baire function on § X 4 X S. We think of S as the set of possible
states of some system, and A as the set of acts available to you. Periodically,
say once a day, you observe the current state s of the system, then choose an act
a e A. Then the system moves to a new state s’ (which will be the state you
observe tomorrow), selected according to ¢q(-|s, a), and you receive a reward
7(s, a, s'). Your problem is, given the initial state of the system, to maximize
your total expected reward over the infinite future.

This total expected reward may well be infinite, for example, if » = 1. Or it
may well be undefined. For example, if S has two elements 0, 1, 4 has only a
single element, ¢ is deterministic with 0 — 1, 1 — 0, and the transition 0 — 1
yields 81, while 1 — 0 costs $1, the series of rewards, startingin state 0,is 1 — 1
+ 1 — 1+ ---. We shall avoid this problem by introducing a discount factor
8,0 = B < 1, so that unit reward on the nth day is worth only 8", and shall
try to maximize the total discounted expected reward.

A plan « specifies for each n = 1 what act to choose on the nth day as a Borel
measurable function of the history A = (81, a1, - - -, 8,) of the system to date or,
more generally, = specifies for each h a probability distribution over A. Associ-
ated with each = is a bounded function /(7) on S, the total expected discounted
reward from =, as a function of the initial state of the system. We shall be es-
pecially interested in the (non-randomized) stationary plans w. A stationary =
is defined by a single function f mapping S into A: whenever the system is in
state s, you choose act f(s).
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Our main results are
(1) There need not exist an e-optimal =, i.e. we give an example in which there
is an € > 0 such that for every = there is a 7 such that

I(z') = I(n) + efor some s ¢ S. (Section 3).

(2) There always exists a (p, €)-optimal stationary =", i.e. for any probability
distribution p on S and any e > 0, there is a stationary =* such that, for every .,

p{I(x) > I(x*) 4+ ¢ = 0. (Theorem 6(b)).

(3) Not every m need be dominated within e by a stationary =", i.e. we give an
example of a = and an ¢ > 0 such that, for every stationary r*,

I(z*) < I(r) — efor some s & 8. (Section 5).

(4) If A is countable, there is an e-optimal stationary =", i.e. for every ¢ > 0,
there is a stationary =" such that, for every m,

I(r) < I(z*) + eforall se S. (Theorem 7(a)).

(5) If A is finite there is an optimal stationary =", i.e. there is a stationary =*
such that, for every m,

I(x*) = I(x) for all s S. (Theorem 7(b)).
(6) If there is an optimal «, there is one which is stationary. (Theorem 6(c)).

2. Probabilistic definitions and notation. By a Borel set we mean a Borel
subset of some complete separable metric space. A probability on a non-empty
Borel set X is a probability measure defined over the Borel subsets of X; the
set of all probabilities on X is denoted by P(X). For any non-empty Borel sets
X, Y, a conditional probability on Y given X is a function g(-|-) such that for
each z ¢ X, q(-| z) is a probability on ¥ and for each Borel set BC Y, q(B |-)
is a Baire function on X. The set of all conditional probabilities on Y given X is
denoted by Q(Y | X). The product space of X and ¥ will be denoted by XVY.
The set of bounded Baire functions on X is denoted by M(X). For any
ueM(XY) and any ¢eQ(Y | X), qu denotes the element of M(X) whose
value at 2o € X is qu(xo) = fu(mo , ¥) dq(y | @). For any p ¢ P(X) and any
ueM(X), pu is the integral of w with respect to p. For any pe P(X),
qeQ(Y | X), pq is the probability on XY such that, for every ue M(XY),
pg(u) = p(qu). Every probability m on XY has a factorization m = pg; p is
unique and is just the marginal distribution of the first coordinate variable with
respect to m; ¢ is not quite unique; it is a version of the conditional distribution
of the second coordinate variable given the first. These facts and all others in
this section, except the Lemma at the end, are in [7].

We extend the above notation in an obvious way to a finite or countable
sequence of non-empty Borel sets X1, X5, -+ . If g0 € @(Xnya | X1 - -+ X,) for
» = 1and p e P(X1), pg1 -+ ¢ is & probability on X, X, - - X, 41, pgage - - - is
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a probability on the infinite product space X1Xs - .-, g3 € @Q( XX, | X:X2),
for any ue M(X1Xs -+ Xop1),n = land any m, 1 = m = N, Qu ** quu &
M(X, - Xn), ete.

To avoid further complicating an already involved notation, we introduce
an ambiguity as follows: for any function « on Y, we shall use the same symbol
u to denote the function » on XY such that v(z, y) = wu(y) for all y. Thus, for
example, foranyq e Q(Y | X),u e M(Y),qu e M(X);anyq e Q(Y | X) will also
denote the element ¢’ of Q(Y | ZX) defined by ¢'(-| 2, -) = q(-|-), ete.

A peP(X) is degenerate if it is concentrated at some one point x ¢ X; a
g eQ(Y | X) is degenerate if each q(-|x) is degenerate. The degenerate ¢q are
exactly those for which there is a Baire function f mapping X into Y for which
g({f(x)} |z) = 1 for all x ¢ X. Any such f will also denote its associated de-
generate ¢, so that, for any u ¢ M(XY), fu(z) = u(z, f(x)) forallz ¢ X.

We shall use the following.

Lemma [2]. For any ¢e Q(Y | X), ue M(XY), € > 0 there is a degenerate
feQ(Y | X) such that

(1) fu = quforallzeX
and
(2)  qUy: u(xo, ¥) = u(zo, f(w)) + € [20) = 0 for all x e X.

The Lemma asserts that, in the situation where we observe x ¢ X then choose
y € Y, receiving an income u(z, i), any randomized plan ¢ can be replaced by a
non-randomized plan f such that (1) our expected income for each x is at least
as large as it was before and (2) with probability 1, for each z, the actual income
under ¢ does not exceed the actual income under f by as much as e.

3. Dynamic programming definitions and notation. A dynamic programming
problem is defined by S, 4, ¢, r, B, where S, A are any non-empty Borel sets,
qgeQ(S|SA),re M(SAS),and 0 = B < 1. A plan 7 is a sequence (m ,m, -+ ),
where 7, e Q(A | H,) and H, = SA --- S(2n — 1 factors) is the set of possible
histories of the system when the nth act must be chosen. A plan 7 is (non-ran-
domized) Markov if each m, is a degenerate element of Q(A | S), i.e.
= (fi,f., -+ ), where each f, is a Baire function from S into 4, and is (non-
randomized) stationary if there is a Baire function f mapping S into 4 such that

= f for all n. The stationary plan defined by f is denoted by f.

Any plan =, together with the law of 1hotion ¢ of the system, defines for each
initial state s a conditional distribution on the set @ = ASAS - - - of futures of
the system, i.e. it defines an element of Q(Q | S), namely e, = mgmq - - - . Denote
the coordinate functions on SQ by o1, a1, 02, @2, -+ - so that our reward on the
nth day, as a function of the history of the system, is r(os, an, dn41), and our
total discounted reward is u = 2.1 8" r(on, an, ont1). The expected total
discounted reward from =, as a function of the initial state, is then

I(7) = equ = 23 B8" 'mg + -+ magr.

(Note the use of ambiguous notation.)
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For any peP(S), and any ¢ > 0, =~ will be called (p, €)-optimal if
plI(x) > I(x*) + ¢ = 0 for every m. =" will be called e- -optimal if it is (p, €)-
optimal for every p, or, equivalently, if I(x) < I(x") 4 ¢for all =, s, and will be
called optimal if it is e-optimal for every e > 0 or, equivalently, if I(r) < I(x")
for all =, s. (p, ¢)-optimal stationary plans always exist, but p-optimal, i.e.
(p, e)-optimal for every e > 0, e-optimal plans (stationary or not) may not

exist, as the following examples show.

Exampre 1. (There are no p-optimal plans). S has a single element, say 0,
and A has countably many elements, say 1, 2, 3, --- . We take (0, a, 0) =
(a — 1)/a. There is no = with /(w) = 1/(1 — g8), but sup, I(x) = 1/(1 — B).

ExampLE 2. (There are no e-optimal plans). We take S = A = unit interval
[0, 1]. "Che state of the system remains fixed: (s, a) — s, and the reward 7 is 1 or
0 according as (s, a) is in a given Borel subset B C SA or not. For any = =
(w1, m, +++ ), {s: mgr > 0} is a Borel subset of the projection D of B on &S.
For B chosen so that D is not a Borel set there is an sy ¢ D for which mr = 0,
sothat I(7w)(so) < B+ B2+ --- = /(1 — B). Since there isa =* with I(7™) (s0)
= 1/(1 — B), = is not e-optimal for any ¢ < 1.

4. Existence of (p, €)-optimal .

THEOREM 1. For any p € P(S) and any € > 0 there is a (p, €)-optimal plan.

The proof of Theorem 1 is simple but, regrettably, non-constructive. We associ-
ate with each = the number pI(w), the expected return from = when the initial
state has distribution p, denote by v the upper bound over all = of the numbers
pl(x), choose a sequence 7, 7@, ... of policies with pI(#™) — v, and set
u = sup, I(v™).

Let S consist of all s for which n is the smallest & with I(#®) = u — €, and
let =* be the plan which wses = for all initial states s ¢ S, , i.e.

¥ s, @y, Sn) = (s, @, -, Sm) for s eS,.

Then /(*) = I(#™) on S, , and I(7™) =2 u — e everywhere. We show that,
for every =, p{I(x) < u} = 1, which will show that =* is (p, ¢)-optimal. For,
take any = and any v > 0. The constructlon above, applied to the sequence
m, w0, 7®, .. yields a «** with I(r* ) 2 max (u, [(w)) — v everywhere.
But p[(w**) v = pu, while pI(#**) = p max (u, I(7)) — 7, so that p
max (u, /(7)) = pu + v. Since y is any positive number, p max (u, I(r)) < pu,
and p{l(7w) < = 1.

5. (p, ¢)-domination by Markov =.

TarorEM 2. For tmy peP(8), € > 0, m, there is a Markov =" which (p, €)-
dominates =, ie. p{I(z*) = I(x) — ¢ = 1.

Proor. We may suppose that = is aheady Markov from some point on, say
for n > N, since any two policies m, =" which agree for the first N days have
1(x") — I(w)ll B llrll/(l — B) where, for anyueM(S) llull = sup, [u(s)].
We now show that, if # = (my, -+, 7y, fyt1, - -+ ) is Markov for n > N, for
any y > 0 there is an fy mapping S into 4 With plI(x) = I(x) —+} =1,

A A
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where #' = (m, -+, wy-1, fv, fv41, -+ ). Using this fact N times, with
v = ¢/N, will produce a Markov =* which (p, ¢)-dominates .
To find fy, we write I(x) = mg--- 7vag(u + B 'maqv), where
—1 Hk—1
u(sy, ar, -+, sv) = 2 k=18 7(sk, A, S1) and v(sy, ax, Syu) =

r(sw, an , Swt1) + (Db BFv1aq - - - fu4aqr) (8w, an , Sw41). It suffices to find
S~ for which

(3) pimg -+ Tvagfyw = mq - wyagTyw — v} = 1,

where w = 8" 'gv e M(SA).

Consider the probability m = pmgq --- 7» on S4 --- SA (2N factors), and
denote the coordinate variables by o1, a1, - -+, o5, axy . Forany fy ,x = mgq - - -
my_1gfxw (1) is a version of E(w(oy , fx(on)) | o1) and y = mqy - - - wy_agmaw(o1)
is a version of E(w(oy, aw)|o1).If we choose fy so that w(ow, f(on)) =
w(ow , axy) — v with probability 1, we shall have # =-y — v with probability 1
which is equivalent to (3). That such an fx exists follows at once from the Lemma
of Section 2 with X = 8, Y = A, ¢ a version of the conditional distribution of
ay given oy , u = w, and e = 7. Thls completes the proof.

CoROLLARY. For any p € P(S), € > 0, there is a (p, €)-optimal Markov T

Proor. From Theorem 1 there is a (p, ¢/2)-optimal = and from Theorem 2
there is a Markov «* which (p, ¢/2)-dominates . This 7* is (p, ¢)-optimal.

In Theorem 2 we cannot replace (p, ¢)-domination by e-domination. Here is
an example.

ExaMPLE 3. (A plan = which cannot be e-dominated by a Markov plan). We
take S = B u X, where B is a Borel subset of the unit square XY whose pro-
jection D on X is not a Borel set. 4 is the unit interval. The law of motion ¢ is
degenerate and independent of a: (z, y) — z, z — z. r(z, a, ) = 1if (2, a) ¢ B,
r = 0 otherwise. Any plan =* such that (- |81, a1, -, s.) is degenerate at
y whenever s; = (2, y) has I(7*) = B/(1 — B) on B.For any = = (w1, m2, )
for which m £ Q(A | S), i.e. does not depend on the initial state, the set of z ¢ X
for which mgr > 0is a Borel subset of D, so there is an &, ¢ D for which mgr = 0.
For any yo with (o, yo) € B, we have

I(W)(xo, ?/0) = B2/(1 - ﬁ)y
so I(x) £ I(z*) — B for some s.

6. Stationary plans and operators. Associated with each Baire function f
mapping S into A is a corresponding operator T, mapping M (S) into M (S),
defined as follows. For uw ¢ M(S), Tu = fq(r + Bu), where the u on the right,
considered as a function on SA.S, depends on the last coordinate only. Tu is our
expected income, as a function of the initial state, if we start using f( but are
termlnated at the beginning of the second day with a final reward u(s"), where
s’ is the state at termination. 7™ has a similar interpretation, replacing “second”
by “n + 1st”. The following properties ot T, formulated as a theorem, are im-
mediate.
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TrHEOREM 3. (a) T 7s monotone, i.e. u < v for all s implies Tu < Tv for all s.

(b) For any constant ¢, T(u + ¢) = Tu + Be.

(¢) For any Markov = = (f1, fo, -+- ), TI(w) = I(f, w), where (f, =) denotes
the Markov plan (f, fi, fa, -+ ).

For any Markov = = (fi, f2, --+ ) we shall say that f mapping S into A is
w-generated if there is a partition of S into Borel sets S;, Ss, - such that
f = f.on S, ; we say that a Markov =’ = (g1, g, -+ ) is m-generated if each
g» is w-generated. We associate with each Markov = the operator U, mapping
M(S) into M (S), defined by Uu = sup, T,u, where T, is the operator associated
with f, . The following interpretation of U will be justified later. U™ is our
optimal expected return, over all w-generated Markov =’, as a function of the
initial state, if we start using =’ but are terminated at the beginning of the n + 1st
day with a final reward u(s’), where s’ is the state at termination. Here are some
basic properties of U.

THEOREM 4. (a) U is monotone.

(b) For any constant ¢, U(u + ¢) = Uu + Be.

(e¢) For any T associated with a w-generated f, Tu < Uu.

(d) For any we M(S) and any ¢ > 0, there is a w-generated f whose associated
T satisfies Tu = Uu — e

Proor. (a), (c¢) are immediate. For (b) we have

To(u +¢) = Tou + Bc = Uu + Be,

so that U(u + ¢) = Uu + Bc. This inequality, with u replaced by u + ¢, ¢ by
—c¢, yields Uu = U(u + ¢) — Bc, establishing (b). For (d), let S, consist of all
s for which

Taw < Uu — efor i < n,
Tw = Uu — ¢

and set f = f. for s € S, . Then, for any v, Tv = T, on S, , where T is associated
with f. In particular, Tu = Thu = Uu — eon S, ,s0 Tu = Uu — e everywhere.

To justify our informal interpretation of U, note that, for any Markov »’ =
(g1, g2, -+ ), the total income from =’ with termination on the n 4 1st day
with final payment u is

L(x',u) = TV'T - T, u,

where 7'/ is the operator associated with g;. If =" is w-generated, Tw < Uv for
all 4, so that 7,(x', u) < U™u. To find «’ with I,(x, u) = U™ — e, choose any
positive numbers ¢; , and choose ¢; w-generated so that

T/U" %z UU " — ¢ = U™ — .
By induction downward on ¢, starting at 7 = n, we obtain

’ ’ —3+1
T o TS u = U — dy,
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where d, = ¢ + Ben + -+ + B" ‘e, . Fori = 1 we obtain L(x',u) =
"w — d;, and the ¢ can be chosen so that di < e
TaEOREM 5. If U s any operator with properties (a) and (b), U 4s a contraction
with modulus B, i.e. ||[Uu — Uv|| = Blu — vl|, so that, from the Banach fixed-point
theorem, U has a unigue fized point u*, and |U™ — w*|| < 8"|u — u*|| for all n.
Proor. v £ u + |ju — v|| yields

Uv < Ulu + |lu — o)) = Uu + Bllu — v,

using (a), (b). Interchange u and v to obtain Uu < Uv + B|lu — v||, completing
the proof.

The principal general results on optimal plans are contained in the following
theorem. Related results are given by Dubins and Savage [3], as indicated.

THEOREM 6. (a) For any Markov = (fi, fo, - --), denoting by T’ the operator
associated with f, and by U = sup T, the operator associated with , the fixed point
u* of U is the optimal return among w-generated plans: 1 (') £ u”* for every -
generated ', and for every ¢ > O there is a w-generated f such that I(f @y > o
— e Any f with Tu* = w* — (1 — B) satisfies this inequality.

(b) For any p € P(8S), ¢ > 0, there is a (p, €)-optimal plan which is stationary.

(¢) For any ¢ = 0, if there is an e-optimal ™ = (m, m, - ), there is an
¢/(1 — B)-optimal plan which s stationary ([3], Theorem 3.9.6).

(d) Denote for each a & A by T, the operator associated with f = a. Any u with
T < ufor all ais an upper bound on incomes: I(w) < u for all = (3], Theorems
2.12.1, 3.3.1).

(e) If for every € > O there is an e-optimal plan, then the optimal return W isa
Baire function and it satisfies the optimality equation u* = sups Tou™ ([3], Theorem
3.3.1).

(f) A = is optimal if and only if s return I(m) satisfies the optemality equation.

Proor. (a) For any r-generated =’ = (g1, 2, - -+ ), we have I(x)y="1/--
To'tin , where un = I(gni1, gniz, -+ ) and T. is the operator associated with
g. . Since each T is a contraction with modulus 8,

1Ty - Talun — T4 - Tu¥)| < 7w — ™) < 8 (AIPl/(1 = 8)] + [l

Thus T, -+ T.u* — I(z') as n — ». But T T u < U = u*, )
that I(x') < w*. From Theorem 4(d), there is a =-generated f for which Tu* =
Uu* — ¢ = u* — ¢, where € = ¢(1 — B). We verify inductively that

W 2 v — (1 +8++--+8"7")foralln = 1.
Since T™u* — I(f*), we conclude that
IFP) zu" = [€/(1 = B)] = v — e

(b) From the Corollary to Theorem 2, there is a (p, ¢/2)-optimal Markov
= (fi, f2, -+-). From (a), there is a stationary 0 with 1) = u* —
(¢/2) = I(w) — (€¢/2), where u* is the fixed point of the U associated with .
This f is (p, €)-optimal.
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(¢) Forany »* = (my,m, ---), I(x*) = mq(r + Bw), where w ¢ M(SAS),
w(s, a, s') = I(m.0)(s") and =, denotes the plan which =" specifies, starting
with the second day, when the first state and act are s, a, i.e. 70 = (m, 7, =+ ),
where

Wn'(' !81,01, crey 8n) = maqa(e lsya’sl’al,"',sn)n

If ©* is e-optimal, w(s, a,s’) < I(x*)(s") + eforalls’, sothat I(z*) £ mq(r +
BI(r*) + Be) = mh, say. From the Lemma of Section 2, there is an f for which
fh = mh for all s, so that, for the T corresponding to f, I(z*) < T(I(x*)) +
Be. By induction on n we obtain T"I(a*) = I(a*) — &(8 + -+ + B8). Letting
n— o yields I(f*) = I(x*) — Be¢/(1 — B). Since =* is e-optimal, [ is
e + [B¢/(1 — B)] = ¢/(1 — B)-optimal.

(d) For any s, ¢ S and any ¢ > 0, there is a stationary f such that

I(w)(s0) = I(f*)(s0) + €forall ;

just choose f (p, ¢)-optimal, where p is concentrated on s, . T,u < u for all a
implies Tu < u for all 7" and in particular for the T associated with f. Thus
T™u decreases to I(f)) and I(f*”) < u. Then I(w)(s)) < u(s0) + e Letting
¢ — 0 completes the proof.

(e) From (c¢), the hypothesis implies that there is a 1/n-optimal stationary
plan £, say. With = = (f, f2, - -+ ), the fixed point «* of the U associated
with = is, from (a), the optimal return among w-generated policies. In particular

* > I1(£,*), so that w* = I(x) for all =, and u* is the optimal return. We have

sup, Ta* = Uu* = u*. On the other hand, for any a ¢ A4,
Ta* < ToI(f™) + (1/n)) = I(a, f*) + B/n < u* + B/n,

where (a, ) is the Markov policy (g, f, f,f, - - -) with g = a. Letting n — o
yields Tau* < w*. Thus u* satisfies the optimality equation.

(f) If I(x*) satisfies the optimality equation, we obtain from (d), with u =
I(x*), that =* is optimal. Conversely, if =" is optimal, the hypothesis of (e)
is satisfied, so that u*, the optimal return, does satisfy the optimality equation.

REMARKS. (d) is extremely useful in proving optimality; if » is known to be
the return from a policy = and u satisfies T'.u < w for all , (d) implies that =
is optimal. The criterion for optimality in (e), (f) was stated in general, without
proof, by Bellman [1]. We do not know whether the optimal return always
satisfies the optimality equation or whether, even under the hypothesis of (e),
the (bounded) solution is unique.

7. Further results. If A is countable, with elements as, as, - - - , every Markov
plan is =*-generated, where * = (g1, g2, --+) and g, = a, . Conversely, for
any pure Markov = = (f1, fo, - - ), the study of =-generated plans can be re-
duced to the countable A case by interpreting act » in state s as the selection
of f.(s). We prefer to keep the original A, and introduce the concept of essential
countability as follows. Two acts @ and b will be called equivalent at state s if
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7"(3, a, ) = T(S, br ) andq(' ,8) a’) = Q( '8} b)y

ie. if Tou(s) = Tyu(s) for all w e M(S). For any Markov = = (fy, fo, --+),
A will be called essentially countable by = if for every (s, a) there is an n for which
fa(8) is equivalent to a at s. A will be called essentially finite by = if there is a
partition of S into Borel sets S;, S., - - - such that for every (s, a) withs ¢ S, ,
at least one of the acts fi(s), - - -, fu(s) is equivalent to a at s.

THEOREM 7. (a) If A is essentially countable by = = (fi,fo, -+ +), the fixed point
u” of the operator U associated with = is the optimal return. U 1s identical with the
operator sup, T, , so that u™ is the unique (bounded) solution of the optimality equa-
tion. For every e¢ > 0 there is an e-optimal stationary plan.

(b) If A is essentially finiteby # = (fi,f2, - ), there is an optimal stationary
plan.

Proor. (a) For any u, s, T.u(s) = T.u(s), where a = f,(s). Thus Uu <
sup, Tou. But for any a ¢ 4, Tu(s) = T,u(s) for some n, so that Tu(s) <
Uu(s), and sup, T.u(s) = Uu(s). Thus the operators sup, T, , U are identical.
Theorem 6 (d) then implies 7(7) < u* for all 7. From Theorem 6 (a) there is a
stationary f with I(f*’) = u* — ¢. This f* is e-optimal.

(b) If A is essentially finite, define B, as the set of all s for which = is the
smallest ¢ with T.u*(s) = sup, T.u*(s) (the sequence {T,u*(s)} contains only
finitely many different numbers). Define f = f, on B, , so that Tu* = Uu*=
u*, where T is associated with /. Then ¥, as the fixed point of 7T, is the return
from £, and £ is optimal.

We conclude with the extension of the improvement routines given by How-
ard [5] and Eaton and Zadeh [4] for the case of finite S, 4.

TueoreM 8. (a) (Howard improvement). If I(g, =) = I(x), then I(g) =
I(g, ™) = I(m).

(b) (Eaton-Zadeh improvement). For any f, g mapping S into A, define h = f
on I(f7) 2 1(g™), h = g on 1(g") > I(f*). Then I(h”) = max (1(/*),
1(g™)).

Proor. (a) If T is associated with g, we have TI(x) = I(g, v) = I(x), so
that

T"I(w) 1 1(g"”) and 1(¢™) = I(g, ).

(b) (Proof by Ashok Maitra). If T, Ty, T are associated with f, g, h, we have,
for any u,

Tu = T on I(f(”)) > 1(¢g*)
Tu = Twuon I[(g*) > I(f*).
With = max (I(f*), I(¢*”)), we obtain
Tu = Tw = TIF) = 1) = won I(Ff*) = I(¢™),
Tu = Ty = TI(g") = I1(¢"”) = won I(¢*”) > I(f*).
Thus Tu = wu, so that I(A*”) = u.

\%
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