ROBUSTNESS OF THE HODGES-LEHMANN ESTIMATES FOR SHIFT!

By Arnvjor HgyLAnD

Unaversity of Oslo and University of California, Berkeley

0. Introduction. Let X3, - -+ , X, Y1, -+, Y, be (m + n)= N independent
observations from continuous distributions
P(X;=u)=F(u) and P(Y; 2 u)=F(u— A),

(0.1)
(7'= ]-7 7m:.7= 1) 7n)

Two problems often studied in-this setup are (i) either to test the hypothesis
A = 0 against A > 0(A £ 0) or (ii) to estimate the shift A.

The classical approach to the testing problem is based on the statistic ¢ =
(¥ — D)/A/m + 1/n) 2 (X: — X" + 2i(Y; = 7YV (m + n — 2))
known to be approximately normally distributed under general assumptions on
F. Similarly the classical estimate for A is

(02) Z\ =Y — X, Y = ZJ' Yj/n, X = Zin/m

Both these methods are known to be vulnerable to gross errors. For the testing
problem, rank tests, such as the Wilcoxon and the Normal Scores (Fisher-Yates)
tests have been in use for several years and shown to be more robust against gross
errors than the classical one. At the same time little efficiency (in the Pitman
sense ) is lost when after all no gross errors are present and normality assumptions
hold.

Similar robust methods for the corresponding estimation problem have re-
cently been proposed by J. L. Hodges, Jr. and E. L. Lehmann [5]. They study
small-sample as well as large-sample properties of a large class of such estimates,
derived from corresponding test statistics A(X:, -+, Xn, Y1, -+, ¥,) for
the hypothesis A = 0 against A > 0, satisfying the following two conditions:

(A) h(z1, *+* y Zm, Y1 + @, -+, Yo + a) is a nondecreasing function of a
for all z and y, and such that

(B) when A = 0, the distribution of A(X,, -+, X, Y1, ---, ¥,) is sym-
metric about a fixed point u (independent of F'),

(i) forall F £ Ty, or (ii) for all F ¢ F; .

(Throughout this paper we shall use the same short notation that was used in
[5]. Furthermore Pa,(- ), Ea,(-), ete. will be used to indicate that the expression
in question is being computed for the case A = A,.)

Here as throughout this paper, F, denotes the class of all continuous distribu-

tions and F; the class of all continuous distributions symmetric about zero.
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For suitable functions satisfying (A) and (B)
(0.3) A = (A" +4A")/2
is proposed as an estimate for A, where
(04) A" =sup{A:h(z,y —A) >pu} and A" = inf {A:h(z,y — A) < u}.

The test statistic of the Mann-Whitney version of the Wilcoxon two-sample
test satisfies conditions (A) and (B) with 4 = mn/2. The corresponding estimate
A**is in [5] shown to be the median of the set of mn differences ¥; — X, ,

(05) A** = medié.’i(Y:i - Xl)y ('l = 1) ) m)] =1,:-- )n)'

In the same paper Hodges and Lehmann also consider the problem of estimat-
ing @ when Z,, ---, Zy are N independent observations from a distribution
PZ;,2u)=Fu—26),¢=1,---,N) where F ¢J, . In this case the estimate
is based on a test statistic Ah(Z,, ---, Zy) for the hypothesis § = 0 against
6 > 0 with the following properties:

(C) h(zy + @, -+ -, 2y + @) is a nondecreasing function of a for each z.

(D) The distribution of & is, when § = 0, symmetric about a fixed point u
(independent of F') for all F ¢ F, .

For suitable functions of this type

(0.6) 0* = (6 +6")/2

is proposed as an estimate for 6, where
(0.7) ¢ = sup {9: h(z — 8) > u}, 0" = inf {6: h(z — §) < u}.

The Wilcoxon one-sample test statistic satisfies Conditions (C) and (D) with
u = N(N + 1)/4 for all F ¢ F; . The corresponding estimate 6 is in [5] shown to
be the median of the (3 ) + N averages (Z; + Z,)/2,

(0.8) 0% = medi<,;{(Z: + Z;)/2}.

An alternative estimate of the shift A, based on statistics of the form (0.8)
is suggested by Lehmann [8] for the case F ¢ F;, namely

A* = mediéj{(Yi + Y;,)/z} —_ medkél{(Xk + Xl)/z}’
(zaJ =1, "')n§kal= L - am)'

The asymptotic behavior of the procedures A* (0.9) and A** (0.5) is studied in
[8] and [5]. There, as throughout this paper, it is assumed that the corresponding
pairs of sample sizes m(N ) and n(N ) tend to infinity in such a way that m(N)/N
— A, where A is a positive number smaller than 1. It is shown that the asymptotic
efficiency of A** (0.5) relative to A (0.2), denoted ARE (A**, A), in the sense of
reciprocal ratio of asymptotic variances, is the same as the ARE (A* A) and
equal to 12¢,7[[ f*(x) dz]’, where f denotes the density corresponding to F.
This efficiency has been shown [3] always to be =.864 and equal to 3/r when f
is normal.

(0.9)
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Hence a natural question to ask is the following: Which one of the two es-
timates, A* (0.9) or A** (0.5) should be preferred in a given situation? The
choice might be based on the robustness of these estimates against the devia-
tions from the model (0.1) with ¥ ¢ &, which are considered most likely to occur.

One assumption of (0.1) which might turn out not to hold, is the assumption
that the distribution of the ¥’s is the same as the distribution of the X’s, only
shifted by A. Another such assumption is the assumption of symmetry, F ¢ &, ,
used to justify A*. After establishing a few general results in Section 1, We shall
in this paper mainly be concerned with the study of the robustness of A* (0.9)
and A** (0.5) against these deviations from the model.

1. General remarks.

1.1. Some definitions and lemmas. Since it is convenient for our purpose to have
a uniquely defined median for all F ¢ &, , we shall adopt the following definition.

DErintTiON. The median 6 of a distribution F & T, is defined as (6 + 65)/2
where 6, = inf (6: F(6) = %) and 6, = sup (6: F(9) = 1).

With this definition the following lemmas are easily seen to be true and are
given here only for the purpose of convenient reference.

LEmMmA 1.1. Let 0 be the median of F € Fy. Assume F to be symmetric about ¢,
Le, F(¢ — x) + F(¢ 4 x) = 1. Then 6 coincides with the point of symmetry ¢.

Lemma 1.2. Let Xy, ---, X, be independent random variables with symmetric
distributions Fy , - - - | F, and medians 6, , - - - , 0, respectively. Then for any set of
real constanis ay, -+ , @n, Z = 2 a:;X: is symmetrically distributed with median
Zi abd, .

1.2. Results from [5] that are true in more general models. Let X, --- , X,
Yi, -+, Y, bem + n = N independent random variables with distributions

P(Xi2u)=F(u—¢) and P(Y; S u)=Gu—¢—A),
(1: 1:ym7.7= 13;")

(1.1)

Consider the following four models, where F,; denotes the class of all continuous
distributions with median zero, and &, the class of all continuous distributions
symmetric about zero.

Model I: FeFn, GeFy.

Model II: FeFy, GeFo, F = G.

Model I1I: F e, GeF;.

Model IV: FeF,, Ge%, F =G.

In all four models F, G, ¢ and A are assumed unknown, and the problem is to
estimate A. The “‘shift” A between two distributions is thus defined to be the dif-
ference between their medians.

Let h(X, Y') be a test statistic satisfying (A), and A**, A" and A” be defined
as in (0.3) and (0.4) with x denoting a constant independent of F and G, not
necessarily a symmetry point for (X, ¥) when A = 0.

Similarly let A(Z) be a test statistic satisfying (C), and 6%, 6" and 6” be de-
fined as in (0.6) and (0.7) with px denoting any constant independent of F,

’
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not necessarily a symmetry point for 2(Z) when § = 0. Then A** and 6 are
easily shown to have the same regularity and invariance properties in Model I
as shown for Model IV ([5], Sections 6 and 7). Furthermore, the following lemma
and theorem can be shown to be true with only slight modifications of the proofs
given in [5].

Lemma 1.3. The distribution of h(X, Y') vs symmetric about u for A = 0, if the
following three conditions hold:

(1.2) Mz + a,y + a) = h(z, y), for all real a,
(1.3) hz,y) + h(—2, —y) = 2u, (a.e. Py)
(].4:) F«‘.‘EF], Gé‘gl.

TueoreM 1.1 (Hodges and Lehmann). Let the test function h satisfy (1.2) and
(1.3). Then the distribution of A™*, defined by (0.3) and (0.4) with u being the
value from (1.3), is symmetric about A if F e, G e&;.

Let us now consider the class of estimates A** obtained from

(L.5) WX, Y) = 25 By[Ve?,
where s;, - -+, s, denote the ranks of ¥, , --- | Y, in the combined sample and
where V®, .., V™™ denote an ordered sample from a distribution ¥. Then

Lemma 2(1) in [5] is still true when F ¢ &, G ¢ F,, and we have the following
result. :

TaeoreM 1.2. Let h(X, Y) be defined by (1.5) with ¥ symmetric. Then A**
defined by (0.3) and (0.4) is symmetrically distributed about A in Models 111 and
IV and, typically, approximately median unbiased in Model 11.

We notice that Theorem 1.2 in particular applies when h(X, Y') is the Wilcoxon
two-sample test statistic and also when h(X, Y) is the Normal Scores test sta-
tistic.

As indicated in the Introduction, estimates for shift may easily be constructed
on the basis of estimates of the form (0.8) in the following way. Let 6 and 6™
be (0.6)-estimates of the medians of G and F, both belonging to &, and define
A* by

(1.6) A¥ = 0" — 605"

Let Z;, - -+, Zy be independently and identically distributed with distribu-
tion F ¢ Fop and sy, -+ - , s, denote the ranks of the positive Z’s among the ab-
solute values |Zi|, - - -, |[Zx|. Consider the statistic
(L7) h(Z) = 225 By[V?),
where V', .. V™ denote the ordered absolute values of a sample of size N

from a distribution ¥. In [5] it is shown that h then satisfies (C) and (D) with
u = 3NEy|Z,| for all F ¢%, and furthermore that the corresponding 6* (0.6)
is symmetrically distributed about 6. By Lemma 1.2 A* is then symmetrically
distributed about A when F ¢ 5, and G ¢ 5, and we have the following result.
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TueoreM 1.3. Let h(Z) be defined by (1.5) with ¥ symmetric. Then A* defined
by (1.6) is symmetrically distributed about A in Models 111 and IV.

2. Asymptotic properties of the estimates A** (0.5) and A* (0.9).
2.1. Introduction. In the remaining part of the paper we shall restrict atten-
tion to the estimates (0.9), (0.5) and (0.2),

(21) A* = medigj{(Yi + Y])/z} - medk§l{ (XL + Xl)/z})
(2.2) ° A™ = medig{Y; — X},

and

(2.3) A=Y -X

and study their behavior in Models I to IV. A first natural question to ask is in
which of these models A*, A** and A are reasonable estimates of A. We shall say
that an estimate is reasonable if its distribution or asymptotic distribution in
some sense is centered on the corresponding parameter.

TABLE 1a
Estimate Model I Model II Model III Model IV
A Difference between means A A A
A* ? ? A A
A** ? A A A

Asfor A, its expected valueis EY — EX when these exist. We shall assume they
do. This difference coincides with A in Models II, ITI and IV, but may be very
different from A in Model I. Utilizing the results of Theorems 1.2 and 1.3 we
have so far the following table of the quantities (Table 1a) of which A*, A** and
A are consistent estimates.

Our first task will be to complete this table.

2.2. Some definitions and lemmas.

DeriNITION. The pseudomedian of a distribution (occasionally we shall say
pseudomedian of X instead of pseudomedian of the distribution of X) F &%
is defined as the median of the distribution of (X1 + X:)/2 where X, and X, are
independently and identically distributed according to F.

By this definition and Lemma 1.2, the following results are immediate.

(i) The median and the pseudomedian coincide when F is symmetric. Further-
more

(ii) #f F & Fo and G & Fo have pseudomedians nr and ne respectively, then G(x)
= F(x — A) implies ng = nr + A.

(ii) implies that the pseudomedian of F ¢ F, may be used as an ordinary loca-
tion parameter.

LemMa 2.1. Let K & §y and have pseudomedian zero. The corresponding density
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is k. Then

() [ K(=2)k(z)dx =

(i) [k(=2z)k(z)dz = [K(z)dx, with equality if and only if K is sym-
metric, and

(iii) [ K*(—z)k(z) dx = %, with equality if and only if K is symmetric.

Proor. (i) follows from the fact that the median of the convolution KK,
by definition is zero. The first part of (ii) follows by the Schwarz inequality. As
for the second part, fk(x)k(—x) dr = sz(x) dz implies fk(x)lc(—x) de =
[ ¥*(—z) dz and hence [ [k(z) — k(—z)]* de = 0, which in turn implies k(z) =
k(—z) a.e. The first part of (iii) follows by the following argument:

(24) J[K(z) — (1 — K(—2))'k(z) de = 0.
(2.4) may also be written

(2.5) [ R (—a)k(z) da + 2f K(2)K(—2)k(z) dz = 2.
If we integrate the last integral of (2.5) by parts, we get

(2.6) 2[ K(z)K(—2)k(z) dz = [ K*(—2)k(z) dx

and the result follows. From (2.4) to (2.6) we see that [ K*(—z)k(z)dz = }
implies

(2.7) [IK(z) — (1 — K(—z))’k(z) dz = 0.

Hence the second part of (iii) will follow if we can prove that (2.7) implies
K(z) = 1 — K(—z). This may however be proved exactly as the second part of
Lemma 4.1 in [7].

LEmMa 2.2. Let X and Y be independent random variables with distributions
Fand G, F €%y, G € 5o and densities f and g respectively. Then

() [ Fgde = [[ Fgdx],

(i) [Fgde + [ Gfde = 2.

(iii) In particular, if the median of (Y — X) = 0, ie., [ Fgdx = %, then
A Fgdr + (1 — N[ Gfdr > 1, where 0 < N < 1.

Proor. (i) follows by the Schwarz inequality. (ii) follows from

J(F =G +g)dz=0

by evaluation and integration by parts. (iii) [ Fg dz = % implies [ Fgde = &,
[ G*fdz = % such that N[ F’gdz + (1 = N\)[ G*f(x) dz = 1. A necessary con-
dition for equality is [ F'gdz = [ G*fdx = % which violates (ii). q.e.d.

As in [5] we shall study the asymptotic behavior of our procedures as N — «.
The test functions, estimates and constants corresponding to sample size N
will be denoted hy , 6", ux , ete. To make the passages to the limit under the
integral sign permissible, we will from now on assume the distributions considered
to satisfy. the regularity conditions of Lemma 3a in [4]. Such a distribution (F)
is thus assumed;

(N
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R, : to be continuous,

(2.8) R, : to be differentiable in each of the open intervals (— «, a;), (a1, as),

) (as—l ) as)r (as y ® )7
R; : and to have a bounded derivative in each of these intervals.

The following theorem from [5] is true under the more general assumptions
F ¢F0, G &Fo, with uy being any constant independent of F and @, since the
proof given in [5] does not utilize the assumptions F = G, F ¢ F; and uy being a
symmetry point of hy when A = 0.

TueorEM 2.1 (Hodges and Lehmann). Let a, ¢;, - - be real constants and let
Ay = —a/ew or 6y = —a/cy . Let ¥ be the continuous distribution function of a
random variable with mean zero and unit variance, and suppose

limyow Priey(hy — uy) < u} = ¥[(u + aB)/Al,

where Py indicates that the probability is computed for the parameter values Ay
or Oy and where hy stands for hy(Xi, -+, Xuwy, Y1, -+, Ya.m)or
hy(Z1, +++ , Zw). Then for any fived A and 6, limy.. Pa{cx(Ax™™ — A) £ a} =
Y(aB/A), or limy,. Pefcy(6x™ — 6) < a} = ¥(aB/A).

This theorem will be used repeatedly in the following to establish the asymp-
totic variances of our estimates.

2.3. Model 1. To study the behavior of A™ in Model I we shall need thefollow-
ing theorem.

THEOREM 2.2. Let Z1, -+, Zn be N independent observations from a distribu-
tion P(Z; £ 2) = K(z — n) where K ¢ F, and has pseudomedian 0. Let h(Z)
be defined by (3 ) "W1(Z) where W1(Z) is the one-sample Wilcozon statistic, that is,
Wi(Z) = Number of pairs (¢,7) with 1 <1 £ j < N such that z; + z; > 0.
Furthermore, let ny™ (Z) be defined exactly as 0 in (0.6) and (0.7) with uy = 14
1/(N — 1)(or equivalently as in (0.8)). Then for every fixed n

limyoe Po{ N} (nw™ — 1) < u) = ¢(uB/A),

where

(2.9) A® = 4 KX (=2)k(z)dz — 4
and

(2.10) B = 2[ k(—2)k(2) dz

and where ¢, as throughout this paper, denotes the distribution function of the standard
normal distribulion.

Proor. The theorem will be proved by utilizing Theorem 2.1. Hence we need
an expression for limy.. Px{N*(hy — uy) = u}, where Py indicates that the
probability is computed for the value ny = —a/N* of the pseudomedian. Define
forall (¢,7), (¢ =1,---,N,j=1,---,N),
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e(Zi, Z;) =1 when Z; + Z; > 0,
=0 otherwise.
Then
(211)  h(Z) = G2 Ge(Z, Z;) + ()7 2 e(Z:, Z:)

and

(2.12)- N'(hy — px) = Qv + Ry + Sv,

where

(2.13) v = NGO 2% [e(Zi, Z,) — Byel(Zi, Z))),
(2.14) Ry = N'[E,¢(Z:, Z;) — 1],

and

(2.15) Sy = N 2Xhe(Z,, Z:) — 1/(N — 1)),

(' e(Zs, Z;) is easily seen to be a generalized U-statistic [6].
(2.16) E,0(Z:,2Z;) = Py [(Z.+2;) >0l =1— [ K(—z — x)k(z — nx) dz
and
(2.17) oV (e(Z1, Z2), (Z1, Z3))

= P, [(Z1+ Z2) > 0, (Z1 + Z;) > 0] — P, [(Z1 + Z») > O],
where Z,, Z; and Z; are independent observations from K(z — ny). Hence
COVyy, (e(Zy, Zs), o(Z1, Z3)]

= [ K*(—2 —=m)k(z — mv) dz — [[ K(—2 — nw)k(z — nw) daf".

When N — =, ny — 0 and the right side of (2.18) — A°/4, defined in (2.9).
Furthermore, since the expression by Lemma 2.1 is =%, Lehmann’s extension of
Hoeffding’s theorem on generalized U-statistics applies [8]. Hence

(2.19) limy.e Py(Qr < u) = ¢(u/4).

As for Ry we find by using (2.16), Lemma 2.1(i) and introducing ny = —a/N?,
that

(2.18)

B K(—z + 2a/N*) — K(—2)
Ry = "Q“f 24/ N}

Hence Ry — —2af k(—2)k(z)dz = —aB as N — =x.

As for Sy, |Sx| £ NHE) " X le(Z., Z:)| + 1/(N — 1)} < 3NY/(N — 1)
and therefore Sy — 0as N — =.

By repeated use of Slutsky’s theorem (see, for example [1], p. 254),

k(z) dz.
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limy,e {Py(@v + By + Sy) S u} = ¢((u + aB)/A4). q.e.d.

Therefore, in Model I n* is a consistent estimate for the pseudomedian, and
A* thereby a consistent estimate for the difference between the pseudomedians
of the distributions of ¥ and X. This difference is in general different from A.

In the study of A** in Model I we shall need the following theorem.

Tuarorem 2.3. Let X1, -+, Xn, Y1, +++, Yo be m + n = N independent
observations from distributions P(X; S u) = Flu — ¢), 1 = 1, ---, m) and
PlY;2u)=Gu—19), G =1,--,n), FeFou, GeTFu. Furthermore, let v
denote the median of the distribution of (Y — X) and h(X, Y) be defined as
WX, Y)/mn where Wo(X, Y) is the Mann-Whitney test statistic. Finally let
Ax™* be defined as in (0.3) and (0.4) with uy = 3, or equivalently as in (0.5).

Then for every fixed w, limy. Po(N*Ay™ — ) £ u) = ¢(uB/A), where

(220) A° =\ KXx)f(x) dz + (1 — N7 FA(x)k(z) dz — 1/[4N(1 — )\)],
(2.21) B = [ f(2)k(z) dz,

A = limyow m(N)/N, and K(u) denote the distribution of Y — w with correspond-
ing density k.
Proor. First we notice that by (1.2), ¢ may without loss of generality be
taken to be 0. Then there is a one-to-one correspondence between 7 and w.
Define for all (z,7), (¢ =1, -+« ,m;j=1,--+,n)

o(X;,Y) =1 when Y; > X;
=0 otherwise,
and write N'[hy(X, Y) — 4] = Qv + Ry, where
Qv = N{(mn)" 2 lo(Xi, ¥;) — Eup(Xs, Y))]}
and
Ry = NH{E.o(X:, Y;) — 3}.

(mn) "D e(Xi, Y;) is easily seen to be a generalized U-statistic, and its
mean and variance may be determined the usual way.

Suppose the distribution G depends on N in such a way that wy = —a/N?.
Then as N — », wy — 0 and var Qv — A”. By Lemma 2.2(ii) 4*> > 0; once again
Lehmann’s extension of Hoeffding’s theorem on generalized U-statistics applies,
and we may conclude that limy,, Py(@v < u) = ¢(u/4).

By the same approach as in the proof of Theorem 2.2, Ry is shown to tend to
—a f(y)k(y) dy as N — . The proof is then completed by Slutsky’s theorem.

Theorem 2.3 implies that A** in Model I is a consistent estimate of the median
of the distribution of (Y — X). This is in general different from A.

Hence in Model I, A, A* and A™* estimate different aspects of the model, and
the choice between them will have to be based on what ‘“type of shift”” one wants
to estimate.

2.4. Model 11. Since Model II is contained in Model I, A* is a consistent es-



ROBUSTNESS OF ESTIMATES FOR SHIFT 183

TABLE 1b
Estimate Model 1 Model II Model III Model IV
A Difference between EY and EX A A A
A* Difference between 5¢ and nr A A A
A¥* Median of (Y — X) A A A

timate for the difference between the pseudomedians of the distributions of ¥ and
of X. Since F = @, this difference coincides with A.

2.5. Concluding remarks. Table 1b summarizes the results of this section,
giving the quantities of which A¥, A** and A are consistent estimates.

By the regularity properties proved in [5], the estimates all have continuous
distributions. Since the asymptotic relative behavior of the three estimates in
Model IV is known ([5] and [8] ), we shall restrict our investigation to Models II
and III.

3. Robustness against symmetry. Model II.

3.1. ARE (A* A) and ARE (A*, A**) in Model I1. Let - and 54 be the pseudo-
medians of X and Y respectively. Since in Model II, F(z — A) = G(«), we have
by Section 2.2 that n¢ — 7r = A, and the model may be rewritten in the follow-
ing way:

(3.1) P(X 2 u) = K(u — n), P(Y = u) = K(u —n — A)
where K € F and has pseudomedian zero but is not necessarily symmetric. The
shift A is to be estimated.

TueoreEM 3.1. Let X1, -+, Xm, Y1, -+, Yabe (m + n) = N independent
observations from the distributions (3.1). Furthermore, let

ne" = med;<;{(Y: + Y;)/2}, 1t = medi<if (Xi + X1)/2}

(3.2) .

(’L;j= 17 7n;k’l = 17 7m)
and
(3.3) Av® = ne" — s,

Assume that B given by (2.10) is finite. Then for every fized A,
limyaw Pa{N}(Ax* — A) £ u} = o(M (1 — \)!Bu/4),

where A” and B are given by (2.9) and (2.10).

Proor. By Theorem 2.2, m(N )*(nz* — 7) has a limiting normal distribution
(0, A%/B%), that is, with mean zero and variance A’/B’. Hence by Slutsky’s
theorem N*(n* — 7) has a limiting normal distribution (0, A*>/AB*). Similarly
Nt(n¢® — n — A) has a limiting normal distribution (0, 4*°/(1 — \)B’). Since
A? = + and B is finite, neither of the limiting distributions is singular, and the
theorem follows.

TaeEoREM 3.2. Let X1, -+ , Xm, Y1, *++, Yo be (m 4+ n) = N independent
observations from the distributions (3.1). Let A and A™* be defined by (0.2) and
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(0.5) and A* by (0.9). Then
(i) ARE (A%, A™)
= [[ k(2)k(—z) dal*/[[ K’ (2) da]+12[[ K*(—2)k(z) dw — 1],

(ii) ARE (A% 3) = &'[[ k(2)k(—=z) da]’/{[ K*(—x)k(z) dz — 1}, where
0. denoles the variance of X,

(iii) ARE (A*,A™) < 1 with equality if and only if K is symmetric, and similarly

(iv) ARE (A% A) < ARE (A™*, &) with equality if and only if K is symmetric.

Proor. In [5] is shown that the asymptotic variance of N*(Ay™* — A) is
1/[12N (1 — )\)(f I*(x) dx)*]. This result and Theorem 3.1 imply (i). (ii) is
immediate. (iii) and (iv) follow by the use of Lemma 2.1. Note that (i) and
(iii) do not require that o, be finite.

3.2. Lower bound for ARE (A*, A) in Model I1. Since Hodges and Lehmann
have shown [3] that 120.°[[ f*(z) dz]’ = .864, implying ARE (A** A) > 864
in Model II, a natural question is whether or not a similar lower bound exists for
ARE (A%, A).

The following example shows, however, that there exist distributions K (z)
with pseudomedian 0 for which [ k(x)k(—z) dz = 0. Since the denominator of
ARE (A%, A) is bounded away from zero, this implies that there exist nonsym-
metric distributions for which ARE (A* A) = 0. An example of such distribu-
tions is the one with density

k(z) = Ya for —a <z <0,
(3.4) =0 for0 £z = a,
= (2" —1)/2% fora < x < 2a,

where a is a real number.

It is easily verified that this distribution has pseudomedian 0, and finite
variance, while [ k(z)k(—=2) dz = 0.

3.3. An example. Assume Model II with

F(z) =1 — exp {— x/2}, x =0,

=0, otherwise,

and let us derive the ARE (A% A) and ARE (A**, A) in this case. Using the
property that F is the x* distribution with two degrees of freedom, the pseudo-
median n is easily determined to be &21.678. The distribution of X — #, will
have pseudomedian zero. Hence in this case K(u) = 1 — exp {—(u + 70)/2},
u Z —mno. Numerical evaluation gives f K*(—2)k(z) de = 408, f k(x)e(—z) dx
= .157 and ARE (A%, A) = .62.

For comparison we also compute the ARE (A** A) and get ARE (A**,3) = 3.
In this case of rather extreme asymmetry therefore we have an example where
A** in the limit is about “five times as efficient” as A*.

4. Robustness against F % G. Model III.
4.1. ARE (A% A) in Model III. For convenience we return to the notation
used in Section 1.2.
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Tueorem +.1. Let Xy, -+, X, Y1, -+, Yo be (m + n) = N independent
observations from the distributions (1.1) with F ¢ F,, G ¢ F, . Furthermore let A be
defined by (0.2),

?2* Inedigf [( Y. + Yj)/2]7

(4.1)

g‘l* = 1nedl\§1[(X1\ + Xl)/2] (17.7 = 17 (] k? l = 17 7m)
and
(4.2) Ay =" =

Assume that ffz(x) dz and f g’ (z) dT are Xboth finite.

(i) Then for every fized A, limy. Pa{N*(Ax™ — A) £ u} = o(u/D), where
(43) D' = {12\[] (@) dal} T 4 {12(1 — N) [[ g*(x) da}

(11) Furthermore
(4.4) ARE (A% 3) = [/ + ¢,%/(1 — \)|D 2,

where o, and ¢," as usual denote the variances of X and Y respectively, assumed to
exist.

(1) is proved exactly as Theorem 3.1. (ii) is immediate.

4.2. ARE (A™, A) in Model 111.

THEOREM 4.2. Let Xy, -+, X, Y1, -+, Y, be (m + n) = N independent
observations from the distributions (1.1) with F £ F,, G ¢ 51 and let A and A** be
defined as in (0.2) and (0.5)

(i) Then for every fized A, limy.. Pa{N*(Ax™* — A) < u} = ¢(Bu/A), where

(4.5) A® = NG (@) f(x) de + (1 — N)7'[ F(x)g(x) dv — 1/43(1 — \)
and
(4.6) B = [f(x)g(z) da.

(ii) Furthermore,

- o oAy (1 =Mo" + A/lf f(2)g(x) da)
(47) ARE(A™, 4) = (1 =) [ G@)f(x) de + N [ F(z)g(x) do — L~

Proor. Part (1) is really only a corollary of Theorem 2.3. Since F and G are
symmetric, w = A. Part (ii) is immediate.

The most interesting application of the results in Theorem 4.1 and Theorem
4.2 is to the nonparametric Behrens-Fisher situation where F and G represent the
same distribution except for an unknown scale parameter. This case will be dis-
cussed in the next section, and we shall first apply the general results to a few
examples.

For the computations we shall require repeated use of the following two lemmas
which are given here for the purpose of convenient reference. The first one is due
to Sheppard (1898) (see, for example [2]), the other also contains well-known
results.
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LEmMA 4.1. Let (X1, X1) have a binormal distribution with means (0, 0), variances
(1, 1) and correlation coefficient p. Then
(4.8) P(X; £0, X, £0) = 47'(1 + 2r " Arcsine p).

LeEMMA 4.2. Let ¢ and o denote the distribution function and the density of the
standard normal distribution. Then for all positive real numbers a, b and c

(i)
[ ¢(u/b)p(u/c)a o(u/a) du

(4-9) -1 -1 . 2 2 2 2 2\ 1}
= 471 4+ 27 Arcsine [a"/((a" + b")(a” + ¢))°]}.
(i)
(4.10) [ o(u/a)o(u/b) du = ab/(2x(a® + b°))".

Proor. (i) Let U;, U, and U; be independent with normal distributions
(0, a®), (0, b*) and (0, ¢*) respectively. Then [ ¢(u/b)d(u/c)a " o(u/a) du =
PU, g U, Us £Uy) = P(Uy— Ui £0,Us — Uy £0) = P[(U: — Uy)-
(@ + )20, (Us — Uy)(d® + ¢)™F < 0]. The result now follows by the use of
Lemma 4.1. (ii) is obtained by direct integration.

ExamPLE 4.2.1. Suppose one wants to estimate the amount A by which the
response of certain experimental units is increased by a specific treatment. Of
the m 4+ n = N experimental units at hand n are selected at random for treat-
ment and the remaining m serve as controls. The model used in this situation is
often the one given by (1.1). Let us now specify further and consider the follow-
ing gross error model in which independent normal observations are contaminated
by a proportion e of gross errors.

P(X:su)=Fu—7y)

(1D (10 Z el(u — £)/o] + edl(u — £)/aol, (=1, m).
P(Y; 2u) =Gu—¢—A)

(4.12)

e)pl(u — § — A)/co] + epl(w — ¢ — A)/ao], (=1, -+, 7).

¢ will typically be less than 5 per cent and a a number between 2 and 4. {, o, A
and ¢ are all assumed unknown.

Let us study the asymptotic behavior of the estimates A (0.2), A* (0.9) and
A** (0.5) in this situation, using Theorems 4.1 and 4.2.

Direct evaluation of (4.3) and (4.4) by the use of Lemma 4.2 gives

ARE(A%, A)

@13) o {1 =N+ @ = D]+ N + o’ = A} 4%B ()
- e (1 — 0B c) + rA? '

where

(4.14) A=[1=e+ al + 2%l — &) (1 + a*)7Y
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and
(4.15) B(c) = [(1 — )% + a7 + 2k%(1 — €)(& + o’)7].
For the evaluation of ARE (A** A) one needs:
(4.16) [ F'(z)g(z)dz = 471 + (1 — €)’+2r" Arcsine a(c, 1)
+ 2e(1 — €)*+27 " Arcsine (a(c, 1)+a(c, a))?
4+ €(1 — €)+2r " Arcsine a(c, @) + (1 — €)*+e+2n " Arcsine a(a, 1)
+ 2€(1 — €)«2r " Aresine (a(a, 1)-a(1, 1)) + €/3}.
(4.17) [ G*(x)f(z)dx = 47{1 + (1 — €)’~2x " Arcsine a(1, ¢)
+ 2¢(1 — €)*+27 " Arcsine (a(1, ¢)+a(l, a))?
+ €(1 — €)+2r ' Arcsine a(1, a)
4+ (1 — €)*ees2n " Arcsine a(a, ¢)
+ 26(1 — €)+27 " Arcsine (a(a, ¢)+a(1, 1))* + €/3},
where
(4.18) a(u, v) = u*/(u* + %)
and
(419) [ f(z)g(e) dz
= (27")7[(1 — /(1 + ) + (1 — &)/(d’ + &)}
+ (1 — €)/(a® 4+ 1)} + &/2%].

As a numerical illustration we have computed the ARE (A*, A) and the
ARE (A**, A) for A = % (equal sample size), gross error of order 3¢, ¢ = 1, 2
and 2, and ¢ = .01, .02, .03, .04 and .05. The results are given in Table 2 and
Figure 1. We know from [5] that ARE (A**, A) = ARE (A* A) when ¢ = 1.

TABLE 2
ARE (-, A). Gross error model. x = %
c=1 ¢ =2} c=12
) ARE(-, A) ARE(A*, A)  ARE@A™, 4) ARE(A% A)  ARE(A*™, 4)
.00 .955 .955 .935 .955 .886
.01 1.009 .985 .964 .969 .898
.02 1.060 1.013 .992 .982 .910
.03 1.108 1.040 1.018 .995 .921
.04 1.153 1.066 1.043 1.007 .933

.05 1.196 1.091 1.067 1.019 .943
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— ARE (&4, 1)= ARE (&7A, 1)
——— ARE (&,A3)
------- ARE (B4, 2)
v ARE (Kfﬁ.ﬁ)
-——— ARE (&74, 2)

ARE (., B, ¢)

(- 1 1 1 1 ) 1
| 2 3 4 5
€ in%

3>
K4

Fia. 1. Gross error model, A = },a = 3

The common values of these efficiencies for different values of € are given in
Table 2, column 2 under ARE (-, A). In Figure 1 ARE (A%, A, ¢,) denotes the
asymptotic efficiency of A* relative to A when ¢ = ¢, ¢ being the parameter
occurring in (4.12). ARE (A™* A, ¢,) is defined similarly.

These numerical results seem to indicate that in this model the ARE (A%, )
as well as the ARE (A**, A) increase with increasing proportion (e) of gross
error (of course only up to a certain e-value), and furthermore that A* here is
preferable to A**.

In this example ARE (A*, A) = ARE (A™*, A) for all calculated values, and
one might be tempted to look for a general theorem such as Theorem 3.2 in
Model III. The example treated in Section 4.3.1 shows that such a theorem is
impossible when A # 1. The following example shows that even when N = 1, it
is easy to find situations where ARE (A**, A) > ARE (A*, A) in Model II1.

ExampLE 4.2.2. Assume Model I11 with

(4.20) F(z) = ¢(z) and G(z) = 27'¢(z) + 27'¢(2/10)

and take A = 1. By introducing (4.20) into (4.7) and (4.4) and evaluating the
integrals by Lemmas 4.1 and 4.2, oné obtains ARE (A, A) = 1.526 and
ARE (A% A) = 1.094. This shows an example of Model III with \ = 1, where
ARE (A", a%) > 1.

4.3. The Behrens-Fisher situation in Model 11I. We shall now consider the
special case of Model III where F and @ represent the same symmetric distribu-
tion, except for an unknown scale parameter ¢(>0). The corresponding densities
are denoted f and g, and we shall assume that the variances exist. Then
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(4.21) F(z) = G(ex), [f(z) = cg(cx),
(4.22) o = o).

Since we shall study the asymptotic (N — « ) efficiencies of A** and A* rela-
tive to A as functions of X and ¢, it will be convenient to use the notation
ARE (-, A; \ ¢).

When (4.21) and (4.22) are introduced into (4.4) and (4.7), the following
theorem is immediate.

TueoreMm 4.3. Let Xy, -+, Xn, Y1, -+, Y, be m + n independent observa-
tions from distributions (1.1) with F ¢ F, and G(x) = F(x/c). Furthermore, let
A, A* and A** be defined by (0.2), (0.9) and (0.5). Then

(i)

(4.23) ARE (A%, A; N\, ¢) = 1267 fi(x) dx]’
and hence independent of N as well as of c. ’
(i1)
ARE (A™ &; )\, ¢)
(4.24) _ o 1(1 = N\) 4 A+ [f f()f(cx) dal®
(1 =) [ F(x/e)f(x) de + N [ FP(cx)f(x) dv — %

and
(iii)
(4.25) ARE (A** A;\, ¢) = ARE (a**, A;1 — \, 1/c).

Proor. (i) and (ii) follow from (4.4) and (4.7). (iii) is seen immediately to be
true by writing (4.24) in an alternative way:

ARE (A™ A; ), ¢)
(4.26) _ o {(1 = NIf f@)f(ca) da]* + N[ f(2)f(2/c) del’}
(1 —2N) f F'(x/c)f(x) dx + A f F(cx)f(x) de —

TurOREM 4.4. Assume Model 111 with F(z) = G(cx), and let A and A™™ be
defined by (0.2) and (0.5). In addition to the usual reqularity conditions (2.8) we
assume that f(x) s continuous at x = 0. Then

(4.27) lim..o ARE (A™* A; )\, ¢) = 46,f*(0) = lim..., ARE (A™* &; ), ¢)
(which we recognize as the asymptotic eﬁici‘ency of the median relatwe to the mean).
Proor. (4.24) may be rewritten as follows:

~

ARE (a™, A; )\, ¢)
(428) _ o [(1 — ) + A f(2)f(cx) daf*
1 -2 =) [ F(—z/c)F(x/c)f(x) dx — 2\ [¢ F(cx)F(—cx)f(x) dv

Due to the regularity assumptions made, we are permitted to determine the
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limiting value of (4.28) as ¢ — 0, by letting ¢ — 0 under the integral signs. The
second half follows from (4.25).

In addition to (4.27) we have the result from [5], also easily obtained from
(4.24), that ARE (A** A; )\, 1) = 120.°([ f*(z) dz]’. Considering ARE (a**, &;
), ¢) as a function of ¢ for fixed N, we hence know its value for ¢ = 1 and its limit-
ing values as ¢ — 0 and as ¢ — «. An interesting question is whether or not there
exists a broad class of distributions for which

(429) . ARE (A™ A; A\, ¢) < ARE (A% A; )\, ¢) forall A and ¢

or equivalently

(4.29) ARE (A**, A; )\, ¢) £ ARE (™, A5\, 1) forall A and ¢

The examples considered in Sections 4.3.1 and 4.3.2 show that the rectangular
distribution has this property, while the normal distribution requires the con-
dition N = 1 (equal sample size ). Let us therefore restrict ourselves to determin-
ing a class §* of distributions for which

(4.30) ARE (A™* A; 1, ¢) £ ARE (A%, 4; %, ¢) for all c.
This class F* contains at least the normal and the rectangular distribution.

TueorEM 4.5. Assume Model 11T with F(x) = G(cx). In addition to the regu-
larity conditions of Theorem 4.4, f(x) is assumed to satisfy regularity conditions of
the form Ry and Ry in (2.8). Let A, A* and A™* be defined by (0.2), (0.9) and (0.5).
Then, if

(4.31) f(@)ef (cx) — ef(cx)f (x) = 0 for 0z, 0<c¢ <1,

ARE (A** A; 1, ¢) s nonincreasing from 12¢rx2[f fA(z) da]’* toward 40, f*(0) as ¢
decreases from 1 toward 0, and also when ¢ increases from 1 toward .
Proor. (4.26) may be written

ARE (A*™ A; N, ¢)
(4.32) 40,2 (1 = N[5 (@)f(cx) dzl* + N7 f(2)f(x/c) dal’}

1201 =) [s F(—z/c)F(z/c)f (x) dx — 2\ [§ Flex)F(—cx)f(x)dx

Due to the regularity assumptions made, the integrals in (4.32) may for any
¢ > 0 be differentiated with respect to ¢ by differentiation under the integral sign.
The derivative of the denominator is —2f3° zf(ex)f(x){(1 — N)[2F(x) — 1] —
N2F (¢x) — 1]} dz which for A < % is £ —4N[s zf(cx)f(x)+[F(x) — F(cz)] da,
and hence 0 for 0 < ¢ £ 1. The denominator of (4.32) is therefore nonincreas-
ingincfor 0 < ¢ £ 1 and N\ =< 4, and hence in particular for A = 3.

The derivative of the numerator is

802" f5 f(x)f(ex) da= 3 2l(1 — N)f(2)f (ex) — Nef(cx)f (2)] d,

which for X = } is equal to 4¢.” [ f(x)f(cx) dz=[5 alf(@)f (cx) — of (cx)f (x)] da.
(4.31) implies that this derivative is =0 for 0 < ¢ = 1. Hence we have shown
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that ARE (A™*, A; 1, ¢) is nondecreasing in ¢ for 0 < ¢ < 1. From (4.24) follows
that ARE (A** A; \, ¢) is continuous in ¢ as ¢ | 0. The rest follows from (4.25).

COROLLARY 4.1 (4.31) s a sufficient condition for a distribution F satisfying the
regularity conditions of Theorem 4.5, to belong to F*,

Let us finally illustrate the results of Theorems 4.3, 4.4 and 4.5 by considering
a few examples, specifying F.

4.3.1. Normal distributions. Let

(4.33) - F(z) = ¢(z/0z), G(x) = ¢(a/cos),

where ¢ and o, are unknown. The normal distribution is easily seen to satisfy all
regularity conditions of Theorem 4.5 and in particular (4.31), hence the theorem
applies.

Since the integrals (4.26) in this case can easily be evaluated by Lemma 4.2,
the results can be sharpened and made more specific..

TuEOREM 4.6. Assume Model 111 with F and G given by (4.33). Let A, A* and
A** be defined by (0.2), (0.9) and (0.5). Then

(i) ARE (A% A) = 3/x for all ¢ and \,

M/ +E) 1 =N/A+D)

(i) ARE (8™ 3) = X Aresine [¢2/(1 + ¢2)] 4+ (1 — \) Aresine [1/(1 + ¢?))’

(iii) ARE (A™* A;\, ¢) < 1 for all \ and c,
(iv) ARE (A™* A;\, ¢) = ARE (A** &;1 — ), 1/¢),
(v) ARE (A** A; N, 1) = 3/x, for all \,
(vi) limeo ARE (A** A
If in particular N = %, then

~

i\ ¢) = lime. ARE (A™* A; )\, ¢) = 2/, for all \.

TABLE 3
ARE (A**, A) as a Function of ¢ for A = , $ and %
Normal Distributions

ARE(A** A)

2 = 2 2

c a=c¢t/(1 + ¢ o1 N N
0 0.000 .637 .637 .637
1 .125 .840 .866 .910
1 .200 .887 .914 .949
1 .250 .909 .933 .961
1 .333 ' .934 .952 .968
3 .400 .947 .958 .964
4 .455 .953 .958 .961
1 .500 .955 .955 .955
4 .571 .951 .942 .936
2 667 .934 .923 917
4 .800 .887 .872 .866
7 .875 .840 .828 .824
w 1.000 .637 .637 .637
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(vii) ARE (A™* 4,1, ¢) decreases strictly from 3/ to 2/ when ¢ decreases from
1 t0 0, and also when c increases from 1 to «.

(viii) ARE (A™, &; %, ¢) < ARE (A%, 4; &, ¢) with equality if and only if
c=1.

Proor. (iii) follows since Arcsine [¢’/(1 + ¢*)]
since 3/dc ARE (A™, A; 3, ¢) Z 0 according as ¢
theorem is immediate.

As a numerical illustration, the ARE (A** A; \, ¢) has been computed as a
function of ¢ for A = 3, A = 2 and X = . The results are given in Table 3 and
Figures 2 and 3. In connection with Figures 2, 3, 4 and 5 we consider the asymp-
totic efficiency of A™* relative to A as a function of @ = ¢/ (1 4+ ¢) instead
of ¢. This function is on the graphs denoted ARE (A™*, A, a) for short. We notice
from Figure 3 that there exist combinations of \- and c-values such that
ARE (a**,A) > ARE (A%, A) and thereby see that Theorem 4.6(viii) needs con-
dition A = % to hold.

4.3.2. Rectangular distributions. Let

(4.34) F(z) = (0 — ¢+ 7)/20; {—w=22r=¢+ o,

/(1 + ¢). (vii) follows
1(c > 0). The rest of the

VIAIV



ROBUSTNESS OF ESTIMATES FOR SHIFT 193

(435) G(z) =(co—¢—A+x)/20c; ¢+A—coZ2x=2¢+ A+ co

where w > 0, ¢ > 0, { and A all are unknown eonstants. As in the previous
example we are able to evaluate the integrals in (4.26). The results in this case
can be summarized in the following theorem.

THEOREM 4.7. Assume Model 111 with F and G given by (4.34) and (4.35). Let
A, A* and A™* be defined by (0.2), (0.9) and (0.5). Then

(i) ARE (A* A) = 1forallcand A,

_ (1 —2) +2
3(1— N —2(1 — N ¢+ r?’

_ (1 =2+
3Nt —2xc+1 =\’

(ili) ARE (A**, A;\, ¢) £ 1 for all N and c and hence ARE (A** &; )\, ¢) <
ARE (A% A; ), ¢), with equality if and only if ¢ = 1.

(iv) ARE (A™, A; N, 1) = 1, for all A,

(v) limeg ARE (A™* A; ), ¢) = limewo ARE (0™ A5 )\, ¢) = &, for all \,

(vi) ARE (A™*, A; \, ¢) decreases strictly from 1 to 3 when ¢ decreases from 1
to 0, and also when c¢ increases from 1 to .

The proof is immediate.

As a numerical illustration the ARE (A**, A; \, ¢) has been computed as a
function of ¢ for A = %, 2, 2 and %. The results are given in Table 4 and Figures
4 and 5.

Before we proceed with an example of a symmetric distribution not satisfying
(4.31), let us remark that the beta distributions f(z) = k(a — z)%(a + z)%
—a =z = a;forq = 1, is easily seen to satisfy all required regularity conditions
and (4.31), and hence belong to ™.

(i) ARE (a**, A) for0< ¢ =1,

forl = ¢,

TABLE 4
ARE (A**, A) as a Function of ¢ for x = 1, 2, % and +%.
Rectangular Distributions

ARE(A**, A)

c? a=c?/(1+ ¢?)

A=} =2 A=3 A=

0.000 0.0 .333 .333 .333 .333
111 1 .455 .478 .500 .600
.250 2 .556 .600 .636 .765
.429 3 674 .729 .768 .875
.667 4 .820 .864 .891 .950
1.000 5 1.000 1.000 1.000 1.000
1.500 5 .820 784 .769 745
2.333 7 .674 .637 .623 .603
4.000 8 .556 .529 .520 .507
9.000 9 .455 442 .438 .432
© 1.0 .333 .333 .333 .333
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Fic. 4. (upper) Rectangular distributions, A = %
Fic. 5. (lower) Rectangular distributions, A = %, %, 1%
4.3.3. Double exponential distributions. Let
F(z) = 37°, x =0,
(4.36) =1— 37" x>0,
G(z) = F(z/c),

where a and ¢ are unknown positive constants. F satisfies the regularity con-
ditions of Theorem 4.5, but not (4.31). As in the previous examples, the integrals
in (4.26) may be evaluated, and we have the following results.

THEOREM 4.8. Assume Model IIT with F and G defined by (4.36). Let A, A* and
A** be defined by (0.2), (0.9) and (0.5). Then

IA
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TABLE 5
ARE(A**, A) as a Function of ¢ for x = %, 2 and s
Double Exponential Distributions

ARE(A**, A)

c a=¢/(1 4+ ¢) N N N
0 0.0 2.000 2.000 2.000
¥ .1 1.883 1.852 1.765
2 .2 1.749 1.668 1.525
2 .3 1.623 1.533 1.427
4 4 1.533 1.479 1.436
1 .5 1.500 1.500 1.500
s .6 1.533 1.571 1.589
I 7 1.623 1.670 1.690
8 .8 1.749 -1.782 1.794
9 .9 1.883 1.894 1.898
© 1.0 2.000 2.000 2.000

(i) ARE (A%, A) = 2 for all N and c,
(ii) ARE(A™, A)

_ 2[(1 =N)/A 4 e)* + 2/ (1 + ¢)’]
1= (1 =NRe/A+e)—c/@+ = 2/ +¢) —1/1+20)]

~

(iii) ARE (A™*, A; )\, 1) = £ for all \,

(iv) lime.o ARE (A™*, A; N\, ¢) = lime ARE (A** A; ), ¢) = 2, for all \.
In particular, if N = %, then

(v) ARE (A™*, A; 1, ¢) is strictly increasing from § to 2 as ¢ decreases from 1
to 0 and also when c increases from 1 to «.

(vi) ARE (A™* A; 1, ¢) = ARE (A% A; 1, ¢) with equality if and only if
c = 1.

As a numerical illustration the ARE (A™* A; A\, ¢) has been computed as a
function of ¢ for A = %, 2 and +%. The results are given in Table 5 and Figures 6
and 7.

In connection with Figures 6 and 7 we consider the asymptotic efficiency of
A™* relative to A as a function of @ = ¢/(1 + ¢) instead of ¢. This function is on
the graphs denoted ARE (A™**, A, «) for short.

The examples treated show that when we have a Behrens-Fisher situation in
Model III and A\ = %, then there exists a class of distributions, including the
normal distribution and the beta distribution, for which A* is preferable to A™*,
but that there also exist distributions for which A™* is preferable to A*. The
examples further seem to indicate that heavy tails on the distributions make
A** favorable.

The choice between the two estimates A* and A** then will have to be made on
the basis of the type of distribution one expects in each case.
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Frc. 6. (upper) Double exponential distributions, A = %
Fia. 7. (lower) Double exponential distributions, A = %, %
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