BAYESIAN ESTIMATION IN MULTIVARIATE ANALYSIS
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1. Introduction. In this paper the Bayesian approach to multivariate analysis
taken by Geisser and Cornfield [6] and Geisser [5] is extended and given a more
comprehénsive treatment. Most of the classical multivariate estimation prob-
lems are here considered from the Bayesian standpoint.

In Section 2, Bayesian estimation procedures are obtained for: a vector mean,
linear combinations of the elements of a vector mean; simple and partial vari-
ances; simple, partial, and multiple correlation coefficients. The posterior dis-
tributions of the canonical correlations and of the principal components are also
discussed. Section 3 is devoted essentially to linear combinations of independent
vector means when a common covariance matrix is assumed and also when the
covariance structure is different for each population. For the general multi-
variate linear hypothesis we demonstrate, in Section 4, that the joint Bayesian
posterior region for the elements of the regression matrix is equivalent to the
usual confidence region for these parameters. Further the joint predictive density
of a set of future observations generated by the linear hypothesis is also obtained
thus enabling one to specify the probability that a set of future observations will
be contained in a particular region based only on previous data.

Essentially no new distributions are necessary for this Bayesian approach,
since all the results are couched in terms of familiar densities. While some of
the posterior regions are equivalent to well established confidence regions, others
are not. They may differ either as to the degrees of freedom involved or because
of the fact that certain “confidence distributions” are non-Bayesian inversions
e.g. the correlation coefficient, Brillinger [2].

The prior densities or weight functions used here are basically those of [5] and
[6] and purport to reflect to a large degree prior ignorance or relative diffuseness.
These unnormed densities or weight functions presumably may be “justified”
by various rules, e.g. invariance, conjugate families, stable estimation, ete., or
heuristic arguments. Although their utilization here does not necessarily pre-
clude other contenders which may also be conceived of as displaying a measure
of ignorance, it is our view that no others at present seem to be either more ap-
propriate or as convenient. The fact that their application yields in many in-
stances the same regions as those of classical confidence theory is certainly no
detriment to their use, but in fact provides a Bayesian interpretation for these
well established procedures.

2. One Population. Let x;, ---,xy be independent observations on a
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p-variate N (u, ) population. Hence,
(21) L(w, 27) « 7" exp (3 tr Z[(N = )S + N(x — w)(2 — w)'},
where
= N"20ax, (N-DS=20,(%—%)(x-1)
and
(22) 2 (K= w)(X—¥) = (V= DS+ NE—uw)E—u).

If we assume as in Geisser and Cornfield [6] (setting v = p + 1) that the prior
density which displays ignorance is

(2.3) g(y, ) dy d=™" « [5|"V" du iz,
then »
(24) P(w, =78, %)
< [Z7YT P exp {—3 tr [((N — 1)S + N(& — w)(2 — w)]}

with marginal densities

(2.5) P(ES) « [27¥ PPl exp [—L tr (N — 1)S]
and
(2.6) P(u|%,8) « [(N —1)S 4+ N(x — u)(x — u) [

A posterior region can be constructed for u through the relation

(2.7) T" = N(x — u)'S7T(x — u),

where the posterior distribution of 7% is [p(N — 1)/(N — p)IF(p, N — D)
as shown in [6]. Hence

(2.8)  Pr[T%w) £ [p(N — 1)/(N — p)lFa(p, N —p)l =1 — a

yields a posterior ellipsoid for u. Note that this is equivalent to the confidence
region for u.

Intervals on linear combinations of the elements of u can also be obtained.
Let a be a non-null real vector of constants, then it was shown [6] that a posterior:

(2.9) a'(u — x)N/(a'Sa)?

is distributed like (N — 1)}(N — p)%(N — p), where {(N — p) is Student’s
t with N — p degrees of freedom. Thus an interval on a'y is obtained through

Pr{a's — (a'Sa)![(V — 1)/(N — p)Nltapp < a'u
< a% + (@'Sa) ' [(N — 1)/(N — p)Nltap} = 1 — a.

This is in contrast to the confidence region based on the sampling density of (2.9)
which is t(N — 1).

(2.10)
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Another problem of interest is the ratio of the means from a bivariate normal
population. Let p = 2 in (2.6). This yields for the joint posterior density of
prand us ,

P(“l ) l"’2)
(2.11) ) 22
o< [1 4 ku(u — %0)° + ke — %) (e — o) + kao(pe — %),

where k.; depends on sample variances and covariance. The problem then is to
find suitable limits for » = w;/us . The calculation of the posterior density of »
is rather messy and involves several parameters i.e. fixed values of the statistics,
so that finding reasonable approximations would be very helpful. Of course, as N
increases the density of (2.11) tends to bivariate normality and the work of
Creasy [4] would apply in the asymptotic case. If a suitable approximation to the
density of # or some function of 5 can be obtained, this would provide a Bayesian
solution for one of the possible models (bivariate normality with p # 0 and un-
known ) involved in the Ifieller-Creasy problem.

Before turning our attention to the derivation of posterior densities for some
of the interesting functions of the elements of X, we shall briefly review some of
the properties concerning marginal densities of certain functions of variables
which are jointly Wishart distributed. Let C = {¢;;} be a p X p symmetric posi-
tive definite random matrix whose elements have the Wishart density with »
degrees of freedom based on a given positive definite matrix Q = {w;;}. C then
is W(Q, »), ie,

(2.11a) fC|Q,v) « [C[®7 P exp {—1 tr Q7'C).
Further let C and Q be partitioned thus:

a9 P—4q
(2.12) c_ ¢ (cu cu> . <C” c“)
p— q\Cu Cn) ¢t c®)’
(2.13) C" = (Cyy — CCCao) ™" = Cits ;
(2.14) Q- <gu Ql2>, o = <g: QZ)
Qo Qs Q Q
(2.15) Q" = (Qu — QuQHQy) " = Q..

From Wishart distribution theory we may now state the following well-
known results:

I. The marginal density of Cy is W(Quq , v).

II. The marginal density of Ci.ois W(Qu.2, v — (p — ¢q)).

III. The marginal density of 75 = c1a/ (1)’ is

(2.16) h(re | oz, v) < (1 — m)* (1 — pha)L(prrsz)
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where
piz = w12/(w11w22)% and I,(pr) = f: [(coshy — pr)" ™" dy.
IV. The joint density of the roots ¢1, - - -, ¢, of C depends only on the roots
ol oo, w, tof @7 (Roy [10], p. 188), and let it be represented by
(2.17) her, = e, - wp ).

Although this is a rather complicated expression it has been evaluated by James
[8] in terms of zonal polynomials.

V. The joint density of the g roots by, - - - , b, of the ¢ X ¢ matrix C1;'C1sCas Car
where ¢ £ p — ¢, depends only on the roots 6;, - - -, 6, of Q119295 Qy , (Roy
[10] p. 189) and let it be represented by
(2.18) h(br, o+, by |81, <+, 8q)-

This complicated density has been evaluated by Constantine [3] in terms of zonal
polynomials. In particular when ¢ = 1, let ¢; = 7 and & = p° (the square of the
sample and population multiple correlation coefficient respectively), then

(2.19) h(r2 [ p2) o« (1 _ T’Z)(v—p‘l)/?(l _ p2)v/2

el (pZ)j(TZ)(p—l)/2+]—lr2(v/2 + ])
i JITlp — 1)/2 + 4] '

Now in (2.5) let (N — 1)S = A so that the posterior marginal density of
=7'is W(A, N — 1). This immediately implies that =i is WAL, N — 1)
and 11 is W(AL, N — 1 — (p — ¢)) by identifying £~ with C and A with @
and making the indicated partitions of = and A. Further for ¢ = 2, let

2 q— 2
(2.20) 2 Tien Xieae
Zue =

g — 2 \Znoa Znen

2 q— 2

(2.21) 2 Apon Apon
A11.2 = .

¢ — 2 \Airoor Anoa

Hence we get that Eteais W(At e, N + 1 — ¢). From the preceding results
it is clear that au/ou is x¥—p by using the result for £1; and letting ¢ = 1 so that
21_11 = 01_11. From 2;11.2 = 0‘1_11.2 , i.e., q = 1, we get that 011.2/0'11.2 iS X12v_1 . Note
that in the two preceding cases the posterior densities are in the reverse order of
the sampling densities. The marginal density of py; is found from Ei;' where
g = 2 and the relation

(222) (0'12)2/0110'22 = 0’%2/0’110’22 = p%z .
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This yields, by application of III, that
(2.23) h(p|rmz, N —p + 1)

where A(- | - ) is the function defined in (2.16). Observe here that the density of
p1z depends on p, the original number of variables, in contrast to the sampling
density of 7, which is independent of p although of the same form.

Now Xy;.; is the partial covariance matrix of the first ¢ variates holding fixed
the last p — ¢ variates, i.e., ¢ + 1,9 + 2, - - - , p. Hence from the marginal density
of =11s1; we can obtain, by applying III, the posterior density of the partial
correlation coefficient pio.gi1,-.-,p

(224) h(p12‘q+1'...'p ' T12.g41,+++,p » N + 1 — q)

where k(- | -) is given by (2.16). This density depends on the number of
variates which are not held constant in contradistinction to the sampling density
of 712.¢+1,---,p , Which is from (2.16) )

(2.25) h(r12.g41, 0 | Pr2eg41,00p, N — 1 — (p — q))

and consequently depends only on the number of variates held constant. Actually
(2.23) is a special case of (2.24) with ¢ = p. Approximate posterior limits on
p12.+1,-+-,p €N be obtained through Fisher’s transformation. Let

(226) z=3log[(1+7r)/(1—r)l, &= 4%log[(1+4 p)/(1— p)l;

then a posteriori (N — q¢ — 1)¥(¢ — 2) is asymptotically N(0, 1) and will be suit-
able for large sample sizes. For smaller sample sizes several good approximations
are given by Hotelling [7]. His approximations of course deal with A(r | p) and
depend on p. His results can be readily utilized since for the Bayesian r and p
are interchanged and hence the computations will depend on the known statistic r.

The principal components are the roots o1, -« -, o, of . From (2.5) and IV
it is clear that the density of o1, -+, o, " is
(227) h(a'l_ly ] o'p-’l l ai, **°, ap)
where this is of the form discussed in (2.17) and a,, - - -, a, are the roots of A.
The squares of the canonical correlations are the latent roots \;, No, - -+, A,
of 2;112122;21221 . Recall that
p] 1 212 R 211 212
(2.28) s = ; s = .
221 222 221 222
Hence
(2.29) =3t — 212(222)—1221'

Multiplication of both sides of (2.29) on the left by

(2.30) (27 = By — EpEpEa
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leads to
(2.31) (EM)T'ER(E?) IS = 23 =T

and the fact that the latent roots of the right hand side of (2.31) are equal to
the latent roots of X1y Z15Z0s Zo1 . Hence applying V, the joint posterior density
of the latent roots is

(2.32) By ove g N[ dyy oo, dy)

of the form of (2.18) where d;, ---, d, are the latent roots of A7y ApAzs A .
For the particular case ¢ = 1, the posterior density of the square of the multiple
correlation coefficient, o, is obtained,

h(p2 l 7‘2) o« (1 _ p2)(N—p-—2)/2(1 _ 7'2)(”_1)/2

2.33) ) o
( ‘ i (,’.2)1 (p2)(p—1)/2+1—1 F2[(N _ 1)/2 + 7]

i=0 JIT(p — 1)/2 + ]

This of course is the exact form of the sampling density of * given p* with 7*
and p’ interchanged. Since o’ is asymptotically normal a posteriors, where r* 5 0,
with mean

r+1(p — 1)/(N = DI(1 = 7") = 2(N — p)r(1 — ") /(N — 1)
+ O(N7?)

(2.34)

and variance
(2.35) 4°(1 — *)(N — p)’/(N* = 1)(N + 3) + O(N?),

we may use these facts to obtain approximate limits for p (see Kendall and
Stuart [9] p. 341).
O] Q)

3. Several Populations. Let x;”’ , - -+ , x#; be a set of independent observa-
tions on N(u?, =) forj = 1, ---, k. In other words we have &k samples with
differing vector means but a common covariance matrix. The joint likelihood is
proportional to

(3.1) [ exp {—} tr TTA + 5L N,EY — w?)EY — D),
where

N =Yk N, £ = NSV, %9 A, = S (. — 29 (xP — 9,
and A = D %, A;. We assume that the prior density is

(3.2) g(u®, o, w®, 2T « [5|@R

which yields for the posterior density

(3.3) [ET"P P exp (= tr 2TA 4+ 2L N2V — ¢)EP — o).
Further by integrating out £~ we obtain the marginal posterior density of
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w? y(") proportional to

(3.4) A 4+ DN EY — p?) (D — g )'l—zv/2'

A joint region can be obtained on u®, -, u* by means of the reiation
(3.5) PriU = Uspivi] =1 = q

where

(3.6) U= |Al/|JA 4+ 25 N;ED — w?)x? — w2y,

since it is easy to show through the calculation of the moments of U that U has
the U, x,v—x distribution as given in Anderson [1] p. 194.

It is often of interest to calculate a region on the non-null linear combination
n = 2 5 c;u”. The posterior marginal density is easily found from (3.3) to
be

(37) P(n) = [A 4 07 (n = 2jacx?)(n — i ey
where b = D_%_, ¢,/N,”". Hence, the quadratic form
(3.8) b (n — D5 egY YA (n — 25 ex™)

has posterior density [p/(N — k + 1 — p)]F(p, N — k + 1 — p), which may be
used for obtaining an ellipsoidal region on n. This of course is identical to the
confidence region on n.

The problem becomes more complicated if we assume that the covariance

matrix is different for each population, i.e., N, £,)j = 1, ---, k. If we
assume a prior density

(3.9) g(u®, - u® =7 - ) « H |z,

we may calculate the posterior density of u®, -+, u® to be proportional to
(3.10) TTim 1A; + M52 — o )& — y) R,

Now to calculate the density of n is rather involved (this is essentially the multi-
variate extension of the Fisher-Behrens distribution) since n is distributed as a
linear combination of independent generalized Student densities.

A crude approximation that may not at all be too bad for moderately large
sample sizes can be based on the multivariate normal approximation to the
generalized Student density using the first two moments of n. Since

(3.11) By =%V and V(u") = A)/Ny(N, — p — 2),

n is approximately multivariate normal with

(312) En=2'%.cx? =3 and V(n) = > 5, (c’N,"/N,— p— 2)A; = B;
and the quadratic form

(3.13) (n—=3)B ' (n — §)

is asymptotically x,’. One then may obtain an approximate region on n using
(3.13).
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4. The General Linear Hypothesis. Suppose x1, --- , Xy are a set of N in-
dependent p-component observations where X, is N (3z, , £), Z. is 8 known vector
of ¢ components, § is a p X ¢ regression matrix whose elements are unknown. Let

Z=(z;,---,2zy)beofrank ¢, X = (%1, ---, xy) of rank p where N = p + q.
Since

(4.1) (X —8Z)(X—8Z) = A+ (8- 8)2Z'(3 - B),

where

(4.2) 8 =xz'(zz")";, A= (X-082)X - §2),

then

(43) LB =) « [27" exp {—3 tr Z7[A + B — $)ZZ'(3 — I}
Let the prior density of g and £ be
(4.4) 9@, =) dgds™" « ||V agdx.
Hence the posterior density of 3 and £ is

P, =7 (X, Z)
(4'5) —1(N—p—1)/2 -1 Y ’ Y
w [T Texp (-3 tr ET[A 4+ (8 — $)ZZ°(3 — §)1}.

Since
(4.6)  [exp[—3trE7T(B — B)ZZ'(3 — B8)1d8 = [x["*|2Z'|™",

we obtain

(4.7) P(E'A) « [Z7* 2V exp (=L tr =7'A)
and

(4.8) P(BIX,Z) = |A+ (8 — 8)2Z'(8 — B)'[™"
Let

(4.9) U= |Al/|A+ (8~ 8)2Z'(3 - 8)

Calculation of the moments of U from the density of § reveals that U is distrib-
uted like U,,q,n—q , i-€. as a product of beta variables and defined by Anderson
[1], p. 194. In other words the posterior distribution of U (where 8 is the set of
random variables and the other quantities are fixed ) is the same as the sampling
distribution of U (where § is fixed and A and { are the sets of random varia-
bles). Hence a posterior region on the elements of § is given through the relation

(4.10) PriU@B) = Ulapar-dd]l =1— a

where U, p,qn8—q1s the ath percentage point. Therefore the Bayesian region on §
is equivalent to the confidence region.

Suppose now we wish to predict where a set of future observations y;, y.,
.-+, ya will lie, where y. is N (3w, , £ ) and w, is a known vector of ¢ components,

(4.11) Y=(y, ,yu); W=(w, -, wy).
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The predictive density of Y is

(412) P(Y|W,Z,X) = [[P(=,8|X, 2)f(Y|W,8,=")dgd="",
where

(413) f(Y|W, 8, 27) « 27" exp[—4tr =Y — BW)(Y — BW)'].
Define

(4.14) ‘ V = (X, Y), U= (Z, W), GO - VU/(UU/)—I;
then we may easily obtain
(4.15) P(Y I W, Z, X) o« |(V _ GOU)(V _ GOU)II-—(N+M—Q)/2.

Using the following relations,
V- 3U = (X, Y)[I — U(UU)7'U]
(4.16) (UU)™ = (2Z")71 — WW'(UU')7]
uvU’ = I+ WW'(zZ')7)zZ,
we may without any difficulty establish
P(Y|X,Z, W)
< [A+ (Y — §W)(I — W/(UU')7'W)(Y — gW)' |72,

The predictive density of Y is then of the same type as the posterior density of
8 so that

(418) U = |A|[/|A + (Y — §W)(I — W(UU")"'W)(Y — W)|

is distributed as U, x,y—, - If we are in the univariate case p = 1, then A = qy; is
a scalar and

(4.19) an (Y — §W)(I — W/(UU')?W)(Y — fW)’

is a quadratic form distributed like [M/(N — ¢)]F(M, N — g¢). In the case
M = 1 we may find a predictive ellipsoid for the single future vector observation
yi1 since the quadratic form

(4.20) (1 — w/(UU)'wi) (31 — Bwi)'A7' (31 — Bw1)

is distributed like [p/(N — ¢ — p + 1)]F(p, N — ¢ — p + 1). Therefore by
means of either (4.18), (4.19) or (4.20) depending on the particular situation,
predictive regions can be obtained for future observations.

We now return to the posterior density of 8 and derive the marginal density of
B1, a ¢1 X p matrix. Define

(4.17)

(421) @ = (@17 @2)’ G = (61 ) 62)) Z= <§Z)7

where Z; is ¢; X N. Utilization of a fundamental decomposition in the general
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linear hypothesis

(422) B—B)ZZ'(B—8) = (B — BUFB — B1) + (Be — A)Z:Z:' (B — A)',
where F = Z,[I — Z, (Z,Z,' ) "'Z,)Z,’ and A does notinvolve 8; or 35, permits us to
rewrite (4.8) as

(423) P(B1,62) = |A+ (B — BOF(B — B + (B2 — A)ZoZ:/ (B — A) [T

We may then easily integrate out 3. since (4.23) is of the same basic form as
(4.8). This yields

(4.24) PB) = |A+ (8 — BOF(6 — B[ ™
Hence by the same argument as before
(4.25) U=[A/IA+ 6 — BOFG — 8|

is distributed a posteriori as Up,q, ,n—q and the posterior region on §; is equivalent
to the confidence region.
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