CLASSICAL STATISTICAL ANALYSIS BASED ON A CERTAIN
MULTIVARIATE COMPLEX GAUSSIAN DISTRIBUTION

By C. G. KuATRI!
Gujarat University, Ahmedabad

1. Introduction and summary. N. R. Goodman [4] has discussed some aspects
of the complex multivariate normal distribution, in particular, the analogue of
the Wishart distribution and of multiple and partial correlations. We shall obtain
maximum likelihood estimates for certain parameters and likelihood ratio tests
of certain hypotheses arising in the study of such complex multivariate normal
distributions. Although the general principles involved in the derivation of the
distribution of the associated statistics are well known to mathematicians working
on group representations (see, for example, Gelfand-and Naimark [3], p. 24), it
has seemed desirable to derive the needed results on this type in a way parallel
to one method of obtaining the distributions of real multivariate analysis (Deemer
and Olkin [2], Olkin [6] and Roy [7]). With the help of the results derived, we
can handle the complex variates in the same manner as we do for real variates
in the case of Gaussian distributions. Moreover, it can be noted that for every
distributional result of classical multivariate Gaussian statistical analysis ob-
tainable in closed (explicit) form, the counterpart analysis for complex Gaussian
is also obtainable in closed (explicit) form with necessary changes.

It may be pointed out that the non-central distributions in this connection
were derived independently by A. T. James [5] with the help of zonal polynomials
of hermitian matrices, but we feel that sometimes the derivation of distributions
with the help of Jacobian transformations may be useful.

2. Notations, integral and Jacobian transformations.

(2.1) Notations. Matrices will be denoted by bold face capital letters. The
p X p identity matrix will be denoted by I, or simply by I, and any zero matrix
by 0. The complex conjugate of a matrix A w111 be denoted by A, and the con;ugate
transpose by A’. A p X n matrix U will be said to be semi-unitary if U0’ = I,
forp < nor U'U = I, for n < p. A* will denote the differential of A, that i is, the
matrix whose elements are the differentials of the elements of A. For a matrix
A, det A or |A| will denote the determinant of A but, for a complex number a,
|a| will denote the absolute value of a. The notation dA will be used for the volume
element commonly associated with A. For example if A = A; + ¢A, with A; and
A;real and i = (—1)}, dA = dA, dA, ,and, if A is hermitian, dA; = HkH, >k A 1
and dA: = J].]Tis+ daj.z . The Jacobian of the transformation A = F (W) will
be denoted by

J(A; W) = 9(A)/0(W) = 9(A1, A)/0(Wi, W) = J(Ai, Ay; Wi, Wa).
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Je-a f(Z) dZ means a function h such that for any (open) set S in the space
of A = g(Z),

Jsh(A) dA = [i1z:4@ 00 F(Z) dZ.

The density function of X: r» X s having the complex multivariate normal
distribution will be denoted by

CNX:r XsurXsZ:irXr)=LI"Zexp[—tr=(X — u)(X — w)],

where X is hermitian positive definite (hpd), and the density function of S:
r X r distributed as complex Wishart will be denoted by CW(S;r,n, Z:7 X r) =
{T,(n)} 7" [2[7"[S]" " exp [~ tr 7S], where I',(n) = I¥“ ™ { T} T(n — j + 1)}
and =:r X ris hpd. If  is hpd, we can find a non-singular hermitian matrix
P such that £ = P? and for this case P will be denoted by =*.

(2.2) (i) IfA:n X pand B: p X m, then (AB)* = A*B + AB*

(ii) If A is a hermitian matrix, then (JA|)* = tr (adj. A)A* and hence if
|A| > 0, then (log [A])* = tr AT'A*,

(iii) (A™)* = —AT'A™A7'if A is nonsingular.

(iv) U*0’ or U'U* is a skew hermitian matrix if U is a unitary matrix.

Proor. (i) follows from the definition of the differential of a matrix.

(i) Since A ishermitian, A = A; + 7A; gives A; a real symmetric matrix and
A; a real skew-symmetric matrix, with aj = a1 + 7a4.2 and @z = az; . Then

(8/da,1)|A| = (cofactor of a;;) in A if j=k
= (cofactor of a;; + cofactor of a;;) in A if 7 =k,
and
(6/6a,~k,2)[Al = ¢(cofactor of aj — cofactor of a;;) in A if J # k.
Hence, it is easy to verify that (JA|)* = tr (adjoint A)A* The other part of
(ii) is immediate.
(iii) and (iv) are obtained easily with the help of (i) and A™A = I, U'U =
U0’ =1
(2.3) The Jacobian of the transformation Z = GWH where Z: p X n and

W:p X n are complex random matrices, and G: p X p and H: n X n are non-
singular matrices is

J(Z; W) = |(det G)|™"|(det H)|”” = |GG'["|HH'|".
[For Z, W, G and H real matrices, J(Z; W) = |G|"/H|"]
Proor.Let G = Gy + Gy, H=H,+ H, ,Z = Z; + iZ; = GV, V=V, +iV,=
WH and W = W; 4+ #W, . Then the transformation is

Z, G —G:\ /V: H, H,
( = ( and (ViVy) = (W, W,) < >
Z, G G, 2 -H, H

Hence, J(Z; W) = J(Z; V)J(V; W) = |GG'["|HH'|?, for the theorem (2.5) of
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Goodman [4] gives

- Gl "(':"2l G’l G‘2
|(det G)|* = |GG'| = |

1G2 G.

-G, G

(2.4) Let X: p X n be a complex random matrix, M: ¢ X n a given matrix
of rank ¢(=n) and A: n X n a hermitian positive definite matrix. Then for n =

»+ g

f F(ZA7'Z/, MZ') dZ = TP T, (n — q)}'|A|"|MAM'| "

ZATZ'=S
MZ'=B’

f(S, EI) |S - B(Mm/)_lﬁll"—q—p‘

[If Z, M and A are real matrices, then

PR
[ Az Mz az - wremoe ) P(%Ji—l)} A"
=1

J
ZA—1Z'=S
MZ'=B’

-|MAM'[f(S,B') |S — B(MAM') 'B'|*" """

Proor. Since A is hermitian positive definite (hpd), we can write it as A = T*
where T is a hermitan matrix. Moreover MT is of rank ¢ and so we can find a
matrix L: (n — ¢) X » such that

MT MAM' 0
G = and GG = .
L 0 L.,

Transforming Z by the relation Z = _XGHT, we have, by (2.2), J(Z; X) =
|A["IMAM'| " and S = X,X," + B(MAM')"'B’, where X = (BX,) and B = ZM.
Hence, we get

[ f(zA7Z',MZ') dZ = |A MAM'|” [ A(X X)) dXy,

7

X1X1’=R

where X;: p X (@ — ¢), R = 8§ — B(MAM')™'B’ and f,(X:X)") = fIX.X/ +
B(MAM')™"'B’, B']. Now applying the result corresponding to complex Wishart
established by Goodman [4], namely, [x,%, -r dXi = I*""?{T(n — ¢)} '[R|""7,
if n — ¢ = p, we get the result (2.4).

(2.5) The Jacobian of the transformation T = AG, where T, A and G are
lower triangular complex matrices of order p, is J(T; G) = [], |a;[** 7,
whileJ(T; A) = [, |gs;1” if all the diagonal elements of A, G and T are complex,
orJ(T;G) = Hj a2$?7 "% whileJ(T;A) = 1L g3t if all the diagonal elements
of A, G and T are real. [If A, T and G are real matrices, thenJ(T;G) = [[; aZ ™

’
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while J(T; A) = []; a’; .] Proof follows by noting the equations
ti = [liek Gioge  for j 2k =1,2, -, p.

(2.6) The Jacobian of the transformation X = TU, where X: p X n is a com-
plex random matrix, T is a lower triangular matrix and U: p X nisat least a semi-
unitary matrix (n = p), is

J(X; T, 0) = 2°T]; (&7 )m(U)

if all the diagonal elements of T are positive and real and all the diagonal ele-
ments of U (i.e. w5, j = 1, w, ---, p)are complex, while J(X; T, U) =
1L (> ?)he(U) if all the dlagonal elements of T are complex and all the
diagonal elements of U are real. [When X, T and U have real elements, then
J(X; T, U) = 2°]]; (¢5;")9(U).]

Proor. We shall prove the result only for the latter case. Here, in U, there are
2pn — p(p + 1) random variables. Let V: (»n — p) X n be a matrix of rank
(n—p) such that Q' = (0" V) isa umtary matrxx Then Q*Q’ is skew hermltlan
giving n* different elements. Let A = U*Q’. Then there are apparent 2pn — p’
different values in A, but, in fact, there are only 2pn — p* — p random variables
in U*. Hence, we shall assume that the imaginary parts in the diagonal elements
of A (i.e. in aj; = aj;,1 + taj;.2 , the values of a;;5) can be determined in terms of
other elements of A. Now taking the dxfferentlal of X = (T, O)Q and using (2.2),
we get T'X* Q = (T7'T*0) + U*Q’. Hence, if W = T'X*Q’, G = T"'T*
and A = U*Q/,

J(X; T, U) = J(X* T U*) = J(X*; W)J(G; T*)J(A; U*)

and then using (2.3) forJ(X*; W), (2.5) for J(G; T*) and he(U) = J(A;U™),
we get the latter part of (2.6). Similarly the first part canbe established.
(2.7) Let U:p X n (n = p) be at least semi-unitary. Then

Jo8' 1 (V) dU = 11" [ -1 he(U) dU = [”"{Tp(n)} "
where h,(U) and he(U) are defined in (2.6).

1
[When U is real, fm} g(U) dU = qrirr i@ty {H i (n —-J+ 1)} ]

=1
Proor. Let X: p X n be a random complex matrix, satisfying
[exp (—tr XX') dX = 1™
Applying the first part on the transformation given in (2.6), we get
2* [z TL; (577°") exp [—tr TT) dT [ ugr—1 u(U) dU = TI*".

First, noting tr TT = DRI (e tae) + DoPy t3;, and then, in-
tegrating over T, we get the first part of (2.7). Similarly, the second part can be
proved.
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(2.8) The Jacobian of the transformation S = HRH', where

Su Su Rll R12
S = . :pXp and R = , pXp
Sl2 S22 Rlz R22

are hermitian positive (semi-) definite matrices of rank ( <p) in random’vari-
ables, Sy; : 7 X r nonsingular and Sy2 : 7 X (p — r), and Ry, : 7 X r nonsingular
andRy :7 X (p —r),and B = (H,' H,') is a non-singular matrix with H; :r X p,
is ’

J(S;R) = [HRE/ |7 HHA'"/|Ru|*"™.

[When S, R and H are real matrices and S and R are symmetric, then, J(S; R) =
’HIRHl,lé(p—r)IHIT+I/|R11I%(1’—T)-]

Proor. Since Sy : 7 X rand Ry, : 7 X 7 are hermitian positive definite, let us
write Sy = T,T, and Ry, = TsT; where Ty :7 X r and Ts : r X r are lower
triangular matrices with positive and real diagonal elements. Let Sz = T, T¢
and Ry = T3T,. Then S = HRH' becomes

T1 T3
(Tll Tzl) =H (Tsl T4I)ﬁ,-
T, T,

Hence, we make the following successive transformations: Sy = TyT{, S =
T]Tzl, X1 = TlUl, X2 = T2U1, (X1 5 Xz) = H(Y] Yz), Y1 = T3U2, Y3 = T4U2,
TsTs = Ry, TsT, = Rpand U, = UU;, where U; : 7 X rand Uy : 7 X r are
random unitary matrices, while U: r X 7 is a unitary matrix. Hence

J(S;R) = J(Su ; T1)J(Sue ; To)J(Ty, To, Up; Xy, Xo) (X1, X2 3 Y1, Vo)
J(Y1, Yz ; Ts, Ta, Up)J(Ts ; Ru)J (T4 ; Rie)J (Us ; Uy).

Applying J(Sy ; T1) = 27 [[G=1 5527 (see Goodman [4]), (2.3) and (2.6),
we get

(2.8.1) J(S; R) = HHE||HRH,|"” |Ru| " "hy(Us){h(U1)} "V (U, ; Uy).
Now, we note that U, = UUy, i.e. A, = UA U’ if A, = U,*0, and A, = U,*0/.
Since A; and A, are skew-hermitian random matrices, we get iA; and #A; the
hermitian random matrices. With this notation,
J(Uz;Up) = J(U5; UY) = J(U,%; As)J (Az 5 AJ(Ar; ULY)
= {l(U2)} 7 {h(U1)}

for J(iA; ; 7A;) = 1, (see Goodman [4]).

Using (2.8.2) in (2.8.1), we get (2.8).

(2.9) The Jacobian of the transformation S = UD,U’, where S is a hermitian
positive definite, D, is a diagonal matrix with real and distinct diagonal ele-

(2.8.2)
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ments and U is a unitary matrix with real diagonal elements, is
J(S; U, Dy) = JIE TT 71 (07 — N)’Re(U).
[If S and U are real matrices, then J(S; Dy, U) = T2 TT =41 I\ — Melg(U).]
Proor. Taking differential of S, we get U'S*U = U'U*D, + D\* + D,U"*U.

Let A" = U'U* = —A for A is a skew-hermitian matrix, and W = U'S*U.
Then

D)\ A — AD)\ + D)\* or wj1 = )\j*,
(2.9.1)
Wik, ¢ = ()\j— )x;c)a,-k,t for t = 1,2 and P §]> k= 1,2, et ,P— 1.
Now,
J(S; U, D)) = J(S*; U* D)) = J(S* W)J(W; A, D,¥)J(A; U¥)
= J(W; A, D\ha(U) = [TTE e (v — N)TRe(U).

3. Maximum likelihood estimates of certain complex matrices.

(8.1) Point estimation. Let S: p X n be a complex random matrix whose density
function is

(3.1.1) L = CN(Z; yM, =),

where X: p X pis hpd, u: p X ¢ is a complex matrix and M: ¢ X n is either a
given complex matrix of rank ¢( =n), or has a distribution, not depending on
the parameters £ and u. To derive the maximum likelihood estimates of £ and
u, with the help of (2.2), we note that

512) (log L)* = —n tr (Z7'=*) + tr [E(Z — yM)(Z — gM)'=7'=%|
(3.1 + 2 RP. {tr [Z7(Z — «M)M's""]},

where R.P. () = real part of (-).
Moreover, we note that if £ = X, + 1S and y = w + <y, then

(3.1.3a) d log L/dcj... = coefficient of o} in (log L)*;
j)k = 1?27 e, Pyt = 172
=0forj =Fkandt = 2

and
J= L2,---,p
(3130) LB = coefficient of wh.in (log 1); { % = 1,2, ¢ and
Hik.t t=1,2
Hence if

dlog L dlog L > dlog L (6 log L)
N = j = ) =1,2),
(3.14) > ( Gory and 7. ns ) (t )
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where ¢;; = 1if 7 = kand = 1if j # k, then from (3.1.2), we get
dlogL 7I.alogL

(3.1.5a) o Fronle =2 NZ — yM)(Z = M)z — nx™
and
(3.1.5b) dlog L , jologL _ o1z _ yM)i',
ow o
From (3.1.5), we get the maximum likelihood estimates of y and = as
(3.1.6a) g = ZM'(MM')™*
and

(3.1.6b) ¢ = n'[ZZ — g(MM')§] = n7'Z[I — M'(MM')"M|Z".
It is easy to verify that (3.1.1) is equivalent to
(317) L = I ™% ™ exp [—ntr T4 — tr 2(3 — w)(MM)(3 — u)]

and so applying (2.4) for ZZ' and § = ZM'(MM’)™, we can easily verify
that B and ny are independently distributed, the distribution of ni is
CW(ni; p, n — g, £) and 3 has the density function

(3.1.8) T™E[MM')” exp [—tr ='(8 — w)MM)E — ¥l

(8.2) Likelihood ratio statistic. To test the null hypothesis Ho(u = 0) against
H(u # 0), we apply likelihood ratio method. Here we have first to determine
the maximum value of L under H, (denoted as maxy, L) and under H (i.e.

maxy L).
It is easy to verify by the technique given in (3.1) that

(3.2.1) (maxy, L) = I ™"|n " (ZZ")[ ™" exp (—np)
and

(3.2.2) (maxy L) = I ™4 " exp (—np).
Hence,

(323) A = {(maxg, L)/(maxs L)' = [}/ + n~"6(MM)F|.
The likelihood ratio criterion gives us the critical region

(3.2.4) A<\,

where Pr (A £ N | Hy) = a. The distribution of A under H, and that for the
large values of n are given in Sections (5.2) and (5.3). Since (3.2.4) is parallel to
the likelihood ratio criterion for real Gaussian variables, we give below two other
parallel critical regions:

(3.2.5) £ =n"tr (BMM)BYY > N
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and
(3.2.6) n = max ch root of {n'g(MM" B¢} > X,

where Pr (§ > N | Hy) = Pr (n > X\ | Ho) = a. The joint distribution of the
characteristic roots of n 'g(MM )’y are given in Section 7. It may be noted
that whengq = 1, £ = 9 = (1 — A)/A is distributed as non-central beta of second
kind (p, n — 1) with (MM')n™" @' = 'u as the non-central parameter (refer to
Section 5). Section 6 deals with the distribution 3(MM’)g’".

(3.3) Let us write g = (w w), M’ = (M, M,') and

(A Ay
A=MM = ,
A12 A22

where w1 :p X i, w:2 X @2, 2 =q¢— @, Mi:p X q1,M2:p X ¢z, Ar :
g1 X q1, Az i1 X gz and Ay : g2 X g2 . Here, we consider the null hypothesis
Hy(w: = 0) against the alternative H(u; ¢ 0). As before, we obtain

(3.3.1) (maxg, L) = I 7" |n | ™ exp (—np),

where ¥, = 1 [ZZ" — Bs0AnB2.0, Bro = ZM'A%. Now if
B0 = (ZM) — Bo0A1)AT:,

then E(B1,0) = w and

(3.3.2) Yo = & + 77 B1oAnsB1o,

where ¢ is defined in (3.1.6b) and Ay, = Ay — ApAs AL, .
Hence the critical region for the likelihood ratio criterion is

(3.3.3) A= [/ + n_lgl,oAu.zE;.ol < A,

where Pr (A; < N\ | Hy) = a. This is parallel to real variates given by Anderson
(f1], p. 211). The other two criteria are

(3.34) & = tr [BroAudBro(nd) ] > A
and
(3.3.5) n = max ch root of [B1,6A1.281.0(n) "] > N,

where Pr (El > Ae l Ho) = Pr (111 > )\3 l Ho) = «.
Under the null hypothesis, the distributions of A;, £ and #; are the same as
those of A, ¢ and 4 of Section (3.2) by changing ¢ to ¢; .

4. Non-central complex Wishart distribution.
(4.1) Let Z: p X n, a complex random matrix, have a density function,

(4.1.1) CN(Z; u, =),

where £:p X pis hpd and y: p X n is of rank { £ p = n. Since the rank of
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= 'wis ¢, we can find U: p X ¢, a semi-unitary matrix and V:n X n, & unitary
matrix such that

(4.1.2) =7y = U(Dy0)V andso T 'wg'=™' = UDUT,

where D, : ¢t X ¢ is a diagonal matrix with real diagonal elements.

Under the above conditions we are interested in deriving the distribution of
ZZ' = S:p X p. Let Z = YV. Then the Jacobian of the transformation is one
and YY = ZZ' = S. Now, we apply (2.4) for getting the joint distribution of
S = YY' and X, = (I,0)Y and then integrating over X;, we get the density
function of S as

T |2[™{Tp(n — 1)}7[ |8 — X.X,/["7
cexp [—tr E7(S + w@) + 2 R.P. tr UD\X,] dX;,

where S is hpd and integration over X; is such that S — X,X,' is hpd. Note that
we have used the condition n = p + ¢, but when X; : p X ¢ will be completely
integrated, then we shall only require the condition n = p. Since S'UD, is of
rank ¢, we can find two unitary matrices U; : p X p and V; : ¢ X ¢ such that

(4.1.3)

D,
(4.14) S'UD, = U1< >V1,

0
where D, : ¢ X t is a diagonal matrix with real diagonal elements w; (j =
1,2, .-+, t) and w,” are the nonzero ch roots of (X 'y =""S). Let in (4.1.3),

X' =V.X/S7'U,. Then (4.1.3) can be rewritten as
I 22 ™p(n — ¢)}7S|" P exp (—tr 'S — tr = 'u@')
L, — XX'[""? exp [2 R.P. tr (D,X')] dX,

where S is hpd, tr (D,X") means D i (DLX),;, and X: p X ¢ is integrated
with the condition that I, — XX is hpd. (4.1.5) can be simplified, but we are
not interested at this stage.

(4.1.5)

Particular cases
When ¢ = 0, we have the distribution of S = ZZ’ as

(4.1.6) CW(S;p, n, £)dS,

where S is hpd.
When ¢t = 1, we have the dlstnbutlon of S = ZZ' as follows:

(4.1.7) CW(S; p, n, ) exp (—a)D im0 a’T(n)/{j!T(n + 7)} dS,

where a; = tr (W= 'SZ'u), a = tr (@2 ') and S is hpd.
(4.2) We give below the moments of |S| only for { = O and ¢ = 1. When ¢ = 0,

(4.2.1) E|S|" = |2 Ty(n 4+ r)/Tp(n) for r =0,1,2, ---.
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When ¢t = 1,
E|S|" = |E|'Ty(n + r){Ty(n)}™

-exp (—a) 2 im0 o&'T(n + 1 4+ j)T(n)/{j! T(n + r)T(p + j)},
where & = tr (@' 'w)andr = 0,1,2, --- .

(4.2.2)

6. Non-central complex multivariate Beta distribution.

(6.1) Let the joint density function of complex random matrices X: p X ¢ and
S:p X pbe
(5.1.1) CNX; u, Z)CW(S;p, n, X).
In this section, we shall obtain the distribution R = X'S™X when (i) ¢ < p
and (ii) ¢ > p.

(i) Let us consider first ¢ £ p. Using the transformation Y = 27X and S, =
=7S27¥ we get the joint density function of Y and S; as

(5.1.2) CN(Y;v, I)CW(S: ; p, n, I),

wherev = T 'yandR = X'S7'X = ¥'S,7'Y. Since ¢ < P, YYishpdand Y(Y'Y)?
= A; :p X ¢ is semi-unitary. Hence, we canhave A = (A; A;):p X pa unitary
matrix. Then

(5.1.3) R = YA[A'SA]A'Y = (YY)'615(YY)},

Gll Gl2 -
G=|_, = A'SA
GIZ GZZ

and Gy = (G — G’12G2_21§;2)5 g X g. Now
J(S;R, G1,6n) =J(S;6)J(Gu ;G12)J (612 ;R) =J(Gra;R) = [TY|IR[™

with the help of Giz = ——(-Y_'Y)%R—IR*R_I(?'Y)* and (2.8). Integrating over
Gy and Gy, we get the joint density function of Y and R as

H_P‘I{Pq(n + q — p)}—ll?’Y|n+q—PlR|—(n+2q—p)
-exp [—tr {(¥ — v) (Y — v) — YYRT}].

Using the transformation Z = Y(I' + R™'): p X ¢, the Jacobian is
J(Y;Z) = I + R7Y™” and integrating over Z, we get the density function of
Ras

where

(5.1.4)

(5 1.5) {Pq(n +q— p)}_1|R|p~q|I + Rl_("+q)
. -exp [—tr {#27w(I + R)1BZ'Z 7,
where R is hpd and

(5.1.6) EZ'Z|™*? = [|Z'Z|""""CN(Z:p X ¢;v(I+ R} 1) dzZ.
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With the help of (5.1.5), we can obtain the density function of
V=X +XX)"'X=1—-T+R)",
for J(R; V) = |I — V|™ as
(T(n + ¢ — P}V IL — V"7
-exp [—tr {#=7w(I — V)}IE|Z'Z|" ",
where Vand I — V are hpd and E|Z'Z|""*” is the same as (5.1.6) by substituting
v(I + R™H™ py Wi
In particular, with the help of (4.2.2), we shall only write explicitly the density
function of R in the linear case as
[To(n 4 p)/{To(P)To(n + ¢ — p)HIR[”IL + R[™"H
(5.1.8) cexp [—tr (§27w)] 250 [tr {#=w(T+ RT) T
‘T(n + ¢+ 7)T(p)/{7' T(n + ¢)T(p + j)}.
(ii) Let ¢ > p. Here the rank of R = X'S7'X = ¥'S, 'Y is p. Let

<R11 Rl?)

R =

R Ry

have Ry :p X pand Ry :p X (¢ — p) as random elements, and Ry, = RiRiRy: .
Let Y = (Y; Y:) where Y; : p X p is non-singular and Y, : p X (¢ — p). We use
the transformation Ry; = ¥,'S;”'Y; and Ry; = Y,'S;'Y, when Y, is fixed. The
Jacobian of the transformation isJ(S;, Y2 ; Ry, Riz) = J (Y2 ; Ri2)J(S; ;Ry) =
|, Ru|*% Moreover, we note that (I + Ryt + Rii'RuR1Ri)™ = Ry —
(RuRy)(I+ R) 'Ry Rm)’. Then it can be shown that the density function of
Rforg > pis

H—p(q—p){Fp(n)}—llRu’p—qu + Rl—(n+q?
-exp [—tr {#'='w(I + R)E|Z'Z|"",

(5.1.7)

(5.1.9)

where Ry, is hpd and
(5.1.10) EZ'Z"™" = [|Z'Z|""""CN(Z:p X p; 5, 1)dZ,

with 4
I Ry i
o= _, Ru — (RuRp)(I+ R)_l _, .
RiRy Rp

We note that
(5.1.11) % = vR(I +R)% =v(I+ R)'RY

or the nonzero ch roots of 8% are the nonzero ch roots of [@'='wuR(I 4+ R)™'.
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For the distribution of V, the Jacobian of the transformation V=1 — (I + R)™
= X'(S + XX)7'X = Y'(S; + YY) 'Y is complicated. Hence, we transform
S; + YY' = S, and then apply the same technique used for the distribution of
R for ¢ > p. Finally, we shall get the density function of V as follows:

H—p(q—p) { Fp(n ) } —llvulp—qll _ V|n-p

(5.1.12) o _,
-exp [—tr {#'X7'u(I — V)}IE|Z'Z[**7,

V]l V12 —
where V. = . ,Vi:p X pishpd, Voo = Vi2Vi1Vi, I — V is hpd and
V12 V22

I
E|Z'Z|™7" is the same as (5.1.10) after substituting  for v( ) >Vi1,
Vi Vi
V12 ip X (p --q)
Comparing the distribution of (5.1.12) and (5.1.9), we can write down the

Jacobian of the transformationV = I — (I + R)™' as

(5.1.13) J(R;V) = |[Ry|* L = V|79V ¢ = I — V|7
for [Ru| = [Vu|[I — V|™". (Note that this is the same expression when R is non-
singular. )

[When R and V are real matrices, J(R; V) = |I — V|7%"]

When the rank of u is one, with the help of (4.2.2) one can obtain easily the
density functions of R and V from (5.1.9) and (5.1.12) respectively.

(5.2) To establish the distribution of A = |S|/|S + XX'| = I —V| = I+ R|7,
where S,V, R and X are defined in (5.1).

For a linear case, (i.e. rank of u is one), it is easy to verify from (5.1.8) [and
from (5.1.9)] that

E(A) = E(JL + V™)
= [{Ty(n + @)Tp(n + r}/{T(n)Ty(n + ¢ + 7)}]
cexp (—a) 25 aT(n + g+ ))T(n +q+ 1)/
T+ T(n 4+ ¢ +r + )},

where a = tr (2’2 7'u) and 7 = maximum (p, q).

Let 21, @2, + -+, z, be independent real Beta variates with the density func-
tions given by

fCI j 2) 37 ot b p

(5.2.1)

and

(5.2.3) exp(—a) D pmo [T(n + q+ k)/{k!T(¢)T(n + )} ™1 — 2)7
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Then it is easy to verify that

(5.2.4) EQ) = I B()) = B(JT- =)
Hence the distribution of A is the same as the product of p independent real
Beta variates z; (j = 1,2, -+, p) given by (5.2.2) and (5.2.3).

When u = 0, the above results remain valid.
(5.3) An asymptotic distribution of A. Let us consider a general expression

wy _ T P(n+p1+nh—j+I)P(n+272—j+1)}
(63.1). B(A )_H{I‘(n+pz+nh—j+1)r‘(n+px—j+1) !

=1
where p; = p;. Then using the result given by Anderson ([1], (23), p. 207) for
large values of n, it can be shown that

Pr(—mlog A = &)
=Pr (x/' £ &) + ron”"[Pr (xjss £ £) — Pr (x" £ O] + 0(m™),
where m = 2n + p1 + p2 — p, f = 2(p: — p1)p and
r = p(p: — p)IP° + (P2 — p1)° — 21/3.

Hence for the first approximation, we get

(5.3.2)

—m Log A will be distributed asymptotically as x° with

(53.3) f degrees of freedom where m = 2n + p; + p1 — p and

f = 2p(p: — p1). We note that in (6.2), p. = ¢,pr =0and p = p.

6. Distribution of s.s. and s.p. matrix due to regression coefficients.

(6.1) Let the distribution of Z: p X n (a complex random matrix) be given
by (3.1.1) and the distribution of 3 = ZM'(MM’)™, the maximum likelihood
estimate of u called a regression matrix of Z on M, is given by (3.1.8). The s.s.
and s.p. matrix due to wis B = (MM’) 8’. In this section we shall obtain the
distribution of B when M: ¢ X n is fixed. Since MM’ is hpd, we can write it as
MM’ = [(MM')}’, where (MM’)! is hermitian. Then the distribution of
B(MM') = X:p X ¢is
(6.1.1) I %Y= exp [—tr (X — v)(X = v)] dX,
where v = w(MM')}, and B = XX'. When ¢ = p, the distribution of B is non-
central Wishart which is considered in Section 4. When ¢ < p, then the distribu-
tion of B will be called a complex pseudo-Wishart.

(6.2) Now let us suppose that M: ¢ X n given in (3.1.1) is distributed as

(6.2.1) I, ™ exp (—tr £, MM') dM.

Using the distribution of M in (3.1.8), we use (2.4) and obtain the joint distribu-
tion of (MM’) and . Then integrating over (MM'), we obtain the distribution
of § as

(6.2.2) I |Ef7E[7{Ty(n + p)}HTe(n)} I+ E7(8 — w)Z2(B — w) [ dg.
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If the rank of y is ¢ and w;”’s are the nonzero ch roots of (£ 'yMM's'=7B),
then the joint density function M and B: p X p is

275|727 Ty(g — ¢)}7'/B|*” exp (—tr ='B)
(6.2.3) cexp [—tr (2,7 + 8= 'u) MM [ g I, — XX/[TF77
-exp (2 R.P. tr D,X') dX.

When ¢ = 0 the density function of B is CW(B; p, ¢q, ).
For ¢t = 1, we integrate over M and get the density function of B as

{To()} E[YT + = uZa@’|"|B|*? exp (—tr £7'B)
- 2o [tr (T + =7p=ap) T2 wm@ =B (T (9){T(g + 5)} 7

7. Distribution of the ch roots of certain hermitian matrices.

(7.1) Let the joint distribution of complex random matrices X: p X ¢ and
S:p X p be given by (5.1.1). We note that the ch roots of [S™*(XX')] are equal to
corresponding ch roots of [S; " (YY )] where Y and S; have the joint density func-
tion given by (5.1.2). Moreover, when ¢ < p, we have shown in (5.1) that the
distribution of R = X'S™X is the same as that of R = (Y'Y)'G13(Y'Y)?, where
Y:p X ¢ and G;.2: ¢ X ¢ are independent having respective density functions
CN(Y;v,I)and CW (G ;q,n + g — p, I). The nonzero ch roots of (S7'XX') are
the same as the ch roots of R when ¢ = p. Now when ¢ = p, the ch roots of
[ST'XX’] are the same as those of T = (YY)*S,™(YY')? where Y: p X ¢ and
S: : p X p are independent having respective density functions CN(Y; v, I) and
CW(S:1; p, n, I). Now the form of the statistics R and T are similar. Hence, if
we know the distribution of the ch roots of T when ¢ = p, we can easily write
down the distribution of the ch roots of R when ¢ < p, by making the substitu-
tion

(7.1.1) (p, ¢, n) — (¢, p,n + g — p).

We may compare the result (7.1.1) with that mentioned by Roy ([7], p. 46)
for real variates.

Hence, we shall only consider the case when ¢ = p. For simplicity of the results,
we shall consider w = 0. In this case the density function of T: p X p can be
written as

(7.1.2) [To(n + ¢)/{Tp(n)T,(g)}|T|*?T + T~ 2.

Let us transform T by the relation T = UD,0’ where U: p X p is a unitary
matrix with real diagonal elements and D, is a diagonal matrix with ¢; > 0, real
and distinct which are the ch roots of [S™(XX')] (or T). By (2.9), the Jacobian
of the transformaton J(R; U, D,) = ho(U)[[25 ] %441 (05 — @)’]. Using this
in (7.1.1) and integrating over U with the help of (2.7), we get the joint density
function of 0 £ o1 £ e £ -+ £ ¢, < @ as

(7.1.3) I T7=le (1 + o)) NI Tt (05 — @),

(6.2.4)



112 C. G. KHATRI

where .
¢c=JIEln+qg—j+1
(7.1.4) HJ 1[I( q—) )/ . .
{T(n =7+ T(p —j + 1)I'(g — j + 1)}].
For ¢ = p, the joint density function of the ch roots of [XX'(S + XX')™,
which are f; = ¢;/(1 + ¢;) forj = 1,2, - -+, p, is given by
(7.1.5) TP 177770 — £)" " NITES T v (65 — £0)7,

where 0 = f; £ --- £ f, £ 1, and c is defined in (7.1.4).

We may compare the above results with those given by Roy ([7], p. 35) or
Anderson ([1], p. 318) for real Gaussian variates.

If the distribution of a complex random matrix X: p X q is given by

(7.1.6) CN(X;0,1I)dX,
then the joint density function of 0 < ¢y = ¢» < --- = ¢, £ 1, the ch roots of
XX’ (when ¢ = p), is given by

(7T —j + O —j + DITTIZ 1wx" " exp (—¢;)]

(7.1.7)
2 T e (0 — )

It may be interesting to note that if we put \; = ng; in (7.1.3) [or \; = nf;in
(7.1.5)] and then take limit as n — <, it is easy to see that the asymptotic dis-
tribution of \, (j = 1,2, - - -, ¢) is the same as that given in (7.1.7) by substitut-
ing \; for ¢; .

(7.2) Let S: (p + q) X (p + ¢), a random hpd matrix, be distributed as

(7.2.1) {Tpra(n)} = 7"S|" " %exp (— tr £7'S) dS.
Let us partition the matrices S and = as follows:
Su S\ p Zn X2\ P
(7.2.2) S=1_ , z = )
Slz 822 q 12 oo q
14 q p q
and let £i10 = =y — Zp¥as 212 . It can be verified that
0 0 )
(7.2.3) =7 = =+ ' _ DRy 2(1 — X 22—21)-
0 = T Eny

Then the joint density function of Sy = Sy —81282_21S;2, X = 8,,S5 and
Sa is written as

(7 9 4) {Fp+q(n)}~1|z|—nlsll.2ln—p—q|s22|n+p_q exp (— tr 2:1—11.25112)
- cexp [— tr 2re(X — u)Su(X — u)’ — tr =5 Su),

where u = =15 . From (7.2.4), it is easy to see that Sy » and a joint function
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of X and S, are 1ndependently distributed. Using section (6.2), we can obtain the
distribution of B = 81282—21812 = XS;X' when p £ ¢ £ n. When the rank of u is
one, we can write down the explicit density function of B with the help of (6.2.4)
as

{Tp(g)} 7T — 211212222212| [Z1e YB|" " exp (— tr EngB)

7.2.5)
( Z:—o [tr (211 19 vy 212211 B )N (nﬂ—l)r((I){F(q + )

In the special case, let p = 1. Then Sy.» and B are scaler quantities. Using the
distribution of Sy, from (7.2.4) and the distribution of B from (7.2.5), we get
the distribution of » = B/(Su.: + B) [which is defined by Goodman [4] as
multiple coherence] as

(1= (1 =y

7.2.6 o .
(7:20) 2250 )’ ("TOT(n + §)/T(g + )T (n — v),

where { = 12X, 2;2/ 2.

For the distribution of the ch roots of (St sS:1:Sq; 1Sm) = P, it may be noted as
(7.1.1) that if we know the distribution of the ch roots of P for p < ¢ < n, we
can write down the distribution of the nonzero ch roots of P for p = ¢ by sub-
stituting

(7.2.7) (g, m — q) = (g, p,n — p).

For the case p < ¢ < nand =, = 0, using (7.2.4) it can be shown as in section
(7.1), the joint density function of 0 < ¢; < ¢p2 =< -+ = ¢, < » (¢;’s the ch
roots of P) is the same as (7.1.3) by replacing n by n — g¢.

Now let S and X be partitioned in three rows and three columns as

Su S S5\ @ Zn Zp2 T\ a

(728) S = g;g Sse Sis]b and =T = E;z X9 o3 | b y
gis §;3 Sss/ ¢ Eia .‘5;3 Z3/ ¢
a b c a b c

where a +b+c=p+q Let T35 = X — u]3233uk3 and Sj3 = S;p —
S;:S5s Sis (3, k = 1, 2). Let us transform S;;, Si2 and Sg respectively to Si s |
Si23and Sy s . Then for integration over Si;, Sy; and Sy, we use the inverse of
= similar to one mentioned in (7.2.3), and thus we arrive at the joint density
function of Sj1.3, Si2.3 and Sy ;3 as follows:

(7.2.9) {Tap(n — )} 72 a "8 4" " exp (— tr £5'S4),

Zus Z103 Sus Sie3
X5 = and S = ) .

—_ —

X123 PILES Sia3 S

where
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Thus, we find that the distribution of the ch roots of S11sSu.s S22:512.5 can be
obtained from that of SiyS1:Sz S by substituting (p, ¢, n) — (a, b, n — ¢).
When @ = 1, we write down below the density function of r; =
S12.3S2_21.3§;2.3/ Su.s as

(7.2.10) 1= a5 (A — )
. Yo (Gara) (PN — ¢+ §)/T(b + HT(n — ¢ — b),

where ¢; = 212,322—21,3312,3/211,3 . We shall call r; as sample parital multiple co-
herence. When b = 1, r 3 is defined by Goodman [4] as partial coherence.
All the above results are comparable to those for real Gaussian variates.
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