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1. Introduction. Given a set of observations X, :--, X, from a common
distribution function F, it is natural in the absence of additional information to
estimate # by the usual empirical distribution function. However, one would not
use this estimator if there were at hand sufficient ¢ prior: information about the
distribution F, e.g., that F is a member of a given parameteric class such as the
normal. In this paper, we examine an intermediate case, the case that # is known
to have monotone failure rate. Using the idea of maximum likelihood, Grenander
[10] derives an estimator for F in the case of increasing failure rate which itself
has increasing failure rate. We discuss this case and also obtain estimators in the
case of decreasing failure rate. We show that these estimators are consistent.

2. Properties of IFR distributions, and formulation of the problem. The failure
rate (or hazard rate) r of a distribution F having derivative fis defined by r(z) =
f(x)/[1 — F(a)], for F(x) < 1. It is easy to verify that if r is increasing, then
R(z) = —log[l — F(x)]is convex on the support of F, an interval. (Throughout
this paper we write “increasing” for ‘“nondecreasing’” and ‘‘decreasing” for
“nonincreasing.”) Whether f exists or not, we say that F has increasing failure
rate (IFR) if the support of F is of the form [a, 8], — S a =B = «,andif R
is convex on [&, 8). The importance of the IFR property and its applications to
life testing and reliability are discussed in [3], [4].

If F is IFR and F(z) < 1, then F is absolutely continuous on (— «, 2z). To
see this, choose ¢ > 0 and points oy < B1 < a2 < B < ++* < am < Bn = 2
satisfying D1 (8; — a:) < ¢/r1(2), where r'(2) = lim; ;o [R(2 4 8) — R(2)]/s
exists finitely since R is convex. Then

5 IR(8) — Rla)] = ZEOI =B (5 o) <% B -

Thus R is absolutely continuous on (— «, z), and the result follows. Note, how-
ever, that F may have a jump at the right-hand endpoint of its interval of sup-
port. ‘

For convenience, if F is IFR we define r(xz) = o« for all  such that F(z) = 1.
Note that for any distribution F and any x for which r is finite on (— », z),
we have

(2.1) 1 — F(z) = exp [—R(z)] = exp [——f’iw r(2) dz].
Further properties of IFR distributions have been discussed in [2].
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Let § be the class of IFR distributions, and let X; £ X, < --- £ X, be ob-
tained by ordering a random sample from an unknown distribution F in &. It
is not possible to obtain a maximum likelihood estimator for F ¢ § directly by
maximizing ] f(X:), since for F ¢, f(X,) can be arbitrarily large. Con-
sequently, we first consider the subclass ¥ of distributions F in & with correspond-
ing failure rates bounded by M, obtaining sup r.g* H, f(X;) £ M". We shall see
that there is a unique distribution £, in " at which the supremum is attained.
These conventional maximum likelihood estimators F,* for & converge in
distribution as M — o« (i.e., as §* — &) to an estimator F, ¢ F which we call
mazimum likelthood for S. Furthermore the densrty f.M and failure rate #,"” of
F,” converge in a natural way to the density f, and failure rate #, (of the con-
tinuous part) of F, as is shown below in Section 3.

It is not difficult to see that the maximum likelihood estimator 7, for F defined
above coincides with the maximum likelihood estimator defined by Kiefer and
Wolfowitz [11], p. 893.

3. Derivation of the estimators. From (2.1) we obtain that the log likelihood
L = L(F) is given, for F ¢ ", by

(3.1) L= ‘; log r(X;) — ‘; '/_.Xir(z)dz.

L is maximized over ¥ by a distribution with failure rate constant between
observations, as shown by Grenander [10] as follows: Let ' ¢ ' have failure rate
r and let F* be the distribution with failure rate

r*(x) = 0, r < X,
(3.2) = r(X,), Xif2z< X, 1=12,---,n—1
= r(X,), z = X,.
Then F* ¢ 5, and r(z) = r*(z) so that — [Z&r(2) de £ — [Z& 7*(2) dz for all
i; we conclude that L(F) < L(F*). Thus, we may replace L by the function
(3.3) 2ilog r(X:) — 207N (n — ) (Xin — Xir(Xo).

The maximization of (3.3) subject to r(X;) < -+ = r(X,) = M is performed
in [10]; it can also be performed as a direct application of [7], Corollary 2.1 and
the discussion following (see also [13] [14]). This yields for r (corresponding to
F ¢ F") the estimator

(3.4) #M(X,) = min (min, s max,<; {1/(0 — ) + -+ 4 2]} ™ M)
where r, = M and
(3.5) rp=[(n — ) (X — X)) forj=1,2--,n—1

The estimator #, given in (3.4) differs in form from the one given in [10] but
is equivalent to it. We will use the form given in (3.4) to establish consistency.
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The maximization procedure which yields (3.4) may be described as follows.
First, find the maximum of (3.3) obtaining (3.5). If there is a reversal, say
7 > 741, then set 7(X;) = r(X 1) in (3.3) and repeat the procedure. After, at
most, n steps of this kind, a monotone estimator is obtained. The maximum
derived with r(X;) = r(X.yu) can be directly obtained by replacing 7, and 7,
by their harmonic mean, (r;* + 7741)~. Succeeding steps amount to further
such averaging which is extended just to the point necessary to eliminate all
reversals. It can be seen that this is exactly what is called for in (3.4) taking into
account #(z) < M. (In this connection, see also [1], [6].) The resulting estimator
72 is of the form

.7 () = 0, z < X
= min (Png41my,, , M), XomE 2 < Xojin
= M, z 2 X,
where rin, = Tagtimg = 0 = Tagptn-1, 0 = < < -0 <y < n— 1,

and 74,41,n,,, is the harmonic mean of 74,41, Tay42, **+, Tn;y, - The n, are de-
termined by the rule which determines the extent of the averaging.

The estimator for r corresponding to F ¢ & is obtained by letting M — « in
(3.4), and is given by

Ffo(X:) = min, zepmax, <i [v — u|[(n — u)(Xup — Xo)
e (v — v+ I)(X, — X))

i=1,2 ---,n — 1and #,(X,) = «<. For the remaining values of z, #,(x) is
determined by (3.2) with #, replacing r and r*. The corresponding estimators
F, and f, for F and f are obtained from 7, using (2.1) and the relation f,(z) =
Po(2)[1 — Fa(z)].

It is of interest to note that the estimator 7, can also be written in the form

(3.7) #a(2) = infry) 3 rat@ SUPFa<ra) [Fa(v) — Fa(w)l/[ull — Fa(y)] dy,

where F, is the empirical distribution. Similarly, since r is increasing, r(z) is
given by (3.7) with F replacing ', . Note that the infimum of (3.7) may be taken
over the set v = z, but the supremum may be taken over ¥ < z only if 2 = X,
for some ¢ (in the corresponding formula for r with F replacing F,, , F(u) < F(x)
can without restriction be replaced by u < z). It may be possible to demonstrate
consistency of the maximum likelihood estimate of F using (3.7) and the Gli-
venko-Cantelli theorem.
It is easily seen from (3.6) or (3.7) that

(3.8) [7‘“n(Xi)]_1 = Supyzip infugi fo(v) — e(u)l/(v — wu),

where ¢(j) = nf3? (1 — Fa(z)] dz. Let ¢* be the convex minorant of ¢ (i.e.,
¢* is the supremum of convex functions which at each j do not exceed ¢(j)).
Then as shown in [10], [7(z)]™" is the right-hand derivative of ¢* at z. This repre-

(3.6)
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sentation may be of some importance for computation, since ¢* is easily ob-
tained graphically from ¢.

4. Consistency. It can be verified that the regularity conditions of [11] are
satisfied for the family & (though they are violated for &). Thusfrom the results
of [11], it follows that F,(t) is a consistent estimator of F(¢) when F is in .
For fixed ¢ < B, choose M > r(t); then it follows that with probability one for
sufficiently large n, F,”(t) = F.(t). We conclude that #,(¢) is a consistent es-
timator of #(¢) when F is in &. Similar conclusions can also be obtained from the
results of [9]. However, rather than verify the regularity conditions, we choose to
give a direct proof of consistency. This direct proof can also be adapted to
the DFR case, where it is not clear that consistency can be demonstrated using
the results of [9] or [11].

TuEOREM 4.1. If r is increasing, then for every ty ,

(4.1) r(tp —) < lim inf 7#,(%) = lim sup #.(o) = r(to +)
with probability one.
Proor. The right-hand inequality is trivial if r(¢,) = 0 orr(fp + ) = = ; other-

wise, let &y > f satisfy 7(t1) < «, and let a;(n) + 1 be the index of the largest
observation =t;,j = 0, 1. Let Ni(n) and No(n) be defined by

Fa(te) = [Na(n) — Na(m)l[ 2232t (1 — ) (KXo — X7

Let Y = —[r(t)] " log [l — F(X)), so that P{Y > y} = P{1 — F(X) < ¢ "V}
= ¢ "% je., Y has an exponential distribution. Since the X are order statistics
from the distribution F, Y; = —[r(t)]”" log [l — F(X;)] are order statistics
from the exponential distribution, and (n — ¢)(Yiy1 — Y.) are independent,
identically distributed exponential random variables, with mean 1/7(¢;). Finally,

Vi — Yi = [r(t)]™ fxi“ r(z) de — [Zar(z) de]
= [Fr@)/r())de £ X — Xi, i S ai(n).

(4.2)

From (3.6) and (4.2), it follows that
Fa(to) < [m(n) — Ni(n)[ 21w (n — ) (X — X))

£ [m(n) — Nx(n)][Z‘ié(ﬁ‘fmm ~ 0)(Yo — Yi)I 7.

This implies that
[Fa(to)] ™ Z minjgagm [aa(n) — 17 20688 (0 — §)(Yisa — o).

Writing 7(4) = &, we have that
P{|min; caoem [aa(n) — 77 225851 (0 = €)(Yars — Yi) — ul| Z ¢

= P{|maXe,m-aom sk saml—F " 2i~1 (Zs — w)]| 2 ¢ = P(By),
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where B, = {MaXa,m-asm gk gamlk 2im1 (Zi — p)| Z €, Zi = Zi,a are in-
dependent exponentially distributed random variables with mean u and a.(n),
a;(n) are random variables depending on the Z; .

In order to conclude that lim sup #,() = (% -+ ) with probability one, we wish
to show that P{lim sup B,} = 0. For arbitrary § satisfying 0 < 26 < F(#) —
F(t), let A, = {|a;(n) — nF(;)] < n§, 7 = 1, 2}, so that P{lim sup 4,°} = 0
by the strong law of large numbers (A4,° is the complement of A4,). Thus

P{lim sup B,} = P{lim sup A, n B,} + P{lim sup 4,° n B}
- = P{lim sup 4. n B,}.

Therefore, by the Borel-Cantelli lemma, we can conclude P{lim sup B.} = 0,
by showing 2 P{A, n B,} < . To do this, we use the following generalized
form of the H4jek-Rényi inequality, obtained with an obvious change of variables
from (2.6) of [5]: If Wy, .-+, W, are random variables such that EW, = 0,
EW,| Wy, -+, Wiy) =0ae,i=2,38 --,mr=landeag = - 2 e,
then

P{max;cicm | W1 + -+ + Wi = 1}
SGEWi+ - + W + Do EWY .

From this inequality (in our case, the W; are independent exponential random
variables) and with 6; = F(&;) — F(&) — 25, 6, = & + F(t), it follows that

P{A, 0 B} £ P{maxus,cicns; |(ke) " 20 (Zi — p)| 2 1}
< (o) B2 (Zs — p)* + iRl ina (ke)' EZS
< (nbie) *3u'nb(nh; + 2) + Q'n( — 6,)(no + 1)~

Thus, it is clear that ), P{4, n B,} < «. A similar proof yields the left-hand
inequality. |

COROLLARY 4.2. If r is increasing, then for all t, lim,.., Fn(t) = F(t) with
probability one.

Proor. It is sufficient to prove the theorem for ¢ satisfying F(¢) < 1, in which
case F,(t) < 1 for sufficiently large n. By Theorem 4.1, lim,.. #2(2) = r(z)
except possibly for z in a set of Lebesgue measure zero. For z ¢ [z, t], z > — o,
#.(z) < o, and by the Lebesgue dominated convergence theorem,

i, [&Fa(2) dz = [L7(2) de
with probability one. Then, by (2.1),

1— F.(t) _1—F(t)
1— F.(z) 1—F(x)

If we knew that F(x) = O for some z > — o, this would complete the proof.

(4.3) limy-se with probability one.
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In order to obtain an upper bound for [Z,, #,(z) dz, we first note that
Fattmis = [+ 1) = (e + Dl = (n + 1)) (Xnis)
+ o+ (= ) (X — XniH)]—l
= [(ipn + 1) — (e + D7 — 1) (Xngse — Xupi1)
+ ot (0= ) (Xt — Xagy)l™
= (i1 — M)/ (0 — Ni1) (Xngy, — Xagt)-

Let & = k(n) be the index of the largest observation not greater than z; if X
is in [Xn,41, Xn;,,+1), We obtain by (3.6),

Farimisn = [(B+ 1) — (n; + 1)]
Tn = (n + 1)) (Xujp2 — Xujr) + -+ + (0= &) (Xpps — X))
<k — nll(n — k) (Xisr — Xajg)] -
From these estimates, it follows that
(2w talz) dz £ 22020 Fapiting(Xnisyrir — Xngi1)
+ Fojrrmg (KXo — Xojp1) S k/(n — k).
If0 < e < 1 and z satisfies F(z) < ¢, then limk/(n — k) = F(z)/[1 — F(x)]
< ¢/(1 — €) < 2¢ with probability one, so that lim sup 2. #.(z) dz < 2¢, and
by (2.1), lim inf [1 — F.(2)] = ¢ = 1 — 2 This together with (4.3) completes

the proof.||
COROLLARY 4.3. If r is increasing and continuous on [a, b], then
(1) linyse SUP¢e(a,b] |’;'n(t) - T(t)l = 0,
(i) 1liMpaen SUP_wcicoo |[Fu(t) — F(8)] = 0,
(i) liMpse SUPeeraty [fa(t) — f()] = O,
each with probability one.
Proor. (i) and (ii) follow from the same methods as in the usual proof of the

Glivenko-Cantelli theorem. (iii) follows from (i), (ii), and the fact thatf(t) =
r()[1 — F()L

5. Comparison between 7,(f) and 7,(t). We shall show that with respect to
a certain metric #,(¢) is closer to r(¢) than is r,(¢), where

r.(t) =0 . for 0=2¢t< X,

I

5.1) {(n — ) (Xjp— X)) for X; 2t < Xpp,
' j=1,2--,n—1
= for X, 2t < .

Note that r,(¢) represents the ‘“unaveraged” estimate of the failure rate, i.e.,
the estimate that does not take into account the requirement that r(¢) be in-
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creasing. The result is similar to an inequality of [1], p. 644 and is really a special
case of the results of Brunk [8]. We give a simple proof for convenience and com-
pleteness, based on the following general result.

TuEOREM 5.1. Let h be nondecreasing, g be integrable with respect to the measure
, the discontinuities of h distinct from the points at which u places positive mass,
and §(z) = Sup,zzinfiz.fsg(0) du(0)/[u(t) — w(s)l. Then

(5.2) Jlg—rYduz [(G—h)idu+ [ (g — §) dp

Proor. It suffices to show f (§— h)(g — §) du = 0. The z-axis can be broken
up into single points and maximal intervals on each of which §(z) is constant.
At a single point z, §(z) = g(z). Let [a, b] be an interval, with §(z) = § on
[a, b]. Define G(z) = [Z.g(6) du(6). Then [o (§ — h(z))(g(x) — §) du(z) =
Je{G(@) — G(a) — §lu(z) — u(a)]} d{h(z) — §} = O, since [G(z) — G(a)l/
[u(zx) — p(a)] = infis, [G(t) — G(a)]/[#(t) — u(a)] = sups <o inf 5, [G(E) —
G())/[u(t) — u(s)] = g.l

Identifying h(¢) as #(t), g(t) as r.(¢), §(t) as #+(¢), and u(— =, {] as F,(1),
the usual empirical distribution, we obtain
TuroreM 5.2. With probability one,

JEa {ra(t) = (0} dFa(2)
= [T (Fa(t) — 1)) AFL(1) + [Z (ra(t) — #(0)} dF.(L).

Thus, in the sense made precise by (5.3), #,(¢) is closer to r(¢) than is r,(¢).

(5.3)

6. Decreasing failure rate. A distribution F is said to have decreasing failure
rate (DFR) if the support of # is of the form [, ©), @ > — «, and if
log [l — F(z)] is convex on [a, « ). Such distributions arise, e.g., as mixtures of
exponentials (see [12]).

If F is DFR then by an argument similar to that used in the IFR case, it is
absolutely continuous except possibly for a discontinuity at the point «. Thus,
the measure determined by F is absolutely continuous with respect to p, = 8, + 1,
where 8, places unit mass on {a} and ) is Lebesgue measure; we denote the density
of F with respect to u. by f, and again define the failure rate of F by r(x) =
f(z)/[1 — F(z—)). If F is DFR, we always take a version of f for which r is
decreasing in (a, = ).

Allowing for the fact that f is a density with respect to p. , we see that (2.1)
is replaced by

(6.1) 1 — F(z) = [1 — r(a)] exp [—[% r(z) dz].

Estimation in the DFR case parallels that in the IFR case, but with some
interesting differences. The first of these is that there are really two problems in
the DFR case, depending on whether or not the point « is known.

First consider the case that « is known and suppose « = X; = .-+ = X} <
Xy < -+ < X, (in case k = 0, we define Xy = «a). Using (6.1), f(z) =
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r(z)[1 — F(x—)] and the relations r(a) = f(a) = F(a-+), we write the log
likelihood in the form

klogr(a) + (n — k) log (1 — r(a)) + 2iaunlogr(X:) — 2w [3 r(2) d.

Maximization of the first two terms yields #,(a) = k/n = F(a+ ). Maximization
of the last two terms is quite analogous to that in the IFR case, and yields for
r the estimator #,(z) = #H(X,), X;au <2 =2 X;,i =k + 1, ---, n, where

#a(X:) = maX,»; Miny<i1 { (0 — w) 7 [(n — u)(Xupr — Xu) + -+

+ (n—-v4+ )X, - X2}

and Xo = ain case k = 0.

Contrary to the IFR case, this DFR estimator is not unique; it is determined
by the likelihood equation only for + < X, , and may be extended beyond X,
in any manner that preserves the DFR property.

Consider now the case that « is unknown, and assume for the moment that ¥
is absolutely continuous with respect to Lebesgue measure. If F is DFR on
[a, ©) for @ > Xi, then the likelihood A(F) = J[f(X:) = 0. If F isDFR
on [a, ©) for @ < X;, then A(F) < A(F) where F is defined by

F(z) = {F(z) — F(X)}/{1 — F(X1)}, 22X
=O, r < X;.

Thus the maximum likelihood estimator for « unknown is found among those
DFR distributions with support [X1, « ), and the problem reduces to the case
of known a.

The proof of consistency in the DFR case is similar to the proof in the IFR
case.

7. The discrete case. A related problem of interest occurs in the case that F
isdiscrete IFR. If F is a discrete distribution with mass p; at z;, ¢ = .-, —1,
0, 1, 2, --- and the z; are ordered increasingly, the ratio p; = p./ Z,_z Pi,
t=---,—1,0,1,2, ---, is called the (discrete) failure rate of F. If p, is in-
creasing, then F is sald to be “discrete IFR.” It is easily verified that p; =
ptH;;}‘w(l - pi)7i= R B 05 17 Tt

If a sample of n independent observations from F consists of m; occurrences
at x; , where for notational convenience, z = 1, 2, - - - , k, then the log likelihood
function is

L= 2%amlogp: = D izi{milog pi + (Mips + -+ 4+ m) log (1 — pi)}.
We wish to maximize L subject to o1 < p2 = -+ = o -
With proper identification, this problem is exactly the one solved in [1]. The

solution is obtained by averaging (through adding numerators and denominators)

the quantities
Pi* = 0, i < 1
(7.1) =mi/(mi+"'+mk); 7:=1721“'1k

=1, i>k,
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to eliminate any reversals p;* > pi1 . After sufficient averaging a set of increasing
estimates p1, - - - , pr are obtained which may be written as

(72) pi= minkgrgz’ maXs<s [ms + Meys + « -+ + mr]/25==r (m; + « -+ 4+ my).

The estimator given in Section 3 for the continuous case may be derived from
this as a limiting case. Consistency of the estimator (7.2) follows as in [1].

If p; is decreasing, then F' is said to be “discrete DFR.” In this case, maximum
likelihood estimators may be obtained and consistency proved using the same
method as in the discrete IFR case with obvious modifications.
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