INTEGRAL KERNELS AND INVARIANT MEASURES FOR MARKOFF
TRANSITION FUNCTIONS!

By J. FELDMAN
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1. Introduction. An important question concerning Markoff transition func-
tions is, when do they possess invariant measures? One aspect of this question is
the following: given a measure u, when will P possess a nontrivial invariant
measure ¢ > u? If infinite € is permitted, then the question becomes a more
difficult one.

Harris [4] showed that if u is a separable measure such that for each set A with
w(A) > 0 and every z, the probability of ultimately getting from x to A is one,
then there is a unique o-finite invariant measure ¢, and ¢ > . In [2], the present
author attempted to replace this by some sort of almost-everywhere type of
assumption (u-recurrence). The key point seemed to be to require that
> = 2""P™ consist partly of an integral operator (an assumption which was
an automatic consequence of Harris’s hypothesis). A theorem was proven there
for the more general case of u-conservative processes, but the assumptions were
stronger than necessary. Recently, R. Isaac [7] proved the existence of an in-
variant measure in the u-recurrent case, making much weaker assumptions about
the integral operator part. He was unable, however, to show the relation be-
tween u and the invariant measure.

In the present paper, we show under Isaac’s hypothesis that his invariant
measure is equivalent to Y n—2 "uwP (Theorem 4). Actually, a theorem is
proven for the more general u-conservative case (Corollary to Theorem 4), but
this turns out to be easy, for the following rather surprising reason. While in
general a up-conservative transition operator is some sort of integral average of
recurrent operators, the presence of a nontrivial integral operator part forces
this integral average to be a discrete direct sum (Corollary to Theorem 1). In the
process of showing Theorem 4, it proves convenient to find out more precisely
what the integral operator part of »_ 2 "P" is like. This is done in Theorem 2.

2. The p-nonsingular part of P. Let X be a o-algebra on a set X. Let P be a
subtransition function, i.e. a function on X x ¥ which is, for each z ¢ X, a non-
negative measure on ¥ of total mass <1, and for each 4 ¢ ¥, an ¥-measurable
function. P induces an operator on £, (%), by the rule Pf(z) = [ f(y)P(z, dy),
and also an operator on the nonnegative measures on %, by the rule

uP(A) = [ P(z, A)u(dy).
Let u be a fixed o-finite measure on ¥. Then P(z, - ) has a unique decomposition
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into nonnegative measures R(z, ) and S(z, ) with R(z, -) < wu and S(z, -)
L u. R will be called the u-nonsingular part of P.

Facr. In the event that the measure algebra of u is separable, then a simple
Martingale argument shows that there is a nonnegative real-valued function
pon X x X, measurable with respect to ¥ x ¥, (where ¥, denotes the u-comple-
tion of X) such that each p(z, - ) is a Radon-Nikodym derivative of B(z, - ) with
respect to u. The fact is originally due to Doob [1]. A function p with these
properties will be called a u-kernel for P. Observe that the map 2 — R(z, A) =
[40(z, y)u(dy) is X-measurable for each A ¢ %. The measure R(z, -) clearly
extends to ¥, , and R(-, A) remains ¥-measurable for each 4 ¢ %, .

Remark. If the measure algebra of u is not separable, then it may happen
that there will exist no u-kernel p for P. For the existence of such a p implies
that the map  — p(z, -) is a pointwise limit in £;(x) of a sequence of ¥-measur-
able step-functions, so that the range of the function x — R(z, -) is separable
as a subset of the measures in the total variation norm. But it is easy to construct
examples where this is not the case. See [5], [8], for discussion of this point. As
to the weaker property, measurability of R(-, A) for each A ¢ %, it is not known
whether this holds in the nonseparable case, so far as the present author could
ascertain.

DeriniTION. P will be called u-trivial when {z | P(z, X) > 0} is p-null.

We recall that subtransition functions P, @ are multiplied by the rule
PQ(z, A) = [ P(z, dy)Q(y, A). Also, the notation I, will represent the sub-
transition function I4(z, B) = 1 if z ¢ A n B, 0 otherwise; as an operator, it’s
multiplication by the indicator function of the set 4.

DerintTioN. The set £ ¢ X is called P-invariant modulo u (or just invariant)
provided

(1) P(-, E) vanishes p-a.e. outside K,

(2) P(-, E*) vanishes u-a.e. outside E*. In other words: IzPI,. and I,,PIz
are p-trivial, or: P — (IgPIlg + I,.PI,,) is u-trivial. We denote by 9,(P) the
family of such sets. It is easy to see the following facts.

(a) 9.(P) is a o-algebra.

(b) 9,(P") D 4,(P)

(c) @ = P =9,(Q) D 9u(P).

For a o-algebra S, we denote by 8| A the s-algebra (Bn A | Be8).If A €8,
then this is just (BeS|B C A).

TurorEM 1. Suppose u vs purely non- atomw on 9,(P). Then the u-nonsingular
part of P s u-trivial.

Proor. Since only the equivalence class of 4 up to mutual absolute continuity
is relevant here, we may assume u(X) = 1. From [3], Lemma 1, we see that X
may be partitioned, for each =, into E;", j = 0, --+, 2", with E," ¢ 9,(P),
u(E ™ = 27" and E3;" u B3ty = E;". For each ¢ X, there is a unique integer
5,0=7< 2 , with x ¢ E;"; call this integer j.(z). If n > m, then Ej o C
E}. ) . Let R be the u-nonsingular part of P. Then R(z, E;") = P(z, E;"), so
R(z, E;") = 0 for u-a.e. z in E,**. Therefore R(z, X) = ' Rz, E,") =
R(z, E} ) for u-a.e. z in X. Since E}, ) | and u(Ej, ) = 27" | 0, we con-
clude that R(z, X) = 0 for u-a.e. z in X.
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CoroLLARY. For any subtransition function P and o-finite measure u on (X, %),
there is a partition of X into a finite or countable family Eo, Ey , - - - of u-tnvariant
sets such that

(1) the u-nonsingular part of P*Ig, is u-trivial for each k > 0.

(2) If 7 > O then E; is an atom (modulo u) in 9,(P), and Ak = 1 such that
P'I 5; has p-nontrivial u-nonsingular part.

Proor. Let & be the family of sets E in 9,(P) for which the p-nonsingular
part of P*I is u-trivial for all & > 0. Let E, be a supremum modulo u for &.
Then it is evident that E, ¢ &.

The maximality of & implies that for every u-nonnull set E in 9,(P) with
E 1 E,, P’I; has u-nontrivial u-nonsingular part for some k.

Finally, we show that u is purely atomic on g,(P) | Ey*. For suppose we have
aset Fin 9,(P), E L Ey, u(E) > 0, with u purely nonatomic on 9,(P) | E.
Then x would likewise be purely nonatomic on 9,(P*) | E, for each & > 1, since '
9,(P*) D 9,(P) if k > 1. So IzP*Ir would have p-trivial u-nonsingular part,
by the previous theorem. Then the same would hold for P*Iy, since Pl —
IzP"I; is p-trivial. Thus u(E) = 0, by maximality of E, .

DeriniTioN. P will be called u-transitive if u(4) > 0= S PE(-,4) >0
u-a.e. Clearly, if P is u-transitive, then J,(P) is trivial modulo p-null sets.

THEOREM 2. Assume u separable, and P u-transitive, let Ry, be the u-nonsingular
part of P*, and suppose the Ry, not all u-trivial. Let N = {z | D11 Ri(z, X) = 0}.
Then

(1) w(N) = 0.

(2) there is a fived F e X, u(F) > 0, such that for each x ¢ N*, the measure
> ey Ri(, ) s equivalent to uly .

Proor. Let p; be a u-kernel for Py, and let F = {y | D i [ou(z, y)u(dz) >
0}; F is ¥,-measurable, but we then change it by a set of measure 0 to get a set
in ¥ (without bothering to change its name).

Since

0 < S5 [Re(e, X)u(da) = [ S5 [oula, vu(da)u(dy),

w(F) must be >0.

Now, if A € F and u(4) > 0, we show that D iy Ri(+, 4) > 0 p-ae. It
will suffice to show that Y s Rix(-, A) cannot vanish on any set B of positive
u-measure.

First: 35 = 0 such that RB;(-, 4) is a y-nonnull function, since

it [Rale, Au(de) = [42200 [ou(z, y)u(dz)u(dy) > 0.

Since P is p-transitive, 37 = 0 such that P°'R;(-, A) is not identically zero on B.
Finally: P°'R; < P, and P'R;(x, C) = [cu(de)([P'(z, dy)pi(y, 2)), so that
P‘Ri(z, -) < u for each z. So P'R; < Ri,;, and R;,;(-, A) is not identically
zero on B. Consequently D se1 Ri(-, A) is not identically zero on B.

Next: let N = {z | D i1 Ri(z, X) = 0}.

Since Ri(z, X) = Ri(x, F) (actually, they are equal, of course), and we have
just seen that D s Ri(+, F) > 0 p-a.e., it follows that u(N) = 0. Now choose
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any fixed zin N*. If A < F and u(4) > 0, then Y ses Ri(-, 4) > 0 p-a.e., s0
0 < 2% JP'(x, dy) 201 Ray, A) = 24 P'Ru(z, A) £ 2ii Rep(z, A)
= D>y (m — 1)Ru(z, 4).
Thus R, (z, A) > 0 for some m. This completes the proof.

3. Conservative and recurrent transition functions.
DeriniTioN. P is called u-conservative if, for each A ¢ %,

Do P(I,P)"(-,A) =1  pae onA.

If P(z, A) is interpreted as the probability of a transition from z into the set 4,
then u-conservativeness means that from u-a.e.  in A4, return to A is certain.
DEerINITION. P is called u-recurrent if, whenever

w(4) >0, DI P(IuP)"(-,4) =1

u-a.e. on X. Probabilistically: if u(4) > 0, then, from wp-a.e. starting point,
arrival in A at some later time is certain.

TuroreM 3. Let u be finite, and i = 2 =02 "uP™. Then P is u-conservative
& P 1s ji-conservatie, and P 1s u-recurrent < P s fi-recurrent.

Proof. < is obvious in both cases. To go in the other direction, observe that
GP < i, so P induces a Markoff operator on £,(i), in the sense of [2]. There
is thus a partition of X into sets C' and D such that ) .- P(I;.P)" = 1 j-a.e.
in B if B < C, and C is maximal with respect to the above property, up to g-null
sets. This is just a simple exhaustion argument. The splitup (defined differently)
is due to Hopf, [6]. Now, Theorem 2.2 of [2] tells us that P(-, D) = 0 j-a.e. in C.
Then also P*(+, D) = 0 g-a.e. in C, and a fortiori P"(-, D) = 0 p-a.e. in C.

To prove P j-conservative, we show g(D) = 0. Suppose (D) > 0, ie.
0 < Doneo2 "uP™(D) = X me02 "ulpP"(D). Consequently u(D) > 0. Thus,
AB c D, with u(B) > 0, such that Y a— P(I,.P)" < 1 ji-a.e. in B, and a
fortiori u-a.e. in B, so P cannot be u-conservative.

Finally, we verify that u-recurrence implies g-recurrence. We already know
that P is g-conservative. This implies that the Markoff operator on £,(4) in-
duced by P is fi-conservative as in [2]. So Theorem 2.3 of [2] tells us that all
we need show is that G(4) > 0 and

a(B) > 0= 2 7= [sP"(z, A)ii(dz) > 0.

Now: a(B) > 0= uP*(B) > 0 for some k, and i(4) > 0= uP'(4) > 0 for
some [.

So if we assume u-recurrence, and we choose a > 0, E with u(E) > 0, P'(-, 4)
>a > 0onE,then Y neo P(I;.P)"(+, E) > O p-a.e., hence Y neo P*(-,E) >0
u-a.e., and consequently Y .- P""(-, 4) = a > w0 P"(-, E) > 0. Thus
SwoP(-, A) > 0 pae., and D . [P"(x, A)P*(z, B)u(dz) > 0, ie.
Someo [sP™(x, A)P*u(dz) > 0.80 Dm0 [sP"(x, A)i(dz) > 0.
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4. Existence and uniqueness of invariant measures. The next fact is mainly
just a change of terminology in part of Harris’s proof in [4].

LeEMMmA. Let Q be a subtransition function on (Y, Y), and v a finite measure on
Y. Let 7 be a vy x vy-measurable nonnegative function such that for each x ¢ Y and
B ey we have Q(x, B) = fBT(x, y)y(dy). Assume b > 0 and a > 27* such
that v{y | 7(x, y) > b} > v(Y). Then Q"(x, B) converges to a number 8(B) in-
dependent of x, exponentially in the sense that e, 0 < ¢ < 1, such that |Q"(x, B)
— 8(B)} < c" for all z, A. 8 1s a finite measure, and 6Q = 8.

If 9 is any nonzero measure on Y with nQ < 1, then 6 < 7.

Proor. This is almost all shown in Lemma 4 and Appendix in [4], the role
of our @ being taken by Harris’s R. To see that 6§ < 7: Q < 7 implies Q" < ¢
for each 7. So if 7(B) = 0, [Q"(x, B)n(dx) = 0 for each n > 0, and in particu-
lar, for each n 3 x such that @"(x, B) = 0. Consequently §(B) = 0.

Next, we introduce a function P, on X x X, which takes on nonnegative
values including perhaps + . For each z ¢ X, P,(x, -) is a measure, and for
each A ¢ %, P,(-, B) is ¥-measurable.

DEFINITION.

Pu(z, B) = 2 n=0 P(1,.P)"(, B).

P, again gives rise to an operator on measures and on functions, but we stick
to nonnegative functions because of all the infinities. P, satisfies the following
identity:

PA=P+PAIAJ_PA.

Probabilistically, P4(x, B) is the expected number of times that a particle
beginning at x will subsequently arrive in B, up to and including the time it
first arrives in A. It is then straightforward, both probabilistically and com-
binatorially, that P, is a subtransition function, P, (z, -) being the hitting
distribution for the set A starting from z. Furthermore,

(P+ -+ P)(,B) £ ((Pala) + - + (Pud)")(-,B) for BC A

since the left side is the expected number of times in B during k steps, while
the right side is the expected number of times during b arrivals in A. Again, we
omit the calculations. The probabilistic arguments may be made precise by
constructions analogous to those of Lemmas 2.1, 2.2, and in [2].

Finally, notice that if v is a measure on ¥ with y(4™") = 0, and yP. I, = v,
then (’YPA)P = 'YPA . FOI' (’YPA)P = ’YPA(IA + IA_L)P = ’Y(PAIA)P +'YPAIAJ_P
= yP + yP4I,,P = vP,.

THEOREM 4. Let u be a separable measure on (X, ¥), and P a p-recurrent sub-
transition function. Assume that not all the P* have u-trivial u-nonsingular part.
Then there 1is a o-finite measure e, tnvariant under P, and equivalent to
S om0 2 "uP™ = f. € is unique up to a multiplicative constant, among the o-finite
measures which are invariant under P and <.

Proor. From Theorem 3, we may as well start with g, so we can assume that
wP < u, without loss of generality; and we may as well also assume p finite,
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Next, we prove Harris’s Lemma 2 in the present context. That is: for any
b,0 < b < 1, we show that Ja > 0, an integer m, and a set 4 in ¥ with 0 <
u(A), such that, letting p; be a u-kernel for P*, we have

wyed | p(z,y) + -+ + ou(z,y) > b} > au(A) forall zeA.
From Theorem 2, 3F ¢ ¥ with u(F) > 0 and
S oe(z, y) > O0p-ae. on F for paez in X.

So uly | > iz, y) > k™) 1 w(F) for p-a.e. z in X. Choose n so large that,
setting

A= {z|ply| Xipi(z,y) >m™} £ BA + b)),

we have u(4) = [3(1 + b)Ju(F). This A will do the trick.

Now we shall apply the Lemma, with A taking the role of ¥, X | 4 that of <,
u| A that of », and n (I, Pals + -+ + (IuPal4)") (regarded as a subtransi-
tion function on A) that of Q. Thus a measure & is obtained on ¥ | A4,
as lim,». Q"(x, -), which is invariant under Q. It is likewise invariant under
I4P4I4, as the argument of Lemma 5 in [4] shows. If we then denote by v the
extension of § to ¥ gotten by setting v(A*) = 0, we get yP,I4 = §. Conse-
quently, yP4 = eis an invariant measure under P.

Next, we verify that e is nonzero. To see this, it suffices to show that Q"(x, 4)
= 1 for all n, for u-a.e. x in A. But this follows from (P.l,)"(xz, A) = 1 for
u-a.e. x in X. See the remarks after Theorem 2.1 and after Lemma 5.1 in [2].

Since § < v, it follows that ¥ < u, and so also ¢ < p. As for o-finiteness: it
remains only to show yP, is o-finite on A™*. Here again we use a probabilistic
argument, after Harris in [4]. Let A4;; = {x in A* | P'(xz, A) > j'}. Then

U.;4:;; D A* pae.
Now:
vPa(Ai;) = [y(dx)E,{number of visits to 4, , before returning to A}
< Jy(de) 22 (1 =7 <v(4).

(A standard ‘“‘strong Markoff”’ argument gives this estimate).

Finally: uniqueness is again a consequence of results in [2], specifically Theorem
6.1.

CoROLLARY. Let u be a separable measure; P u-conservative, and Ey the maximal
u-invariant set (see Corollary to Theorem 1) for which P*Ig, is u-trivial for all
k > 0. Then there is a o-finite measure equivalent to ilx,. and tnvariant under P.

Proor. Straightforward combination of Theorem 4 and the Corollary to
Theorem 1.
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