INTEGRAL KERNELS AND INVARIANT MEASURES FOR MARKOFF TRANSITION FUNCTIONS¹

By J. FELDMAN

University of California, Berkeley

1. Introduction. An important question concerning Markoff transition functions is, when do they possess invariant measures? One aspect of this question is the following: given a measure μ , when will P possess a nontrivial invariant measure $\epsilon > \mu$? If infinite ϵ is permitted, then the question becomes a more difficult one.

Harris [4] showed that if μ is a separable measure such that for each set A with $\mu(A) > 0$ and every x, the probability of ultimately getting from x to A is one, then there is a unique σ -finite invariant measure ϵ , and $\epsilon > \mu$. In [2], the present author attempted to replace this by some sort of almost-everywhere type of assumption (μ -recurrence). The key point seemed to be to require that $\sum_{n=0}^{\infty} 2^{-n} P^n$ consist partly of an integral operator (an assumption which was an automatic consequence of Harris's hypothesis). A theorem was proven there for the more general case of μ -conservative processes, but the assumptions were stronger than necessary. Recently, R. Isaac [7] proved the existence of an invariant measure in the μ -recurrent case, making much weaker assumptions about the integral operator part. He was unable, however, to show the relation between μ and the invariant measure.

In the present paper, we show under Isaac's hypothesis that his invariant measure is equivalent to $\sum_{n=0}^{\infty} 2^{-n} \mu P$ (Theorem 4). Actually, a theorem is proven for the more general μ -conservative case (Corollary to Theorem 4), but this turns out to be easy, for the following rather surprising reason. While in general a μ -conservative transition operator is some sort of integral average of recurrent operators, the presence of a nontrivial integral operator part forces this integral average to be a discrete direct sum (Corollary to Theorem 1). In the process of showing Theorem 4, it proves convenient to find out more precisely what the integral operator part of $\sum 2^{-n}P^n$ is like. This is done in Theorem 2.

2. The μ -nonsingular part of P. Let \mathfrak{X} be a σ -algebra on a set X. Let P be a subtransition function, i.e. a function on $X \times \mathfrak{X}$ which is, for each $x \in X$, a nonnegative measure on \mathfrak{X} of total mass ≤ 1 , and for each $A \in \mathfrak{X}$, an \mathfrak{X} -measurable function. P induces an operator on $\mathfrak{L}_{\infty}(\mathfrak{X})$, by the rule $Pf(x) = \int f(y)P(x, dy)$, and also an operator on the nonnegative measures on \mathfrak{X} , by the rule

$$\mu P(A) = \int P(x, A)\mu(dy).$$

Let μ be a fixed σ -finite measure on \mathfrak{X} . Then $P(x, \cdot)$ has a unique decomposition

Received 10 October 1964.

¹ This paper was written partly with the support of N.S.F. Grant GP-2, and O.N.R. Contract 222-60.

518 J. FELDMAN

into nonnegative measures $R(x, \cdot)$ and $S(x, \cdot)$ with $R(x, \cdot) < \mu$ and $S(x, \cdot) \perp \mu$. R will be called the μ -nonsingular part of P.

Fact. In the event that the measure algebra of μ is separable, then a simple Martingale argument shows that there is a nonnegative real-valued function ρ on $X \times X$, measurable with respect to $\mathfrak{X} \times \mathfrak{X}_{\mu}$ (where \mathfrak{X}_{μ} denotes the μ -completion of \mathfrak{X}) such that each $\rho(x, \cdot)$ is a Radon-Nikodym derivative of $R(x, \cdot)$ with respect to μ . The fact is originally due to Doob [1]. A function ρ with these properties will be called a μ -kernel for P. Observe that the map $x \to R(x, A) = \int_{A} \rho(x, y) \mu(dy)$ is \mathfrak{X} -measurable for each $A \in \mathfrak{X}$. The measure $R(x, \cdot)$ clearly extends to \mathfrak{X}_{μ} , and $R(\cdot, A)$ remains \mathfrak{X} -measurable for each $A \in \mathfrak{X}_{\mu}$.

REMARK. If the measure algebra of μ is not separable, then it may happen that there will exist no μ -kernel ρ for P. For the existence of such a ρ implies that the map $x \to \rho(x, \cdot)$ is a pointwise limit in $\mathfrak{L}_1(\mu)$ of a sequence of \mathfrak{X} -measurable step-functions, so that the range of the function $x \to R(x, \cdot)$ is separable as a subset of the measures in the total variation norm. But it is easy to construct examples where this is not the case. See [5], [8], for discussion of this point. As to the weaker property, measurability of $R(\cdot, A)$ for each $A \in \mathfrak{X}$, it is not known whether this holds in the nonseparable case, so far as the present author could ascertain.

Definition. P will be called μ -trivial when $\{x \mid P(x, X) > 0\}$ is μ -null.

We recall that subtransition functions P, Q are multiplied by the rule $PQ(x, A) = \int P(x, dy)Q(y, A)$. Also, the notation I_A will represent the subtransition function $I_A(x, B) = 1$ if $x \in A \cap B$, 0 otherwise; as an operator, it's multiplication by the indicator function of the set A.

Definition. The set $E \in \mathfrak{X}$ is called P-invariant modulo μ (or just invariant) provided

- (1) $P(\cdot, E)$ vanishes μ -a.e. outside E,
- (2) $P(\cdot, E^{\perp})$ vanishes μ -a.e. outside E^{\perp} . In other words: $I_{\mathbb{E}}PI_{\mathbb{E}^{\perp}}$ and $I_{\mathbb{E}^{\perp}}PI_{\mathbb{E}}$ are μ -trivial, or: $P (I_{\mathbb{E}}PI_{\mathbb{E}} + I_{\mathbb{E}^{\perp}}PI_{\mathbb{E}^{\perp}})$ is μ -trivial. We denote by $\mathfrak{g}_{\mu}(P)$ the family of such sets. It is easy to see the following facts.
 - (a) $\mathfrak{I}_{\mu}(P)$ is a σ -algebra.
 - (b) $\mathfrak{G}_{\mu}(P^k) \supset \mathfrak{G}_{\mu}(P)$
 - (c) $Q \leq P \Rightarrow g_{\mu}(Q) \supset g_{\mu}(P)$.

For a σ -algebra S, we denote by $S \mid A$ the σ -algebra $(B \cap A \mid B \in S)$. If $A \in S$, then this is just $(B \in S \mid B \subset A)$.

THEOREM 1. Suppose μ is purely non-atomic on $\mathfrak{g}_{\mu}(P)$. Then the μ -nonsingular part of P is μ -trivial.

PROOF. Since only the equivalence class of μ up to mutual absolute continuity is relevant here, we may assume $\mu(X)=1$. From [3], Lemma 1, we see that X may be partitioned, for each n, into E_j^n , $j=0,\cdots,2^{n-1}$, with E_j^n $\varepsilon \, g_\mu(P)$, $\mu(E_j^n)=2^{-n}$, and $E_{2j}^{n+1}\cup E_{2j+1}^{n+1}=E_j^n$. For each $x\in X$, there is a unique integer $j,0\leq j<2^n$, with $x\in E_j^n$; call this integer $j_n(x)$. If n>m, then $E_{j_n(x)}^n\subset E_{j_m(x)}^m$. Let R be the μ -nonsingular part of P. Then $R(x,E_j^n)\leq P(x,E_j^n)$, so $R(x,E_j^n)=0$ for μ -a.e. x in E_j^{n+1} . Therefore $R(x,X)=\sum_{j=0}^{2^{n-1}}R(x,E_j^n)=R(x,E_j^n)$ for μ -a.e. x in X. Since $E_{j_n(x)}^n\downarrow$ and $\mu(E_{j_n(x)}^n)=2^{-n}\downarrow 0$, we conclude that R(x,X)=0 for μ -a.e. x in X.

COROLLARY. For any subtransition function P and σ -finite measure μ on (X, \mathfrak{X}) , there is a partition of X into a finite or countable family E_0 , E_1 , \cdots of μ -invariant sets such that

- (1) the μ -nonsingular part of $P^kI_{E_0}$ is μ -trivial for each k > 0.
- (2) If j > 0 then E_j is an atom (modulo μ) in $\mathfrak{G}_{\mu}(P)$, and $\exists k \geq 1$ such that $P^kI_{E_j}$ has μ -nontrivial μ -nonsingular part.

PROOF. Let \mathcal{E} be the family of sets E in $g_{\mu}(P)$ for which the μ -nonsingular part of P^kI_E is μ -trivial for all k > 0. Let E_0 be a supremum modulo μ for \mathcal{E} . Then it is evident that $E_0 \mathcal{E}$.

The maximality of \mathcal{E} implies that for every μ -nonnull set E in $\mathcal{G}_{\mu}(P)$ with $E \perp E_0$, $P^k I_E$ has μ -nontrivial μ -nonsingular part for some k.

Finally, we show that μ is purely atomic on $\mathfrak{s}_{\mu}(P) \mid E_0^{\perp}$. For suppose we have a set E in $\mathfrak{s}_{\mu}(P)$, $E \perp E_0$, $\mu(E) > 0$, with μ purely nonatomic on $\mathfrak{s}_{\mu}(P) \mid E$. Then μ would likewise be purely nonatomic on $\mathfrak{s}_{\mu}(P^k) \mid E$, for each k > 1, since $\mathfrak{s}_{\mu}(P^k) \supset \mathfrak{s}_{\mu}(P)$ if k > 1. So $I_E P^k I_E$ would have μ -trivial μ -nonsingular part, by the previous theorem. Then the same would hold for $P^k I_E$, since $P^k I_E - I_E P^k I_E$ is μ -trivial. Thus $\mu(E) = 0$, by maximality of E_0 .

DEFINITION. P will be called μ -transitive if $\mu(A) > 0 \Rightarrow \sum_{k=1}^{\infty} P^k(\cdot, A) > 0$ μ -a.e. Clearly, if P is μ -transitive, then $g_{\mu}(P)$ is trivial modulo μ -null sets.

THEOREM 2. Assume μ separable, and P μ -transitive, let R_k be the μ -nonsingular part of P^k , and suppose the R_k not all μ -trivial. Let $N = \{x \mid \sum_{k=1}^{\infty} R_k(x, X) = 0\}$. Then

- (1) $\mu(N) = 0$.
- (2) there is a fixed $F \in \mathfrak{X}$, $\mu(F) > 0$, such that for each $x \in N^{\perp}$, the measure $\sum_{k=1}^{\infty} R_k(x, \cdot)$ is equivalent to μI_F .

PROOF. Let ρ_k be a μ -kernel for P_k , and let $F = \{y \mid \sum_{k=1}^{\infty} \int \rho_k(x, y) \mu(dx) > 0\}$; F is \mathfrak{X}_{μ} -measurable, but we then change it by a set of measure 0 to get a set in \mathfrak{X} (without bothering to change its name). Since

$$0 < \sum_{k=1}^{\infty} \int R_k(x, X) \mu(dx) = \int \sum_{k=1}^{\infty} \int \rho_k(x, y) \mu(dx) \mu(dy),$$

 $\mu(F)$ must be >0.

Now, if $A \subset F$ and $\mu(A) > 0$, we show that $\sum_{k=1}^{\infty} R_k(\cdot, A) > 0$ μ -a.e. It will suffice to show that $\sum_{k=1}^{\infty} R_k(\cdot, A)$ cannot vanish on any set B of positive μ -measure.

First: $\exists j \geq 0$ such that $R_j(\cdot, A)$ is a μ -nonnull function, since

$$\sum_{k=1}^{\infty} \int R_k(x, A) \mu(dx) = \int_{A} \sum_{k=1}^{\infty} \int \rho_k(x, y) \mu(dx) \mu(dy) > 0.$$

Since P is μ -transitive, $\exists i \geq 0$ such that $P^iR_j(\cdot, A)$ is not identically zero on B. Finally: $P^iR_j \leq P^{i+j}$, and $P^iR_j(x, C) = \int_C \mu(dz) (\int_C P^i(x, dy) \rho_j(y, z))$, so that $P^iR_j(x, \cdot) < \mu$ for each x. So $P^iR_j \leq R_{i+j}$, and $R_{i+j}(\cdot, A)$ is not identically zero on B. Consequently $\sum_{k=1}^{\infty} R_k(\cdot, A)$ is not identically zero on B.

Next: let $N = \{x \mid \sum_{k=1}^{\infty} R_k(x, X) = 0\}.$

Since $R_k(x, X) \ge R_k(x, F)$ (actually, they are equal, of course), and we have just seen that $\sum_{k=1}^{\infty} R_k(\cdot, F) > 0$ μ -a.e., it follows that $\mu(N) = 0$. Now choose

520 J. FELDMAN

any fixed x in N^{\perp} . If $A \subset F$ and $\mu(A) > 0$, then $\sum_{k=1}^{\infty} R_k(\cdot, A) > 0$ μ -a.e., so $0 < \sum_{\ell=1}^{\infty} \int P^{\ell}(x, dy) \sum_{k=1}^{\infty} R_k(y, A) = \sum_{k,\ell} P^{\ell} R_k(x, A) \leq \sum_{k,\ell} R_{\ell+k}(x, A) = \sum_{m=2}^{\infty} (m-1) R_m(x, A)$.

Thus $R_m(x, A) > 0$ for some m. This completes the proof.

3. Conservative and recurrent transition functions.

Definition. P is called μ -conservative if, for each $A \in \mathfrak{X}$,

$$\sum_{n=0}^{\infty} P(I_A \bot P)^n(\cdot, A) = 1 \qquad \text{μ-a.e. on A.}$$

If P(x, A) is interpreted as the probability of a transition from x into the set A, then μ -conservativeness means that from μ -a.e. x in A, return to A is certain. Definition. P is called μ -recurrent if, whenever

$$\mu(A) > 0, \qquad \sum_{n=0}^{\infty} P(I_A \perp P)^n(\cdot, A) = 1$$

 μ -a.e. on X. Probabilistically: if $\mu(A) > 0$, then, from μ -a.e. starting point, arrival in A at some later time is certain.

Theorem 3. Let μ be finite, and $\tilde{\mu} = \sum_{n=0}^{\infty} 2^{-n} \mu P^n$. Then P is μ -conservative $\Leftrightarrow P$ is $\tilde{\mu}$ -conservative, and P is μ -recurrent $\Leftrightarrow P$ is $\tilde{\mu}$ -recurrent.

 $Proof. \Leftarrow$ is obvious in both cases. To go in the other direction, observe that $\tilde{\mu}P \prec \tilde{\mu}$, so P induces a Markoff operator on $\mathcal{L}_{\infty}(\tilde{\mu})$, in the sense of [2]. There is thus a partition of X into sets C and D such that $\sum_{n=0}^{\infty} P(I_{B\perp}P)^n = 1$ $\tilde{\mu}$ -a.e. in B if $B \subset C$, and C is maximal with respect to the above property, up to $\tilde{\mu}$ -null sets. This is just a simple exhaustion argument. The splitup (defined differently) is due to Hopf, [6]. Now, Theorem 2.2 of [2] tells us that $P(\cdot, D) = 0$ $\tilde{\mu}$ -a.e. in C. Then also $P^n(\cdot, D) = 0$ $\tilde{\mu}$ -a.e. in C, and a fortior $P^n(\cdot, D) = 0$ μ -a.e. in C.

To prove P $\tilde{\mu}$ -conservative, we show $\tilde{\mu}(D) = 0$. Suppose $\tilde{\mu}(D) > 0$, i.e. $0 < \sum_{n=0}^{\infty} 2^{-n} \mu P^n(D) = \sum_{n=0}^{\infty} 2^{-n} \mu I_D P^n(D)$. Consequently $\mu(D) > 0$. Thus, $\exists B \subset D$, with $\mu(B) > 0$, such that $\sum_{n=0}^{\infty} P(I_{B\perp}P)^n < 1$ $\tilde{\mu}$ -a.e. in B, and a fortiori μ -a.e. in B, so P cannot be μ -conservative.

Finally, we verify that μ -recurrence implies $\tilde{\mu}$ -recurrence. We already know that P is $\tilde{\mu}$ -conservative. This implies that the Markoff operator on $\mathfrak{L}_{\infty}(\tilde{\mu})$ induced by P is $\tilde{\mu}$ -conservative as in [2]. So Theorem 2.3 of [2] tells us that all we need show is that $\tilde{\mu}(A) > 0$ and

$$\tilde{\mu}(B) > 0 \Rightarrow \sum_{n=0}^{\infty} \int_{B} P^{n}(x, A) \tilde{\mu}(dx) > 0.$$

Now: $\tilde{\mu}(B) > 0 \Rightarrow \mu P^k(B) > 0$ for some k, and $\tilde{\mu}(A) > 0 \Rightarrow \mu P^l(A) > 0$ for some l.

So if we assume μ -recurrence, and we choose a>0, E with $\mu(E)>0$, $P^l(\cdot,A) \ge a>0$ on E, then $\sum_{n=0}^{\infty} P(I_{E^{\perp}}P)^n(\cdot,E)>0$ μ -a.e., hence $\sum_{n=0}^{\infty} P^n(\cdot,E)>0$ μ -a.e., and consequently $\sum_{n=0}^{\infty} P^{n+l}(\cdot,A) \ge a \sum_{n=0}^{\infty} P^n(\cdot,E)>0$. Thus $\sum_{n=0}^{\infty} P^n(\cdot,A)>0$ μ -a.e., and $\sum_{n=0}^{\infty} \int P^n(x,A)P^k(x,B)\mu(dx)>0$, i.e. $\sum_{n=0}^{\infty} \int_B P^n(x,A)P^k\mu(dx)>0$. So $\sum_{n=0}^{\infty} \int_B P^n(x,A)\mu(dx)>0$.

4. Existence and uniqueness of invariant measures. The next fact is mainly just a change of terminology in part of Harris's proof in [4].

LEMMA. Let Q be a subtransition function on (Y, Y), and γ a finite measure on Y. Let τ be a $\gamma \times \gamma$ -measurable nonnegative function such that for each $x \in Y$ and $B \in Y$ we have $Q(x, B) \leq \int_{B} \tau(x, y) \gamma(dy)$. Assume $\exists b > 0$ and $a > 2^{-\frac{1}{2}}$ such that $\gamma\{y \mid \tau(x, y) > b\} > \gamma(Y)$. Then $Q^n(x, B)$ converges to a number $\delta(B)$ independent of x, exponentially in the sense that $\exists c, 0 < c < 1$, such that $|Q^n(x, B) - \delta(B)| < c^n$ for all x, A. δ is a finite measure, and $\delta Q = \delta$.

If η is any nonzero measure on \Im with $\eta Q < \eta$, then $\delta < \eta$.

PROOF. This is almost all shown in Lemma 4 and Appendix in [4], the role of our Q being taken by Harris's R. To see that $\delta < \eta$: $\eta Q < \eta$ implies $\eta Q^n < \eta$ for each n. So if $\eta(B) = 0$, $\int Q^n(x, B) \eta(dx) = 0$ for each n > 0, and in particular, for each $n \ni x$ such that $Q^n(x, B) = 0$. Consequently $\delta(B) = 0$.

Next, we introduce a function P_A on $X \times \mathfrak{X}$, which takes on nonnegative values including perhaps $+\infty$. For each $x \in X$, $P_A(x, \cdot)$ is a measure, and for each $A \in \mathfrak{X}$, $P_A(\cdot, B)$ is \mathfrak{X} -measurable.

DEFINITION.

$$P_A(x, B) = \sum_{n=0}^{\infty} P(I_{A} P)^n(x, B).$$

 P_A again gives rise to an operator on measures and on functions, but we stick to nonnegative functions because of all the infinities. P_A satisfies the following identity:

$$P_A = P + P_A I_{A^{\perp}} P_A.$$

Probabilistically, $P_A(x, B)$ is the expected number of times that a particle beginning at x will subsequently arrive in B, up to and including the time it first arrives in A. It is then straightforward, both probabilistically and combinatorially, that P_AI_A is a subtransition function, $P_AI_A(x, \cdot)$ being the hitting distribution for the set A starting from x. Furthermore,

$$(P + \dots + P^k)(\cdot, B) \le ((P_A I_A) + \dots + (P_A I_A)^k)(\cdot, B)$$
 for $B \subset A$

since the left side is the expected number of times in B during k steps, while the right side is the expected number of times during b arrivals in A. Again, we omit the calculations. The probabilistic arguments may be made precise by constructions analogous to those of Lemmas 2.1, 2.2, and in [2].

Finally, notice that if γ is a measure on $\mathfrak X$ with $\gamma(A^{\perp})=0$, and $\gamma P_A I_A=\gamma$, then $(\gamma P_A)P=\gamma P_A$. For $(\gamma P_A)P=\gamma P_A (I_A+I_{A^{\perp}})P=\gamma (P_A I_A)P+\gamma P_A I_{A^{\perp}}P=\gamma P+\gamma P_A I_{A^{\perp}}P=\gamma P_A$.

THEOREM 4. Let μ be a separable measure on (X, \mathfrak{X}) , and P a μ -recurrent subtransition function. Assume that not all the P^k have μ -trivial μ -nonsingular part. Then there is a σ -finite measure ϵ , invariant under P, and equivalent to $\sum_{n=0}^{\infty} 2^{-n} \mu P^n = \tilde{\mu}$. ϵ is unique up to a multiplicative constant, among the σ -finite measures which are invariant under P and $\langle \tilde{\mu} \rangle$.

PROOF. From Theorem 3, we may as well start with $\tilde{\mu}$, so we can assume that $\mu P < \mu$, without loss of generality; and we may as well also assume μ finite.

522 J. FELDMAN

Next, we prove Harris's Lemma 2 in the present context. That is: for any b, 0 < b < 1, we show that $\exists a > 0$, an integer m, and a set A in \mathfrak{X} with $0 < \mu(A)$, such that, letting ρ_k be a μ -kernel for P^k , we have

$$\mu\{y \in A \mid \rho_1(x, y) + \cdots + \rho_n(x, y) > b\} > a\mu(A)$$
 for all $x \in A$.

From Theorem 2, $\exists F \in \mathfrak{X} \text{ with } \mu(F) > 0$ and

$$\sum_{k=1}^{\infty} \rho_k(x, y) > 0 \text{ μ-a.e. on } F \text{ for } \mu\text{-a.e. } x \text{ in } X.$$

So $\mu\{y \mid \sum_{j=1}^k \rho_j(x, y) > k^{-1}\} \uparrow \mu(F)$ for μ -a.e. x in X. Choose n so large that, setting

$$A = \{x \mid \mu\{y \mid \sum_{j=1}^{m} \rho_j(x, y) > m^{-1}\} \leq [\frac{1}{2}(1+b)]\mu(F)\},\$$

we have $\mu(A) \geq \frac{1}{2}(1+b)\mu(F)$. This A will do the trick.

Now we shall apply the Lemma, with A taking the role of Y, $\mathfrak{X} \mid A$ that of \mathfrak{Y} , $\mu \mid A$ that of ν , and $n^{-1}(I_AP_AI_A + \cdots + (I_AP_AI_A)^n)$ (regarded as a subtransition function on A) that of Q. Thus a measure δ is obtained on $\mathfrak{X} \mid A$, as $\lim_{n\to\infty} Q^n(x,\cdot)$, which is invariant under Q. It is likewise invariant under $I_AP_AI_A$, as the argument of Lemma 5 in [4] shows. If we then denote by γ the extension of δ to \mathfrak{X} gotten by setting $\gamma(A^\perp) = 0$, we get $\gamma P_AI_A = \delta$. Consequently, $\gamma P_A = \epsilon$ is an invariant measure under P.

Next, we verify that ϵ is nonzero. To see this, it suffices to show that $Q^n(x, A) = 1$ for all n, for μ -a.e. x in A. But this follows from $(P_A I_A)^n(x, A) = 1$ for μ -a.e. x in X. See the remarks after Theorem 2.1 and after Lemma 5.1 in [2].

Since $\delta < \nu$, it follows that $\gamma < \mu$, and so also $\epsilon < \mu$. As for σ -finiteness: it remains only to show γP_A is σ -finite on A^{\perp} . Here again we use a probabilistic argument, after Harris in [4]. Let $A_{ij} = \{x \text{ in } A^{\perp} \mid P^i(x, A) > j^{-1}\}$. Then

$$\mathsf{U}_{i,j}A_{ij}\supset A^{\perp}\mu$$
-a.e.

Now:

$$\gamma P_A(A_{ij}) = \int \gamma(dx) E_x \{\text{number of visits to } A_i, \text{ before returning to } A \}$$

$$\leq \int \gamma(dx) \sum_i (1 - j^{-1})^i < \gamma(A) \cdot j.$$

(A standard "strong Markoff" argument gives this estimate).

Finally: uniqueness is again a consequence of results in [2], specifically Theorem 6.1.

COROLLARY. Let μ be a separable measure, P μ -conservative, and E_0 the maximal μ -invariant set (see Corollary to Theorem 1) for which $P^kI_{E_0}$ is μ -trivial for all k > 0. Then there is a σ -finite measure equivalent to $\tilde{\mu}I_{E_0\perp}$ and invariant under P.

Proof. Straightforward combination of Theorem 4 and the Corollary to Theorem 1.

REFERENCES

- [1] Doob, J. L. (1953). Stochastic Processes. Wiley, New York.
- [2] FELDMAN, J. (1962). Subinvariant measures for Markoff operators. Duke Math. J. 29 71–98.

- [3] Halmos, F. R. (1947). On the set of values of a finite measure. BAMS 53 138-141.
- [4] HARRIS, T. (1956). The existence of stationary measures for certain Markoff processes. Proc. Third Berkeley Symp. Math. Statist. Prob. 2 113-124. Univ. of California Press, Berkeley.
- [5] Hille, E. and Phillips, R. (1957). Functional analysis and semigroups. A.M.S. Colloquium Publications 31.
- [6] HOPF, E. (1954). The general temporally discrete Markoff process. J. Rat. Mech. Anal. 3 13-45.
- [7] ISAAC, R. (1964). Non-singular recurrent Markov processes have stationary measures. Ann. Math. Statist. 35 869-871.
- [8] Pettis, B. J. (1938). On integration in vector spaces. T.A.M.S. 44 277-304.