ON THE ITERATIVE METHOD OF DYNAMIC PROGRAMMING
ON A FINITE SPACE DISCRETE TIME MARKOV PROCESS!

By Barry W. BrowN
Unaversity of Chicago

1. Introduction and summary. We consider a system with a finite number of
states, 1, 2, - - -, S. Periodically we observe the current state of the system and
perform an action, a, from a finite set A of possible actions. As a joint result of s,
the current state, and a, the action performed, two things occur: (1) we receive
an immediate return r(s, a); and (2) the system moves to a new state s’ with
probability q(s"| s, a). (For several interesting and occasionally amusing con-
crete examples of this setup, the reader is referred to Howard’s excellent book,
(4].)

Let F be the (finite) set of functions from S to A. A policy 7 is a sequence
(<, fa,--+, fi) of members of F. Using n steps of the policy = means observing
the system, and upon finding s,, performing action f.(so), observing the next
state s; and performing f,—1(s;) and so on until after n — 1 of these steps have
been completed one observes s,—; and performs action f;(s,—1) and then stops. The
expected (total) return using n steps of « given that the initial state is sy is de-
noted v,(so, 7).

A policy = is optimal if v,(s, m) = v.(s, ') for any policy =" and all n and s.
In other words, = is optimal if the return using n steps of = cannot be exceeded by
using n steps of any other policy regardless of n and the initial state of the
system.

Obviously, v.(s, ) for optimal = may be calculated by value iteration, that is,
by the use of the recursion

vnsi(s, 7) = max, [r(s, a) + D. q(s |'s, a)va(s’, ).

Similarly an optimal = may be generated by letting fi(s) be any a with r(s, a) =
r(s, a’) for all a’, and letting f,11(s) be any a for which the expression on the right
side of the above equation attains its maximum.

This paper is concerned with the return of an optimal policy x. The principal
results are as follows:

A poliey is eventually stationary if for m, n sufficiently large, f,. = f., that is,
if the sequence which is the policy consists of one member of F repeated infinitely
often followed by a finite arbitrary sequence. In Section 3, an example is given
where there is only one optimal policy and it has the form (---, f,¢,/, 9,7, 9), an
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oscillating sequence of two members of F which shows that there may not be an
eventually stationary optimal policy. The author has not determined whether
the example represents the worst possible behavior of optimal policies or whether
there are cases where there is no periodic optimal policy.

For an optimal policy =, the gain of the policy, defined by lim, n v, (s, =),
exists; it will be denoted by v*(s, 7). It is shown in Lemma 3.1 that if = is optimal
then there is an N such that lim, [y (s, ) — (nN + r)v*(s, )] exists for any
r, that is, asymptotically, the return oscillates periodically around the long range
average return.

One of the major results of the paper is that there is a stationary policy o, i.e.,
one for which f. = f, for all m, n, which has the same gain as the optimal policy
=, symbolically, v*(s, ¢) = v*(s, ) for all s. In fact a stronger result is true
(Theorem 4.2), namely that there is some constant C such that v,(s, *) —
va(s, @) < C for all n and s.

Although it is not known whether all optimal policies are eventually periodic,
it is shown (Corollary 4.9 of Theorem 4.8) that there is an eventually periodic
policy whose return is an arbitrarily small amount less than that of the optimal
policy. Formally, for any ¢ > 0, there is a policy ¢ with the property that for
some N, foin = fa for n sufficiently large such that

Va(8, ™) — va(s, 0) < e

for all n and any s.

The final section contains further results for the special case that
q(s'| s,a) > Oforalls, s, a.

2. Preliminaries.

LemMma 2.1. Let Q be any S X S Markov matriz.

(a) The sequence (1/(n + 1)) D ¢ Q° converges as n — » to a Markov matriz
Q* with

QQ* = Q*Q = Q*Q* = Q™.

(b) If A is any S X S matriz with A® — 0 asn — o, then I — A is non-
singular and (I — A)™" = D 0 A*. In particular, if 8 < 1 then [I — B(Q — Q™)]
18 non-singular and

208 (Q@— QY =1 —8Q— QY™
(¢) The matriz I — (Q — Q™) is non-singular and
limgy [I — B(Q — QN = I — (Q — @)™

The first two of these results may be found in [5], the third in [2].

With each f ¢ F is associated an 8 X 1 vector R, with the s'th coordinate of
R; being r(s, f(s)) and an 8 X S Markov matrix Q; with the (s, t)'th position
in the matrix equal to ¢(t| s, f(s)).

If X and Y are two S X 1 vectors, we say that X < Y if each coordinate of
S is less than or equal to the corresponding coordinate of V; X < Yif X £ YV
and X # Y.
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We will need some results of Blackwell [2] and Howard [4]. The summary
presented here is taken from [2].

Suppose that we have the setup of the first paragraph of the introduction, but
in addition we assume that a return r obtained 7 units in the future is worth only
B with 8 < 1. A strategy = is a sequence of members of f of the form
7= (fi,fa, "+ ,fn, ). By using a strategy = we mean that if s is observed
in the n'th period, then action f,(s) is performed. The probability that the system
is in state ¢ in the m'th period given that it is initially in state s is the (s, ¢)'th
coordinate of Q;,Qy, - - - Qy,, . Hence, if Vg(r) is the § X 1 vector whose s'th
coordinate is the total expected return given that s is the initial state then

Ve(m) = 220 8°Qry + -+ faRsnps -
A strategy is stationary if f; = f, for all < and some f, . This strategy is denoted
by fo©. A strategy = is optimal if Vg(w) = V(o) for all strategies o and all 8 in
an interval 8, < 8 < 1.
THEOREM 2.2. There is an optimal stationary strategy g°.
LEmMA 2.3. For any f,

Ve(5°) = [(1/(1 — B)) — 11Q*R; + I — (@ — Q) 'R, + (B)

where €(B) s an S X 1 vector; ¢(8) — 0 as BT 1. We will denote [I —(Q;
— Q)R by A;.

The proof of the above may be found in [2].

DEerFiNiTION. We define Lg(f)(X) = Ry + BQ;X. In particular, if (f, =)
denotes the strategy which consists of f followed by the sequence = then Vg(f, )
= Lg(f)(Ve(w)). Li(f) is abbreviated L;.

Lemma 2.4. Ly(A;) = Q*R; + A, .

Proor.

L;(4;) = limgy: [Ry + Q20 8°(Q; — Q)'Ry]
= limgy: (225 B°(Qs — Q)'R; + BQ,"Ry) = Q;"R; + A;.

Lemma 2.5. If ¢° is an optimal strategy then for any f e F and all s, either the
s'th coordinate of Q,;Q,*R, is less than the same coordinate of Q,*R, or else the
s'th coordinate of L;(A,) is less than or equal the same coordinate of L,(A,).

Proor. Assume that the s'th coordinate of Q;Q,*R, is greater than the s'th
coordinate of Q,*R, . Construct h by h(t) = g(t), t # s and h(s) = f(s). Then
Ls(h)Vs(g™) = Le(h) (A, + €(B)) + [(1/(1 = B)) — 11QuQ,"R, > Vis(g™) for
B near 1 which contradicts the optimality of g*.

If the s'th coordinate of Q,Q,*R, equals the s'th coordinate of Q,*R, but the
s'th coordinate of L;(A4,) is greater than the s'th coordinate of 4, the same con-
tradiction is achieved.

3. Asymptotic return of a stationary policy and an example.
DerINITION. We define V*(, X) where 7 is a policy and X an s X 1 vector by

V“(‘"‘) X) = Lfann—l e Lfl(X) = an + anan—l + anan—lan—2
' + -+ Q- QB+ Qr, - QX
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Intuitively, the s'th coordinate of V"(x, X) is the expected total return given
that s is the initial state, that n steps of = were used, and that after the final
action was performed, the state was again observed and if found to be ¢ an extra
return equal to the ¢'th coordinate of X was obtained. In particular, the s'th
coordinate of V"(wr, 0) is v,(s, 7).

A policy = is X optimal if V"(7, X) = V"(e, X) for any policy ¢ and for all n.

A policy = is optimal if it is O optimal.

ExampLE. There are two states of the system. In state 1 there are two actions:
action 1 gives a return of 1 and the system stays in state 1 with probability
1/2; action 2. gives a return of 6/5 and the system stays in state 1 with prob-
ability 1/4. In state 2, one gets a return of 0 and moves to state 1 with probability
3/4.

Let f(1) = 1, g(1) = 2. Then

en sy (3/5 _ (23/25 _(1
Q! R; = Qa R, = (3/5)’ A! - (3/25)’ Aa B (1/5).

It follows from 2.3 that ¢~ is the optimal stationary strategy.
Let us calculate the optimal policy. If X = <il) define T(X) = z; — z2 — 4/5.
2

Then Ly(X) o L,(X) iff T(X) o0 where o is one of >, =, or <. Also T(LsX)
= — 1/4 T(X), T(L,X) = —1/2 T(X). Hence the optimal policy isw =
(--,% 9 f g, f, 9) an alternating sequence of f’s and ¢’s ending with g.

In order to calculate the asymptotic gain of a periodic policy we need only be
able to calculate that of a stationary policy. In the above example, to calculate
V*(w, 0), we can define an operator L, = L;L,, then calculate L,"(0).

LemMMA 3.1. Denote Q; by Q and R, by R. Then:

(a) If all of the ergodic sets of Q are aperiodic then V"(f*, X) = (n — 1)Q*R +
A; + Q*X + e(n) where e(n) — 0 asn — o;

(b) If N 1s the least common multiple of the periods of the ergodic sets of Q, let
Qo = Q". Then V"™*™(f*,X) = (n — NQ*R + [I — (Qo — Q"] 1220 'Q'R]
+ Q27 QR] + Q*Q"X] + €(n) where e(n) — 0 asn — .

Proor. V'(f*, X) = 2¢'QR + Q"X.

Case (a). As Q is aperiodic, lim, @ = Q% V'(f*, X) — nQ'R =

Q@ -QOR+QX=20"(Q- Q)R- QR+ QXasQ — Q" =
(Q — Q%) for i > 0 by (a) of 2.1. Thus by (b) of 2.1, lim, V"(f*, X) — nQ*R =
A, — Q*R + Q*X.

Case b. Use the fact that Q, is aperiodic and Q* = Q,*(2_0 ' Q°).

" In our example, we have

V*(r,0) = (2n — 1) (g;;:;) + ("ﬁﬁ"’) + e(n)
and

2n+1 _ 2n — 3/5 2n ’
V0 = L0 = (32) + 770+ (o
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and in particular

tm, (7°(x, 0 = V(%001 = (352).

4. Return of an optimal policy. Throughout this section = will be an optimal
policy, and ¢* will be an optimal strategy. @, , R, , and A, will be abbreviated
Q, R, and A. The policy ¢” is, of course, a policy whose every element is g.

Lemma 4.1. The policy g~ is mQ*R + A optimal for some m.

Proor. L,(mQ*R + A) — L(mQ*R + A) = m(Q*R — QfQ *R) + L,(A)
— L;(A). Hence by 2.5, for m > mo, Ly(m@Q *R+ A) £ L,(mQ*R + A). But
V*(g~, mQ*R + A) = (m + n)Q*R + A by 2.4.

TueoreM 4.2. V*(x, 0) — V*(g”, 0) is bounded uniformly in n.

Proof. It is bounded below by 0. Suppose it unbounded above. Then for any
X, V'(x, X) — V*(g°, X) is unbounded above as V"(x, X) — V"(¢”, X) =
V*(x, 0) — V(" 0) + (@, - Q,«l — Q™)X and the last term is bounded
uniformly in n. But for the X = mQ R+ Aof4.l, V'(r, X) — V”(g X) =o.

COROLLARY 4.3. lim n'V*(x, 0) = Q*R and V”(r, 0) — nQ*R is bounded
uniformly in n.

Proor. From 3.1, V"(¢°, 0) — nQ*R is bounded uniformly in n.

CoROLLARY 4.4. If f occurs infinitely often in =, then QQ*R = Q*R.

Proor. (1/(n + 1))V*(x,-0) = (1/(n + 1))R;,,, + (n/(n + 1))
Q. +l[n_lV"(n-, 0)]. Let n — o« through a sequence for which fn;+1 = f and use
4.3.

The remainder of this section is devoted to showing that V"(wr, 0) is asymp-
totically periodic, that is, for some fixed N, lim, v+ (x,0) — (nN + r)Q*R]
exists for all r.

It will suffice to prove that V"*(wx, X) is asymptotlcally pel‘lOdlC where 7y
is X-optlmal and X is such that if f occurs in 7z then Q,Q *R = Q*R. This is so
because V"™ (x, 0) = V™(x', V"(r, 0)) where #' = ( -, fut2, fmr1). Let
X = V™(w, 0) and choose m large enough that those f which occur only finitely
often in = occur only as fi, - - -, f and not as f;, ¢ > m. The reduction is ob-
tained by 4.4.

We can then replace each R; by R; — Q*R. In this way we need only show
that lim, V™™ (rx, X) exists as Q"R = 0.

Let Y be a limit point of {V"(7wx , X)}. (There must be one by 4.2.) It will
then suffice to show that for some N, V¥(xy, ¥) = Y where 7y is ¥ optimal.

LemMA 4.5. If fi, t € T, is a set of real valued functions with |f.(a) — fi(b)| =C
for all te T then |sup.fi(a) — sup.fi(b)| = C.

Proor. Suppose sup; fi(a) — sup.fi(b) = C + e Let t be such that f;,(a) >
sup. fi(a) — ¢/2. Then

sup: fi(a) — sup,fi(b) < fig(a) — fio(b) + ¢/2 < C + ¢/2.
Interchange a and b to complete the proof.
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NoraTioNn. | X[, will be the L* norm of X, that is [X|., = sup, |z,| where z
is the s'th coordinate of X.

LemMa 4.6. [V (wy, U) — V'(wy, V)|w < |U — V| where w7y is U optimal
and wv s V optimal.

Proor. For any policy =, |V'(x, U) — V'(m, V)|e = |V"(«, Ry) +
Q- QU — V"'« Ry) — Qpp -+ QnVl]e = @, -+ Qn(U = V)| =
|U — Ve where 7' = (--+, fa, ==+, fa, f2)-

Apply 4.5 to each coordinate, where the supremum is taken over all policies .

LemMa 4.7. Let Y be a limit point of V" (7x , X) where wx is X-optimal. Then
for some N, V*(wy ,Y) = Y.

Proor. As Y is a limit point of V*(wx, X), it must be a limit point of
V*(xy , Y). Consequently, either V¥(ry , Y) = Y for some N or else V" (wy ,Y)
# V*(wy, Y) for any m # n. Suppose that the latter is the case.

Recall that V*(w,, A) = A from 4.1 and 2.4. Let Y, be a limit point
of {V*(wy, Y)} with |Yy — A|e a minimum (which must be attained as the set
of limit points of {V"(7y, Y)} is a compact set).

We have

[V (7re, Yo) — V'(7a, A)le = [V(7ry, Yo) — Al = Yo — Al

by 4.6. It follows that each limit point of V"*(wy, , ¥Yo) has the same L., distance
from A. But since Y is a limit point of V"(wy, Y), so each point of V*(7wy, Y)
is a limit point of V*(=y , Y). Hence all have the same L, distance from 4.

Note that A + K, where each coordinate of K is k, has the property that
Y*(rasx, A + K) = A + K. Hence by the same argument all V*(ry,.Y)
are the same L, distance from 4 + K.

Let an infinite number of V*(wy , Y) have

I[Vn(wl’! Y) - A]Sll = IVn(WY! Y) - A'oo

for some s; where [X], denotes the s'th coordinate of X. Then there is a k;such
that an infinite number of these have [V"(wy, Y)];, = ki . All of these must have
the same distance from A — K; where each coordinate of K; is k; . If this distance
is zero the proof is finished. If not, there is an s, # s with |[[V*(7y, V) —
(A — K, = |V*(7y, Y) — (A — K)|» for infinitely many of the selected
V"(xy, Y). Thus infinitely many of these have [V'(wy, Y)], = k. and
[V*(wy, Y)],, = k1. Continuing in this manner, after at most S steps we have
infinitely many V"(wy, Y) agreeing in all coordinates. But this contradicts the
assumption that V" (xy, Y) # V'(7y, Y) for m £ n. We have thus proved

ToeoreM 4.8. If = is an optimal policy then there is an N such that
lim, [V (7, 0) — (nN + r)Q*R)] exists for any r.

COROLLARY 4.9. Given € > 0, there is a policy © = (-++, fa, *++, f1) with
Fmin = fm for m > mq such that |[V"(x, 0) — V*(x', 0)| < e for optimal =, uni-
Sformly in n.

Proor. By 4.7, there is a periodic Y-optimal policy for any Y which is a limit
point of V*(w, 0). Lemma 4.6 then implies this result.
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6. Analysis of a special case. In this section we analyse the case where each
entry of Q; is positive. We denote by go the minimum element of all the Q,’s.

Lemma 5.1, If Ly(A) < L,(A) and f occurs infinitely often in a policy =, then
as n — o each coordinate of V'(w, A) — V"(g”, A) goes to — .

Proor. V*(r, A) = nQ*R + Cn + Q;.Cos + -+ + Q;, --- Qs,Ci where

= (L;; — L,)A. This may easily be shown inductively. The hypothesis is that
an infinite number of C, are < 0. As Q™ has identical rows, 2.5 implies that all
C. < 0. Let the s'th coordinate of an infinite number of C, be less than —e.
Then for such C,, each coordinate of Qy, -:- @Qy,,,Cn is less than —qee. The
assertion follows.

TuEOREM 5.2. If 7 is optimal and f occurs infinitely often in = then L;(A) =
L,(A) and Q;*R; = Q*R.

Proor. L;(A) = L,(A) by 5.1 and 2.5. An easy calculation shows that if
QQ'R = Q'R then Q,"R; — Q"R = Q,*(L; — L,)A. Finally, Q,Q*R =Q*R
because Q™ has identical rows.

LemMA 5.3. Let [Q_;, ¢ = 1,2, -] be a sequence of Markov matrices with each
coordinate of Q_; > ¢ > 0 for all 1. Then lim, H i=—n @ emsts and s a Markov
matrix with identical rows.

The proof is found in [3].

THEOREM 5.4. If m is optimal, then V"(r,0) — nQ*R — A converges as n — o
to a limit vector with identical coordinates.

Proor. Let k be large enough that those members of F which occur only
finitely often in 7 occur only in f; to fi and not in f; for ¢ > k. Let J =
V¥(w, 0) — A. Then, using 5.2, V"*(x, 0) = V*(m, V¥(x,0)) = nQ*R + A +
Qs, *++ Qp.J where me= (---, fiy2, fir1). By 5.3, the rightmost term con-
verges as n — o« to a vector with identical coordinates.
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