SOME SMIRNOV TYPE THEOREMS OF PROBABILITY THEORY!
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1. Introduction. Let &1, 12, -+, é1nand £, &2, - - -, f2m be two samples of
mutually independent random variables having a continuous distribution func-
tion F(t). Let F1.(¢) and Fan(t) be the corresponding empirical distribution func-
tions. In 1939 Smirnov [10] proved the following two theorems:

(1.1)  limyw P{N? SUp_wctctn (Fin(t) — Fam(t)) <y} = 1 — ™,
if y > 0, zero otherwise, and
(1.2)  limy.w P{N? SUD_wcicieo |[Fin(t) — Fan(t)| <y} = Dorew (—1)ke %"

if y > 0, zero otherwise.

In both cases N = nm/(n + m),and N — « is to mean that n — «©, m —
so that m/n — p, where p is a constant. (The problem of determining the exact
distributions of the respective random variables for finite values of n and m was
solved by Koroljuk [6] on the assumption that m = np where p i an integer.)

Results (1.1) and (1.2) are used to test the statistical hypothesis that two
random samples come from the same unknown population. Even if F(t), the
hypothetical distribution function of the two random samples in question, was
assumed to have a specific form, we would not get more information out of these
theorems, for they consider the supremum of the difference (Fi,(t) — Fan(t))
and that of its absolute value with the same weight 1, regardless of the value of
F(t). Thus in this way the idea arises of considering the limit distribution of the
quotients {F1,(t) — Fam(t)}/F(t) and |F1n(t) — Fam(t)|/F(t), with the natural
limitation on F(¢) that we restrict ourselves to an interval {, < ¢t < + «, where
F(t,) = a > 0, when taking the supremum of these random variables. The
value of @ can be arbitrarily close to zero.

2. Statement, discussion, and consequences of theorems. Using the no-
tation and assumptions of Section 1 we are going to prove the following theorems
(for the definition of the distribution functions ®(-), L(-), N(-) and R(-) of
Theorems 1, 2, 3 and 4 we refer the reader to (3.4), (3.5), (3.6) and (3.7) of
[8] respectively ).

THEOREM 1.

(2.1)  limy.o P{N*supa<rey (Fia(t) — Fen(t))/F(t) < y} = ®(y{a/[l — a]}?),
ify> 0,0 < a <1, zero otherwise.
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THEOREM 2.
(22) limyaw P{N*supagrey [Fia(t) — Fan(8)|/F(t) < y} = L(y{a/l — al}}),

ify > 0,0 < a < 1, zero otherwise.
THEOREM 3.

(23) limyow P{N’ SUDsgrin <6 (Fin(t) — Fan(1))/F(t) < y} = N(y; g, b),

where —o <y < 4+, 0<a<b<1.
THEOREM 4.

(24) liMyaw P{N* supazr <o [F1n(t) — Fan($)|/F(t) < y} = R(y; a, b),

ify > 0,0 <a<b<1,zero otherwise.

As a reminder we note that N of above theorems is defined as in Section 1 and
N — = is also meant as explained there. The theorems themselves are Smirnov
type analogies of Rényi’s Kolmogorov-Smirnov type theorems in [8].

To prove these theorems we need only the assumption that F(t) is continuous
but the statistical application of them requires the assumption of a specific form
for F(t). Assuming then that F(t) is a known continuous distribution function,
the above theorems provide tests for verifying the statistical hypothesis that two
random samples come from the same population with distribution function F(t).
The character of these tests is that, in case of Theorems 1 and 3, they give upper
bounds below which the difference of two empirical distribution functions in
question must lie with given probabilities and the width of this upper bound is
proportional at all its points ¢ to F(¢). In case of Theorems 2 and 4 we have
proportional bands (two-sided confidence intervals) instead.

From (1.1) it follows that

(2.5) limye P{SUP_wcicto (F1n(t) — Fam(t)) < 0} = 0,

that is, the probability of the event that one empirical distribution function
does not exceed the other one all along the interval — o < ¢ < + o, tends to
zero as N — «. It follows from Theorem 1 that the same is true for the interval
ta <t < 4 o, that is, we have:

CoroLLARY 1.

(26) HmN..,gg P{supt¢<t<+,° (Fln(t) -_— Fzm(t)) < 0} = 0

On the other hand we have from Theorem 3:
COROLLARY 2.

(2.7) liIn),/_,(,o P{Supcagtétb (Fln’(t) - Fzm(t)) < 0}
=1/rarcsin {a(1 — b)/b(1 — a)}},

that is, the probability of the event that one empirical distribution function does
not exceed the other one all along the interval ¢, < ¢ < # , remains positive in the
limit.
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A similar statement was proved by Rényi [8] and Gihman [5] concerning the
asymptotic behavior of an empirical and theoretical distribution as follows:

(2.8) limn.o P{sup;,<i<s, (F1a(t) — F(t)) < 0} »
= 1/rarcsin {a(1 — b)/b(1 — a)}t.

(Note that the right sides of (2.7) and (2.8) are the same.)
It follows from Theorem 5 of [3] that we also have:
THEOREM 1%,

My P{N? SUPagriny (Fin(t) — Fam(t))/Fia(t) < y}
= liMyaw P{N* SUDs<rymty (Fin(t) — Fom(t))/Fan(t) < y}
= limyow P{N? suprer (F1a(t) — Fam(t))/F1a(t) < y}
(2.9) = limuaw P{N?supir (Fin(t) — Fon(t))/Fem(t) < y}
P{N*supir (F1a(t) — Fan(t))/Farm(t) < y}
P{N* suPagry,my (Fin(t) — Fom(t))/Frim(t) < 9}
d(yla/[1 —allh), o y>0, 0<a<1, zero otherwise,

where ®(-) s the same distribution function as that of (2.1) and where
T ={t:a £ Fi.(t)} n{t:a £ Fan(t)}, and Fnyn(t) is the empirical distribution
Sfunction of the random sample gained by pooling the two random samples of size n
and m respectively.

Similar starred versions of Theorems 2, 3 and 4 are also true. These starred
versions can be used to construct confidence intervals for the difference of two
empirical distribution functions, and can also be used to test the statistical
hypothesis that two random samples come from the same population without
requiring the assumption of a specific form for F(¢), while we had to do so when
the unstarred versions of these theorems were used to test this statistical hypothe-
sis. Thus starred versions of Theorems 1, 2, 3 and 4 retain the advantage of
Theorems 1, 2, 3 and 4 that they measure the relative deviation of two sample
distribution functions and regain the convenient property of (1.1) and (1.2) that,
in applications too, nothing has to be assumed about the form of F(¢) beyond its
continuity.

3. Sketch of proof of Theorems 1, 2, 3 and 4, by means of adapting the ideas
of Rényi’s proof of his Kolmogorov-Smirnov type theorems in [8]. Without loss
of generality we may assume F(¢) = ¢ with ¢ uniformly distributed on [0, 1].
Let F1,(¢), Fan(t) be two empirical distribution functions constructed by select-
ing two random samples of size n and m respectively from this uniform distribu-
tion on [0, 1]. Accordingly, we will have to derive the limit distribution of the
random variable sup.<: (F1.(t) — F2m(t))/t, which, in turn, can be shown (using
the Glivenko-Cantelli theorem) to have the same limit distribution as
SUDa<rym(t) (F1n(t) — Fam(t))/t. Using Theorem 5 of [3] it is seen that the later

= limN-no

= lim N-»o0
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random variable has the same limit distribution as SuUpa<rymp (Fia(t)
— Fon(t))/Fam(t). Again using the Glivenko-Cantelli theorem one can easily
show that the later random variable has the same limit distribution as

(3.1) SuPeers [(F1a(2)/0)/(Fam(t)/t) — 1],
where T' = {t: 0 < Fuu(®)} n{t: a < Fau(t)} n {t: @ < Foia(t)} and where

Frim(t) is the empirical distribution function of the random sample gained by
pooling the random samples of size n and m respectively.

Having got this far we remark here that assuming the validity of Theorems 1,
2, 3 and 4 for a moment and using Theorem 5 of [3] we can conclude that starred
versions of these theorems, as specified in Section 2, are true.

Continuing, let 71 < 72 < -+ < 71, and 721 < 722 < - -+ < 72 be the two
order statistics corresponding to the two random samples of size n and m respec-
tively, taken on the uniformly distributed ¢ £ [0, 1] and let n < 52 < -+ < Nnym
be the order statistics gained by pooling these random samples of size n and m.
Now the only places where one or the other of the step functions Fy,(t), Fem(t)
change their value are at m, k = 1, -+, n + m. Also, Fi.(t) and Fa,(t) are
constants in any interval 7 < ¢ < m41,k = 1, ---, n + m. Thus, concerning
the random variable of (3.1), we have the following inequality:

Fin(merr — 0)/meta Fi.(t)/t
(32) ma"[ Tl T 00/ 1] = sup [F_zm(t)/t - 1]

S maxy [ L0 £ O/ _ ]

F. 2m(‘ﬂk+1 - 0)/ Ne+1

where S = {i:an =i = njn{jiam = j<m}in{k:a(n+m) £k £ n+ m},
a finite set corresponding to T" of (3.1). We also have that

-/
-/ mq

(3.3) right hand side of (3.3) < maxs| L —— — 1
;7; / M2j+1

and

2/
) -~/ M+
(34) maxg | — 1 | = left hand side of (3.2),

i

for: (1) if m = my;, then we have that ni; € (25, n2511) for some j, 5 = 0,

1, e ,m, with N2 = 0 and Nom+1 = 1 and so Fl,.(m 4 0) = Fln(ﬂk+1 - O) = 1/7&,
Fom(me + 0) = Fom(myr — 0) = j/m; (2) if m = a7, then na; & (ms, Mmit1)
for some 4,7 = 0, 1, -+ , m, with 70 = 0 and 91,41 = 1 and 80 Fou(m + 0) =

Fom(eyr — 0) = j/m, Fia(m + 0) = Fra(mess — 0) = i/n.
Relations (3.2), (3.3) and (3.4) imply that
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What follows after this is a straightforward argument, adapting Rényi’s
method of proof of his theorems in [8], showing that, as N — o, the right and
left hand expressions of (3.5) tend to the same limit, namely to ®(-) of (2.1).
This proves Theorem 1. The proof of Theorem 3 can be based on the same ideas,
and the above kind argument leads to functions L(-) and R(-) in case of
Theorems 2 and 4 as lower estimates for the respective statements.

4. Proof of Theorems 1, 2, 3 and 4, using Rényi’s results by means of the in-
variance principle. This alternative and shorter way of proving Theorems 1, 3
and sharpening 2, 4 to their present form was discovered by the referee of this
paper. Following his advice I attach this proof here and express my deep ap-
preciation to him for it.

Let C[0, 1] be the space of continuous functions on [0, 1]. In Appendix 1 of [7]
Yu. V. Prokhorov studies the functions ¢ which are defined on [0, 1] and have at
every point, right and left limiting values. The distance function d(¢; , ¢2) ((2) of
p. 206 of [7]) is introduced, in relation to which the totality of these functions
becomes a complete separable metric space (Theorem 1, p. 206 of [7]). This space
is called D[0, 1]. We define here D = D[0, 1] x D0, 1] and let ¢; be the pro-
jections of D onto its sth coordinate space (¢ = 1, 2). D is then a complete
separable metric space in the sense of [7], Theorem 1, p. 206. Let

En(t) = n}(Fua(t) — ¢t)
Eam(t) = M} (Fam(t) — t).

We define Anm = (£1n(t), £2x(t)), which is a random variable with values in
D, and for any n, m, ¢1An m and @sA, . are independent random variables. Accord-
ing to Donsker’s theorem ([7], p. 187, Theorem 2.4) we have

(4.1) ta(t) = X,
Ezm(t) = X,

(3.5)

IIA

<P —-1|<y

where = means weak convergence in the sense of [7], p. 164, of the respective
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distributions and X; (¢ = 1, 2) are two copies of the Gaussian process on [0, 1]
with mean 0 and covariance (s, t) = s(1 — t),0 < s £ t £ 1, considered as
random variables with values in D0, 1] (in fact in C[0, 1]). Also X; and X, are
independent random variables. It follows then from (4.1) that

A,.,m = (Xl , Xz)

if m and n both go to o, for consider sets G; x G, with G; < D|0, 1] open,
P{X; ¢ boundary of G;} = 0, ¢ = 1, 2 and apply Theorem 1.9, p. 165 of [7].
Let us define the map

(4.2) V. = ot + (1 — a)lp

(where 0 < « < 1) from D to D[0, 1]. Then ¥, is continuous at all points of
C[o, 1] x C[0, 1] and

P{(Xl, X?) 80[03 1] x C[O) 1” = 1.
Thus, we can apply Theorem 1.8 of [7] and conclude that
(43) ’ \I,aAn,m = \I,a(Xl ) X?) e X,

where X is again a copy of the Gaussian process with mean 0 and covariance
r(s,t) = s(1 — t). Now

N} (Fua(t) Fan(t)) = (m/(n + m))*a(t) — (n/(n 4+ m))*an(t)
= (P/(l + P))}Eln(t) - (1/(1 + P))*&m(t) + Pn,m = \I'p/(1+p)An.m + rn,ms

where T, — 0if m/n— pand N = nm/(n + m) — . Therefore, by (4.2) and
(4.3), we have

N} (F1a(t) — Fan(t)) = X.
Again by Theorem 1.8 of [7] it follows for 0 < a < b < 1 that
Ukt iV} (Fin(t) — Fom(t))/t = supuren X (1)/t = I
SuPeta iN? [F1a(t) — Fom(t)|/t = $Upreiam | X (8)I/t = II.
Similarly, (4.1) and Theorem 1.8 of [7] imply
SUDefat) E1n(t)/t = SUPrerary X1(2)/t = I’
SUDteap) [£1n(E)|/t = SUDsera | Xu(2)|/t = IT'.

In (8], Theorems 5-8, Rényi determines the distributions of I’ and II' which,
by above argument, coincide with the distributions of I and II (the processes
X1, Xe and X have the same distribution). This proves Theorems 1, 2, 3 and 4.
Using Theorem 5 of [3] and above argument, the starred versions can also be ob-
tained the same way or, as we have already observed earlier in Section 3, they
(the starred versions of Theorems 1, 2, 3, and 4) can also be proved by using
Theorems 1, 2, 3, and 4 of this paper and Theorem 5 of [3].
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In [1] Anderson and Darling derive the limit distribution of the one-sample
Kolmogorov-Smirnov statistics using a generalized nonnegative weight function
¥(t),0 =t < 1. We remark here that, using the above argument, their theorems
can also be extended to the two-sample relations of this paper.
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