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1. Introduction and summary. In [1] Conolly derived an important result (3.19)
for the queueing system GI/E;/1. This result has been .used by him to obtain
the joint distribution of the number of customers served during a busy period
initiated by one customer and its length for the queueing system GI/E;/1. In
this note we shall derive their steady state properties by using the above result
of Conolly. Earlier Wishart [6] and Conolly [2] had studied these features using
different methods.

The queueing system GI/E,/1, studied in this note is the one in which

(i) the time intervals between arrivals are independent and are identically
distributed according to the law dA(¢) (0 < ¢ < ), with mean a and Laplace
transform ¢(9) ; )

(ii) the queue-discipline is “first come, first served”;

(iii) there is only one counter and the service-times are independent and
identically distributed having a x* distribution, with mean b and 2k degrees of
freedom i.e.

dB(t) = [¢*"°/(k — 1)1(kt/b)* 'k dt/b; and

(iv) the service-times are independent of the inter-arrival times.

Thus we may imagine that the service takes place in &k consecutive phases,
where the time spent in each phase is distributed negative exponentially with
mean b/k.

2. Notations. Let the first customer (who does not have to wait) arrive at the
instant ¢t = 0.

(i) df(t;my,my2) (02 0,n=1,1=<m=n,1 =7 = k)is the probability
that the (n + 1)th customer arrives during (¢, ¢ + dt), and finds that the
(n — m + 1)th customer is receiving service and his service is in the 7th phase,
under the restriction that the server is always busy during (0, £).

(ii) df(¢; n, m) (¢t 2 0, = 1,1 £ m = n) is the probability that the
(n 4+ 1)th customer arrivers during (¢, ¢ + dt) and finds that the queue length
is m (i.e. his arrival makes the queue length m -+ 1), under the restriction that
the server is always busy during (0, t). df(¢;n,m) (t 2 0,n =2 1,0 = m £ n)
will denote df(¢; n, m) without such a restriction.

(iii) d;.P(t,z;n) (t 2 0,n = 1,2 > 0) is the probability that the (n + 1)th
customer arrives during (¢, { + dt) and has the waiting time lying in [z, z 4 dz),
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under the restriction that the server is always busy during (0, t). di..P(¢, z; n)
(t=0,n = 1,z = 0) will denote d;.P (¢, x; n) without such a restriction.

(iv) fn,m) (n 21,1 £m < n) = [iodf(t;n, m).
F(n,m) (n 21,0 < m = n) = [idf(t;n, m).
(v) dP(z;n) (n = 1,z > 0) = [ di.P(t, z;n)

dP(z;n) (n 2 1,z 2 0) = [mod:P(t, ;1)

(vi) GI/G/1: (in the present discussion) this system is the generalization of
GI/E./1 to the case where the service-times are distributed according to the
law dF (t) (0 < ¢t < o), with mean b.

(vii) p: the relative traffic intensity, given by the ratio b/a.

(viii) dP(z) (0 < z < ®) = lima.o dP(x, n), the limiting probability that
a customer has a waiting time lying in [z, ¢ 4 dz), when 0 < z < oo.

(ix) fm (0 £ m < ®) = liMp.w f(n, m), the limiting probability that an
arrival makes the queue length m + 1 (at the instant), when 0 = m < oo.

It may be noted that in defining the queue length here, the customer presently
being served is included. It may also be noted that the limits in (viii) and (ix)
exist for the present case (cf. Section 4: discussions following (4.7), (4.9) and
(4.11)). o

3. Formulae from Conolly’s result. From Conolly ([1], (3.19)) we have
(3'1) ) :zm f?=o e—otdf(t; n, m, i)z("+l)k
= 2 Sk (28) ™ (5) (R(0) > 0, [o] £ 1),

where &, - - - , & are the distinct roots in [z < 1 of the equation

(3.2) z* = ¢{6 + k(1 — x2)/b}
and
(3.3) H(z) = (z — &) - (x — &).

H'(%,) denotes differentiation of H(x) with respect to z with the subsequent
substitution of &, .
We can easily see that

(3.4) df(t;m, m) = D i1 df(t; n, m, %)
and :
(3.5) d;.P(iz;n)
= > Sk e (kx/b)™ T (ks — )1 df(t; m, m, 3)k dx/ b
Hence from (3.1), (3.4) and (3.5) we get
(36)  Dmem [omoe " df(t; m, m)e "
=2 >k (2)™(1 — (28)/[H'(8)(1 —2£)], (R(8) >0,[e] =1)
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and
Tt 5 6 AP (4 5 m)e
(3.7) =2 Doerexp (—ha(l — 2£)/b)[(2t.)"/H' (£)]k da/b
(R(6) >0,z =1).
4. Some steady state results. From the total probability law the following

theorem will be proved.
THEOREM. For the queueing system GI/G/1

(4.1) Jm=0 (I1=m< o) (pz1)

= fo Za=mf(n,m) (L= m < ) (p<1)

and

(4.2) dP(z) = 0 0<z2z< ©)(pz1)
= P(0) 27 dP(z;n)  (0<z < =) (p<1),

where '

fo=P0) =1+ 20 [3ordP(y;m)] " >0  (p<1)
=0 (p21)

1s the limiting probability that a cuslomer does not have to wait.
Proor. Let 2, be the service time of the ath customer, B, be the inter-arrival
time between the arrival of the ath and the (a 4 1)th customer, and

Sp = Z:=l (za - Ra)

Then
dP(z;n) =Pr (8, >0,r=1,2,--- ,n;2 = 8, <z + dz)
<Pr(S8>0r=12,---,n).
From Wald ([5], A. 19), we have
(4.3) limgee Pr (S, > 0,r=1,2,--- ,0) =0
when E(z, — RB,) =0 ie. p = 1. Hence
(4.4) - limp.e dP(z;n) = 0 when p < 1.

It will now be shown that the re_striction p < 1in (4.4) is not necessary. To
do this we proceed as follows: Let S, = S,—, — S, , then

dP(z;n) =Pr (S, >0,r=1,2,--- ,n;2 = S, <z + dx)
(4.4)' =Pr(z+8>0,r=0,1,---,n—1;2 < Sp < z + dr)
<Pr(z+8>0,r=0,1,---,n—1).
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As in the previous case from A. 19 in Wald [5], we have lima.. Pr (z + S,

>0,r=0,1,---,n—1) = 0 when E(—2, + R.) = 0Oie. p = 1. This
gives .
(4.5) limy.., dP(z;n) =0 when p > 1.

Let P(0; n) be the probability that the (n + 1)th customer is the first amongst
the customers who do not have to wait after ¢ = 0. Then using A. 19, A. 71
and A. 97 from Wald [5] we can see that

(4.6) > meinP(0;n) = whenp = 1
< ® when p < 1
and using the expression A. 19 in Wald [5], we see that
(4.7) 2 P(0;n) =1 ifp=1
<1 if p > 1.

(4.6) and (4.7) are due to Finch [3]. It is known that lima.e f(n, 0) exists (cf.
Lindley [4]). Hence we have, using Abel’s theorem and the total probability

theorem .

(48) P(0) = fo = lim,.1i (1 — 2)¢(){1 — ¢(2)} 7,
where ¢(z) = D.we12"P(0; n), || £ 1. From (4.8), (4.7) and (4.6), after
some easy mathematics, we get

PW0) =fo=0 ifpz=1

=1+ X0a [(=+dP(y;m)]7 >0 ifp <1

(4.4)" and A. 71 (Wald [5]) give, for p > 1, that > _ams dP(z;n) < co.
We have from the law of total probability

(4.9) dP(z;n) = dP(z;n) + 2 f(n — 5,0)dP(x;s)  (nz 1),

where D"l is zero when n = 1. By taking the limit of (4.9) for p # 1 asn
— o, we get (4.2). (As the right hand side has a limit, the left hand side must
have one. When p = 1 also lim,.., dP(x;n) exists and equals zero (cf. Lindley
[4]).)

Now it remains to establish (4.1). This may be done as follows: If the queue
length just after the present arrival is m -+ 1 and if ‘the mth previous customer’
arrived z units of time earlier and if his waiting time was y( < z), then his service.
time (i.e. the service time of ‘the mth previous customer’) must be > z — y

Hence
f(r,m) = [t fior dAn(2)dP(y;n — m) (1 = F(z = 9))
(4.10) (n > m)
= [rm0dAn(2)(1 — F(2))(n = m)
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and
F(n,m) = [Zor [ieor dAn(2)dP(y;n — m)(1 — F(z — y))
(4.11) + [0dAn(2)(1 = F(2))f(n — m,0)(n > m)
= [L0dAn(z)(1 = F(2))(n = m),

where A,(z) is the m-fold convolution of A(z) with itself. Taking the limit
of f(n, m) in (4.11) as n — o (lims., f(7, M) exists because limy., dP(z;
n) and lim,.. f(n, 0) exist), and using (4.2) and (4.10) we get (4.1).

The theorem also shows that the steady state distribution exists when p < 1
(cf. Lindley [4]). Thus, if p < 1 from (3.6), (3.7), (4.1) and (4.2), in the case
of the queueing system GI/E)/1 we have

(412)  fo=fo 20t (1= n")/H (1)1 — n)(1 = m < »)
(4.13) dP(z) = P(0) > i exp (—ka(1 — n,)/b) 0.’k dw/H' (7.)b
0 <z < ),

where fo = P(0) = H(1), m, -+, m are the distinct roots of a* = y(k(1 —
z)/b) in |z| < 1 and H(z) = (x — m)---(x — m), H (n.) being defined simi-
larly, as H'(&). The results (4.12) and (4.13) are the same as those derived by
Wishart [5].
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