ASYMPTOTIC PROPERTIES OF AN AGE DEPENDENT BRANCHING
PROCESS!

By H. J. WEINER
Stanford University

0. Introduction and summary. Let Z(¢) denote the number of cells at time ¢
which are progeny of a single cell born at ¢ = 0, G(¢) with G(0) = 0 be the lifetime
distribution function of each cell, and h(s) = X_r—o p,s’, where p, are constants,
-2 0, > 7_op, = 1 be the generating function of the number of cell progeny
which replace each cell on completion of its life. Cells develop and proliferate
independently of each other. For general G(¢) this process is called an age de-
pendent branching process and for G(¢) an exponential distribution, a Markov
branching process [3].

When the mean number of progeny per cell, K(1) = 1, and A®(1) > 0,
R®(1) < , and G(¢) is an exponential distribution with parameter \, Sevast’-
yanov [5] showed by study of a differential equation satisfied by F(s, ¢) =
D 7o PlZ(t) = jl5°, that lim . tP[Z(t) > 0] = 2[\k® (1)]™" and that for » = 0,

(1) lim,.o P2OVP (1)) TZ(t) > u| Z(t) > 0] = exp (—u).

Analogous limit theorems for the discrete time case were obtained by Kolmogorov
and by Yaglom. See [3], pp. 21-22, 108-109.

It is the purpose of this paper to extend the results of Sevast’yanov to the case
of general G(t). In Section 1, Theorem 1 gives the form of the asymptotic
moments of such an age dependent branching process by study of an integral
equation satisfied by D(s,t) = 1 — E [exp (—sZ(t))]. Chover and Ney [1] have
shown that for mild conditions on G(t) and h(s), that lim,, tP[Z(t) > 0] = b,
where b is a strictly positive constant to be defined. In Section 2, this result, to-
gether with Theorem 1 yields a conditional limit theorem which generalizes (1).
Section 3 contains remarks on an analogous general discrete time result of
Mullikin [4].

1. Asymptotic moments. Define m(t) = E[Z(t)] and M,(t) = E[Z"(})],
n=1,23, ---.We will need the following lemma.

LemMA. Let BV (1) = 1. Then M,(t) is increasing.

Proor. For 0 £ u £ ¢, E[Z(t)| Z(u)] = Z(u). It is then known that 3/, (¢) is
non-decreasing by Jensen’s inequality (see [2], p. 313), and G(0) = 0 insures that
Z(t) < « a.e. ([3], pp- 138-139).

TueoreM 1. Let KV(1) = 1, A1) > 0, (1) < o, n = 2,3,4, ---, and
[0 udG(u) = me, where 0 < mg < . Then lim;.e ML) = nto” " for
n=123, ,and b = 2me/h®(1).

Proor. G(0) = 0 insures that m(f) < « and Z(¢) < « a.e. ([3], pp. 138—
139).
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Let R(s, t) = Elexp (—sZ(t))]. Using [3], p. 130, we obtain
R(s,t) = exp (—s)[l — G(t)] + [sh(R(s, t — u)) dG(u).
Define D(s,t) = 1 — R(s, t). Then
D(s,8) = [1 — exp (—=9)][l — G@®)] + [oD(s, t — u) dG(u)
— 2= (—1)RP)GHT [AID(s, t — w)) dG(u).

By taking Laplace transforms with respect to ¢ in the above equation, solving
for the Laplace transform of D and reinverting, it is found that

(2) D(s,t) =[1 — exp (—s)]
— X (1RGN [oID(s, t — w)) dK (u),

where K (u) = D a1G™(u), and G* denotes the kth convolution of G.

Then, where derivatives are taken with respect to s, m(t) = D®(0,¢t) = 1,
and in general, M,(t) = (—1)""D™(0, t), n = 2, 3, ---. We obtain that
My(t) = 1 + R®(1)K(t), and lims. ¢ Ms(t) = A (1)/me ([8], p. 246). Again
from (2),

(3) My(t) = 1+ A2 (K (@) + 3% (1) [§ Mot — u) dK(w).

Let H(s) denote the Laplace transform of a function H(¢). Then, by a standard
Abelian theorem [10], lim, ;o "M (s)K (s) = R?(1)/m¢’, and by a Tauberian
theorem [10] applied to (3) by virtue of the lemma, lim;., 2 Ms(t) =
3(h®(1))%/2ms" = 6b7". :

The result of the theorem holds for m(t), Ms(t), and Ms(t), and the terms
contributing to the asymptotic formulas of these moments are obtained solely
from derivatives of the D’ term in the integrand on the right hand side of (2).
Assume by induction that the result holds for AM,(¢). Then by the induction
hypothesis and standard Abelian and Tauberian theorems along with the lemma
applied to the limiting behavior, for s | 0, of the Laplace transforms of the
convolutions of M, (t), M;(t), and K(¢t) for j, k < n, the asymptotic formula for
M ,.1(t) is obtained solely from the derivatives of the D? term.

Hence, taking derivatives with respect to s, we obtain from Leibnitz’s rule for
successive differentiation, that

(4) (D*(0, )™ = 25 ("EHDY(o, D" (0, t)
— Z}rc;l (n;cf-l)D(k)(O’ t)D(n+l—k)(O, t),

since D(0, t) = 0. Using the induction hypothesis, by the Abelian theorem ap-
plied to the Laplace transform of (4), the right hand side becomes, in absolute

value,
~smIP() R (IO ED P (n — k4 1), for s | 0.

Then, from (2),
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R (1) (2me)'T(n) 2oier (kN0 — k4 1) 7"
= (n + 1) "nl'(n),
so that applying the Tauberian theorem to (5) by virtue of the lemma yields
liMg,e & "Mapa(t) = (n 4+ 1) ™nl'(n)/T(n+ 1) = (n + )"
to complete the proof.

By a somewhat different method, similar results on the asymptotic moments
of N(t), the total number of cell births by time ¢, have been obtained [9].

2. Conditional limit distribution.

TreorEM 2. Let k(1) = 1, A%(1) > 0, and A (1) < o, n = 2,3,4, --- .
If 1 — G(t) = O(™®) for t — oo, then

lime. PIb7'Z(t) > u| Z(t) > 0] = exp (—u).

Proor. By Theorem 1, lim.,, b tE[bt"Z(t)]" = n!. By Carleman’s theorem
on moment sequences [7], n! are the moments of a unique distribution, clearly
the exponential distribution with parameter 1. Chover and Ney [1] have shown
thatfor1 — G(¢) = O(t™®),t— »,and k¥ (1) < o, that lim,,..tP[Z(t) > 0] =b.
Since E[(btT'Z(t))" | Z(t) > 0] = E[(bt'Z(t))"]/P[Z(t) > 0], it follows that

(6) lime. B[(0tTZ(t))" | Z(t) >0l =n! for n=12 -,

so that convergence in distribution holds. Hence, from (6), for u = 0,
limew PETZ(t) > u| Z(t) > 0] = exp (—u).

3. Remarks. In [4], it is shown that for branching process in a general state
space and discrete time, with a condition corresponding to h™’(1) = 1 and
certain compactness and positivity conditions, the limiting conditional distri-
bution is exponential. It is not clear that the results in [4] imply those in this
paper, or, if they do, it is not clear that the latter are easily derived from [4].

Sevast’yanov has also shown [6] that (a) lim,., tP[Z(¢) > 0] = b under the
conditions that A¥(1) < « and ﬁ u’ dG(u) < o, which are somewhat stronger
than those of Chover and Ney [1]. Sevast’yanov also claims to show [6] that the
result of Theorem 2 holds under the conditions that A®(1) < o and
f o 4’ dG(u) < o, by study of the integral equation for the probability generat-
ing function F(s, t) = 2o P[Z(t) = jls' and using (a). However, the proof
appears to have a gap. Specifically, in his notation, one obtains from p. 592 of
[6] that
[Q(DITR(t, exp (—3sQ(1)))
= {1 —exp (—sQ(1))/Q(O)[¥![l — exp (—sQ(¢))] + 11 + a(¢, exp (—sQ(¢))]
where for each zin'theinterval 0 £ r < 1,0 S a(t,x) < Klog (v(1 —2)t+1)-
[v(1 — )t + 1]7" ([6], p. 590). Hence, as t — «, one obtains that
0 < limew a(t, exp (—sQ(t))) < Klog (s + 1)[s + 1], which does not yield
that a(t, exp (—sQ(t))) — 0 as t — o, but which is required for the proof on
p. 592 of [6] to be complete.

(5) lim, o 8"Mupa(s)
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