CONDITIONAL EXPECTATIONS OF RANDOM VARIABLES
WITHOUT EXPECTATIONS!

By R. E. Strauch?
Unaversity of California, Berkeley

1. Introduction and summary. Let (2, §, P) be a probability space, and let X
be a random variable defined on (Q,F, P). If @ is a sub o-field of F, then
E(X | @) is the a.s. unique @ measurable function such that, for all 4 ¢ @,

(1) f+XdP = [LE(X|@)dP,

provided EX is defined. ([2], p. 341). If EX is not defined, that is, if EX" =
EX™ = o, we may then define E(X | @) = E(X"| @) — E(X™ | @), provided
the difference is defined almost surely ([2], p. 342). We show that this is the only
reasonable definition of E(X | @) (Lemma 2), and exhibit several apparent
pathologies, akin to the fact that a conditionally convergent series of real num-
" bers may be re-ordered to give any sum.

If X is any random variable with a continuous distribution such that £X is
not defined, then we can find an @ C ¥ such that F(X | @) = 0 a.s. (Theorem
1), and if Y is any random variable independent of X, we can find an @ C F
such that E(X | @) = Y a.s. (Theorem 2). In fact, if X;, X,, - -+ is a sequence
of independent random variables such that for n = 2, EX,, is not defined and X,
has a continuous distribution, we can find a sequence of s-fields @& C @, C

- C F such that X, --- , X, are @, measurable and E(X,11 | @) = X, a.s.
(Theorem 3). The sequence {X,, F,,n = 1, 2, ---} is not a martingale how-
ever, since for m > n + 1, E(X.. | F.) is not defined.

We remark that the standard theorem on iterated conditional expectations,
([2], p. 350) which says that if @ € ® C § then E(X | @) = E(E(X | ®) | @)
a.s. is valid only if E(X | @) is defined a.s.

2. Preliminaries. Let X, Y, Z, with or without affixes, denote random variables,
and let @, ®, with or without affixes, denote sub o-fields of §. ®(X;, -+, X,)
is the smallest o-field over which X;, ---, X, are measurable, and if € is any
class of sets, (@) is the smallest o-ring containing €.

DeriNITION 1. Let T denote the class of random variables X such that X has

a continuous distribution and EX" = EX~ = .
DeriniTioN 2. If X e T and @ C F, then
(2) E(X|@) =E(X"|a) - E(X | @)

provided the difference is defined a.s.
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Lemma 1. E(X | @) is defined and finite a.s. if and only i there exists
{An,n=1,2,---} C @ such that Uny A, = Qand [4, |X|dP < o for all n.

Proor. E(X | @) is defined and finite a.s. if and only if both terms in the
right hand side of (2) are defined and finite a.s. This happens if and only if the
indefinite integrals of X and X, and hence of |X| are o-finite on @.

DEerINITION 3. A class of sets @ is a semiring if 4, B¢ @ implies 4 n Be €
and A — B = UL, C;,withC;ecandC;n C; = Jfori#j5,1=<4,j=n

If @is a semiring, then r( @), the collection of finite disjoint unions of elements
of €, is aring, and ¢(€) = o(r(@)). Also ¢( @) is the smallest monotone class
containing r(@). (See [1], p. 22, problem 6; p. 26, problems 3 and 5; and p. 27. Our
definition of semiring is slightly different from that of Halmos, but the proofs
are the same.)

Lemma 2. Let X ¢ T, and suppose @ C F s a semiring such that o(@C) is a
o-field, and for each A e €, [4|X|dP < . Then E(X|o(€)) exists and is
fintte a.s. and if Z is any o(@) measurable random variable such that for all
Aee, [41Z2dP = [, X dP, then Z = E(X | o(@)) as.

Proor. Since (@) is a field, @ is covered by a countable subset of €,
and the first statement follows from Lemma 1. To prove the second, as-
sume Z # E(X|o(e@)) a.s. Then we can find a Ber(@) such that ZI; #
E(X | c(@))I5 a.s. But the class of sets A for which [4 ZI5dP = [, XI,dP
contains 7( @), and is a monotone class, since [ | XI5/ dP < w and [ |ZIs| dP
< o, Hence ZI; = E(XIz|o(@)) = E(X|o(@))Is a.s., which is a con-
tradiction.

In particular, if X e T and @ < F such that E(X | @) is defined and finite
a.s., then € = {4 |[Ae@, [4]X|dP < o} is a ring and @ = o(€). Hence
E(X | @) is the a.s. unique @ measurable random variable which satisfies (1)
orall 4 ¢C.

3. The results. Theorem 1 is a corollary of Theorem 2, but is included as a
separate theorem as the proof is somewhat simpler.

TaEOREM 1. If X € T, then there exists an @ C B(X) suchthat E(X | @) = 0 a.s.

Proor. For a > 0, we define

go(z) = f‘:nin(a:,o)tdF(t)

where F is the distribution function of X. For fixed a, g. is a continuous mono-
tone function of z, and g( — ©) = — . Let I(0,a) = {o |z < a and g.(z) = 0}
for a > 0, and let I(0, 0) = . Then I(0, @) is an interval about 0, and
10w tdF(t) = 0.Fora < b, 1(0,a) < I(0,b), and we let I(a, b) = I(0, b)
— 1(0, a). Then € = {X I(a, b) |0 £ a < b} is a semiring. For 4 ¢ €,
A = X'(a,b), [4|X|dP < «, and
[4XdP = [10m2dF(z) — [10.02dF(z) = 0.

Now set @ = o(@). Since @ = U5, X'I(0, n) € €, @ is a o-field, and by
Lemma 2, E(X | @) = 0 as.

CoroOLLARY. If X € T and a is any finite constant, then there exists @ C F such
that E(X | @) = aas.
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Proor. Find @ such that E(X — a| @) = 0 as..

THEOREM 2. Let X ¢ T, and let Y be any random variable independent of X.
Then there exists an @ such that ®(Y) € @ C &(X,Y) and E(X| @) = Y as.

Proor. For fixed a > 0, the function

ga(x’ y) = flen-‘i—?x(:c.v) (t - y) dF(t)

is a continuous hence Borel measurable function of z and y. For each y, g.(+, y)
is a continuous, monotone function of z, and g,(— «, y) = — «. For a > 0,
Y1 < Y2, let

10,0, 91,9) ={(z,y) | Sy <yp;2 =y + a;g9.(x,y) =0},

and let 1(0, 0, 41, 2) = .
For fixed y, the section I,(0, a, y1, ) is an interval (empty if y £ [y1, ¥.]),
and

Jr00men (& — y) dF(z) = 0.
Fora < b,1(0,a,y:1,y.) < I(0,b, 41, y), and we define
I(a,b,y1,9:) = 1(0, b, 31, %) — j(O, a Y1, Y2),
e ={(X,Y) ' I(a,b,y1,4) |0 <a<by <yl

Then € is a semiring, and @ = o(€) is a o-field. Forany A ¢ €, [4|X|dP < =
and [4XdP = [,YdP. But Y is @ measurable, hence by Lemma 2,
E(X|@) =Y as.

This is quite different from the situation when EX is defined. f E(X | Q) = Y
a.s. and EX is defined, then E(X | ®(Y)) = Y a.s. and thus if Y is independent
of X, then ¥ = EX a.s. In our case, however, E(X | ®(Y)) is undefined, since
EXY|®(Y)) = E(X | ®(Y)) = »as.

We can easily extend this result to a sequence of independent random variables

to obtain

THEOREM 3. Let X1, X,, --- be a sequence of independent random variables
such that, for n = 2, X, ¢ T. Then there exists a sequence of o-fields @, @, -
such that (X1, -+, Xu) C Gy C B(X1, -+, Xuy1) and E(Xppa| Gn) =
X, a.s.

Proor. According to Theorem 2, for each n we can find ®, such that ®(X,) C
®Bn C B(Xp, Xny1) and E(Xpp1| Bs) = Xpas. Let @ = o(Bau B(Xq, -,
Xna)). Then B(X;, -+, X,) C G C B(Xy, -+, Xny1) and ~

E(Xn| @Gn) = E(X51|@n) — BE(Xny1| Q) as.
E(Xuu|Gs) — BE(Xn| ®Ba) as.
= E(Xns1| ®s) a.s.
= X, a.s.

The second equality follows from the fact that EX%,, and EX,,, are defined,
and X%, and X5, are independent of ®(X:, -+, Xa1).
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If we consider random variables with discrete distributions, the theorems
may fail; as is shown by the following example. Let @ = {1, 2, ---}, let § be all
subsets of @, and let P{j} = 27. Let X(j) = 2’ if j is odd and — 27 if j is
even. Let A be any set for which [, [X|dP < «. Then 4 is finite, and [, X dP
= m — nr # 0 for some integers m and n. Thus there does not exist an @ C &
such that E(X | @) = 0 a.s. _

Slightly weaker results do hold in general however. We can no longer start
with a given probability space and random variables on it, and construct con-
ditioning o-fields within the o-fields generated by the random variables. We can,
however, start with given distributions, and construct a probability space,
random variables on it with the required distributions, and conditioning o-fields
such that the resulting conditional expectations have the desired properties.
For example Theorem 2 would become '

TuroreM 2'. Let F and G be probability distribution functions such that the
mean of F is not defined. Then there exists a probability space (R, , P), random
variables X with distribution function F and Y with distribution function G, and a
o-field @ C F such that B8(Y) C Qand E(X | Q) = Y as.

The method of proof is as follows. We construct a probability space (2, , P)
and random variables X, ¥, and Z such that X and Y have the required distri-
bution functions, ¥ and Z are independent, Z has a continuous distribution, and
X = f(Z), where f is a non-decreasing function such that f(0) = 0.

We then define, for a > 0

, 95(2,9) = [mineo (F(t) — y) dF'(2)
where F' is the distribution function of Z. The remainder of the proof proceeds
as in Theorem 2.
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